
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Visual Basic 2008

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other Microsoft .NET resources from O’Reilly

Related titles ADO.NET 3.5 Cookbook™

Building a Web 2.0 Portal
with ASP.NET 3.5

C# Cookbook™

C# 3.0 in a Nutshell

C# 3.0 Pocket Reference

Learning ASP.NET 3.5

Programming ASP.NET 3.5

Programming ASP.NET AJAX

Visual Basic 2005 Cookbook™

.NET Books
Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming
Visual Basic 2008

Tim Patrick

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Visual Basic 2008
by Tim Patrick

Copyright © 2008 Tim Patrick. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Rachel Monaghan
Copyeditor: Audrey Doyle
Proofreader: Rachel Monaghan

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:

May 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Visual Basic 2008, the image of a bufflehead duck, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51843-1

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

To Maki, my lovely wife

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vii

Table of Contents

Preface . xv

1. Introducing .NET . 1
Before .NET 1
Back to Introducing .NET 2
The .NET Object 3
The Parts of the .NET Framework 7
From Source Code to EXE 16
What About Visual Studio and Visual Basic? 17
Visual Studio 2008 18
Summary 22
Project 23

2. Introducing Visual Basic . 30
The History of the Visual Basic Revolution 30
Visual Basic from the Inside Out 32
The Basics of Logic and Data 32
Data Types and Variables 35
Intermission 44
Comments 44
Option Statements 45
Basic Operators 47
Using Functions and Subroutines 49
Conditions 50
Loops 54
Creating Your Own Procedures 57
Other Flow Control Features 61

http://lib.ommolketab.ir
http://lib.ommolketab.ir

viii | Table of Contents

Events and Event Handlers 64
Namespaces 66
The My Namespace 69
Summary 70
Project 70

3. Introducing the Project . 75
The Library Project 76
The Needs of the Users 79
The Life of a Project 83
Summary 90
Project 90

4. Designing the Database . 95
Relational Databases 95
SQL Server 2005 98
SQL 100
Using Databases in Visual Basic 107
Documenting the Database 108
Summary 109
Project 109

5. .NET Assemblies . 126
What Is an Assembly? 126
What’s Inside an Assembly? 128
Assemblies and Applications 131
The My Namespace and Assemblies 132
Directives and Assemblies 134
Summary 136
Project 137

6. Data and Data Types . 151
The Nature of Computer Data 151
Data in .NET 153
Visual Basic Data Types 158
Literals 159
Constants 160

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table of Contents | ix

Enumerations 161
Variables 162
Variable and Constant Naming Conventions 165
Local Type Inference 166
Operators 167
Static Variables 172
Arrays 172
Nullable Types 175
Common Visual Basic Functions 176
Summary 181
Project 182

7. Windows Forms . 187
Inside a Windows Application 187
Windows in .NET 191
Making Forms Useful 210
Summary 212
Project 212

8. Classes and Inheritance . 219
Object-Oriented Programming Concepts 219
OOP in Visual Basic and .NET 224
Related Issues 241
Summary 244
Project 244

9. Functional Programming . 253
Lambda Expressions 253
Object Initializers 259
Error Handling in Visual Basic 260
The Nature of Errors in Visual Basic 260
Unstructured Error Handling 263
Structured Error Handling 265
Unhandled Errors 267
Managing Errors 269
Summary 273
Project 274

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x | Table of Contents

10. ADO.NET . 277
What Is ADO.NET? 278
Overview of ADO.NET 279
Data Sets Versus No Data Sets 282
Connecting to SQL Server with Visual Studio 284
Interacting with SQL Server in Code 289
Database Transactions 292
ADO.NET Entity Framework 293
Summary 294
Project 294

11. Security . 303
Security Features in .NET 304
Cryptography and Encryption 304
Encryption in .NET 306
Other Security Features 311
Summary 312
Project 312

12. Overloads and Extensions . 330
What Is Operator Overloading? 330
What Can You Overload? 332
Other Operator Overloading Issues 338
Extension Methods 340
Summary 342
Project 342

13. XML . 361
What Is XML? 361
The XML Rule 364
XML Content 365
Using XML in .NET: The Old Way 371
Using XML in .NET: The New Way 375
Summary 378
Project 379

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table of Contents | xi

14. Application Settings . 392
A Short History of Settings 392
Settings in Visual Basic 2008 394
Summary 400
Project 401

15. Files and Directories . 416
Traditional Visual Basic File Management 417
Manipulating Files Through Streams 418
File Management with the My Namespace 424
Summary 427
Project 428

16. Generics . 433
What Are Generics? 433
Variations of Generic Declaration 436
Summary 442
Project 442

17. LINQ . 448
What Is LINQ? 448
Anonymous Types 450
LINQ to Objects 451
Basic Query Expressions 453
Converting Results to Other Forms 459
Aggregate Queries 459
Advanced Query Expressions 460
LINQ to XML 461
LINQ for ADO.NET-Related Data 463
Deferred Execution 468
Summary 469
Project 470

18. User Interface . 486
Overview of GDI+ 487
Selecting a Canvas 488
Choosing Pens and Brushes 490

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xii | Table of Contents

Flowing Text from the Font 493
Imagining Images 497
Exposing Your True Artist 499
Paths: Drawings on Macro-Vision 501
Keeping It Regional 502
Twisting and Turning with Transformations 503
Enhancing Controls Through Owner Draw 505
Windows Presentation Foundation 507
Enhancing Classes with Attributes 510
Summary 511
Project 511

19. Localization and Globalization . 526
Defining Globalization and Localization 526
Resource Files 527
The My.Resources Object 529
Localizing Forms Within Visual Studio 531
Adding Resources Outside Visual Studio 534
Manually Compiling Resources 535
Other Localization Features 537
Summary 538
Project 539

20. Printing . 552
Printing in Windows 553
Printing in .NET 554
Printing a Document 557
Print Preview 559
Counting and Numbering Pages 561
Printing in “Raw” Mode 563
Summary 564
Project 564

21. Reporting . 581
Report Options in .NET 581
Using Reporting Controls in .NET 584
Summary 597
Project 597

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table of Contents | xiii

22. Licensing Your Application . 611
Software Licensing Options 611
License Agreements 615
Obfuscation 616
The Library Licensing System 618
Summary 621
Project 622

23. Web Development . 642
How the Internet Works 642
Programming the Internet 644
ASP.NET Features 645
Trying Out ASP.NET 646
More About Events 653
State and View State 654
Data Validation 655
Database Integration 657
Windows Communication Foundation 658
Summary 663
Project 663

24. Adding Online Help . 672
Windows Online Help Options 672
Designing HTML Help 674
Accessing HTML Help 680
Summary 683
Project 683

25. Deployment . 689
What’s Involved in Deployment? 689
Deployment Methods Within Visual Studio 690
Summary 700
Project 700

26. Project Complete . 711
The Library Project 711
Visual Basic Flexibility 714
The Programming Mindset 716
Summary 717

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xiv | Table of Contents

A. Installing the Software . 719

B. Software License Agreement . 722

Index . 725

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xv

Preface1

Welcome to Programming Visual Basic 2008! I know you’re going to enjoy it; I’ve
read it five times already. You’re probably anxious to get to Chapter 1, but I recom-
mend you read this preface to make sure you paid for the right book.

Who Is Reading This Book?
Writing a book is a lot like writing a Visual Basic application. Well, except for the
part about finding a publisher, and working with an editor. And then there’s that
pesky rule about correct spelling. Come to think of it, they’re really quite different.
But in one way, books and programs are similar: both are written to meet the needs
of the user. When writing software applications, the user’s needs drive the organiza-
tion and features of the final program. When writing a book, like the one you’re
looking at now, the needs of the user—that’s you, the reader—drive the organiza-
tion and features of the final text.

So it was with you in mind that I set out to write this book. Oh, there’s the fame and
the prestige, but it’s really about you. You, the person who seeks to understand
Visual Basic and the .NET Framework on which it is built. When I thought about
you and your needs, I came up with these ideas:

You might know how to program, but maybe not
In the programming world, there are four types of people: (1) those who
already program joyfully; (2) those who don’t program, but will learn it and
love it; (3) those who don’t program, but will learn it and struggle with it; and
(4) those who should return this book immediately to the bookstore. If you are
in one of the first three groups, this book is definitely for you. I believe that anyone
who can break down a task into its basic step-by-step instructions can successfully
program in Visual Basic. If you are unsure about your ability to quantify tasks in
this way, you might want to start out with a book on basic programming concepts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xvi | Preface

You might know how to program in Visual Basic or .NET, but maybe not
And that’s OK, because this book will teach you. Most of the chapters introduce
important topics in Visual Basic and .NET development, such as object-oriented
programming concepts, or using the different types of variables available to you,
or interacting with a database. If you already know how to use Visual Basic 6 or
earlier, that’s great, but it’s not a prerequisite.

You want to write programs
Most programming books teach you to write code in 10-line increments. At least
that’s what’s scattered throughout their pages. I’ve put some of those “code
snippets” in this book. But I spend my days writing real programs, not 10-line
sample programs. If you want to write whole programs, you should learn using
whole programs. That’s why I also put a program in my book—a whole pro-
gram. Over the next several hundred pages, I will develop a real program—a
database for a small library—and you will write it with me.

I put all of these ideas into 26 easy-to-read chapters, and had O’Reilly Media glue the
pages together for your convenience. When you reach the index, you will have
learned how to write complete programs in Visual Basic and .NET. It will be a pro-
gramming adventure, so let’s get started!

What’s in This Book?
Since we are going to be spending a lot of time together, you probably want to know
something about me. Well, my name is Tim Patrick, and for many years I lived just
up the street from the big Microsoft campus. I’ve been writing programs for 25 years,
and these days I write custom database-oriented Visual Basic applications for small to
medium-size businesses. And I’m not alone. Most Visual Basic developers write
business-level software. If that’s what you do, or plan to do, you’re in great company.

As you move through the pages of this book, you will read about the major .NET
and Visual Basic activities that drive the development of business-level and general con-
sumer applications. If you plan to do some other type of programming, such as game
development, this book will be somewhat helpful, but I don’t talk about advanced or
specialized features such as interactive 3D models or geometric transformations.

Each chapter discusses a major programming topic, and then follows it up with a
practical implementation of that topic: the creation of the Library database program.
I don’t show every line of code in the book; if I did, the book would weigh 53
pounds and cost $254.38, plus tax. To get every line of source code, you’ll have to
download the accompanying source code from the book’s web site. The code and
the book’s text are united in one purpose: to train you in the skilled use of Visual
Basic on the .NET platform so that you can develop the highest-quality applications
possible. The text and the source code both include valuable resources that you can
use every day in your programming life.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface | xvii

What’s in the Software Download?
You’re going to like the download. It contains all the source code for the Library
database project. What’s cool is that when you install the source code examples,
they become part of Visual Studio. Once they are installed, you can create a new
chapter-specific project right from the File ➝ New Project menu in Visual Studio.
Appendix A has all of the download and installation details.

I wrote the project code using Visual Basic 2008 Professional Edition. Some portions
may not be compatible with earlier .NET versions of the language. None of it is com-
patible with Visual Basic 6.0 or earlier, so don’t even bother trying. The source code
will work with any edition of Visual Basic 2008, including the Express Edition.

The source code also uses SQL Server 2005 for its database storage. You can use
any edition of SQL Server 2005, including the Express Edition. Chapter 4 intro-
duces databases and SQL Server 2005. If you will be using the database in an IT
department-controlled network environment, you may need to talk with your IT
department representative about installing the sample database. The SQL code I use
is pretty vanilla, so it should work on previous versions of SQL Server, and you could
easily adjust it to work with Oracle, DB2, Microsoft Access, or other common data-
base engines. You can also use the upcoming SQL Server 2008 if you have it available.

You can use the downloadable source code for your own projects, but please give
credit where credit is due. There is a license agreement associated with the code (see
Appendix B), so please don’t go selling the software as your own work. Just to be on
the safe side, I’ve added a few hard-to-find bugs. Just kidding! (No, I’m not!)

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, and file extensions.

Constant width
Indicates computer coding in a broad sense. This includes all Visual Basic source
code, HTML content, XML content, commands, options, source code from
other languages, and content generated by Visual Studio tools.

Constant width bold
Indicates commands or other text that the user should type literally. Also used to
highlight a particular section of code.

Constant width italics
Indicates text that should be replaced with user-supplied values or values deter-
mined by context.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xviii | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact the publisher or
me for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting exam-
ple code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation requires that you abide by the
terms of the software license agreement found in Appendix B.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Visual Basic 2008, by
Tim Patrick. Copyright 2008 Tim Patrick, 978-0-596-51843-1.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us as permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596518431

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596518431
mailto:bookquestions@oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface | xix

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com/

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
The development of Programming Visual Basic 2008 has been a labor of love for me,
and I am blessed to have had so many others go through the labor with me. Joan
Murray from Addison-Wesley was my editor on the first edition of the book. John
Osborn at O’Reilly Media took up the task of guiding the second edition. I have been
fortunate to have worked with John on three different book projects, and their suc-
cess was possible thanks to his gallant efforts.

Several other authors and programmers took time out of their day jobs to review
each chapter of the book and point out its deficiencies, which were numerous before
their arrival. I especially wish to thank Glenn Berry, Alex Bierhaus, Harry Chen, Ken
Getz, Lowell Mauer, and Dan Sullivan for their superb comments. When it came
time to focus on Visual Basic’s 2008 release, I also received fantastic input from
Chris Williams, Daniel Seara, Ron Petrusha, and Sander Gerz.

Many thanks to Joe Binder, Jay Roxe, Prasadi de Silva, and Eric Knox, all members
of the Visual Basic team at Microsoft. Each of them fielded a relentless onslaught of
questions about esoteric Visual Basic and .NET features, and provided answers filled
with knowledge, patience, and grace.

My agent, Claudette Moore, always deserves her own paragraph in any computer
book I write. In fact, she would be a great subject for one of those literary-agent-
focused biographies that the public is always clamoring for. Not only does she do a
great job at all of the normal agenty things, but she also shares personally in the joys
and sorrows of the authors under her charge. Thank you for another fun year in
books.

mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

xx | Preface

To Maki, my wife, and to Spencer, my son, I give a special wave of thanks. If you’ve
ever spent time with authors, you know how cranky they can get. But Maki and
Spencer combat crankiness with care and love, and it works. The words thank you
seem so inadequate when I owe both of them so much. Thanks be to God because
He provided such a tremendous family to me.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1

Chapter 1 CHAPTER 1

Introducing .NET1

Welcome to .NET! I might as well have said, “Welcome to the universe,” because
like the universe, .NET is huge. And it’s complex. And it’s filled with black holes and
other things that don’t always make sense. Yet it (.NET, not the universe) turns out
to be a fantastic system in which to develop software applications.

The .NET Framework was not developed in a vacuum (unlike the universe);
Microsoft designed it and its related development languages—especially C# and
Visual Basic—to address various issues that plagued Windows software developers
and users. To fully understand why .NET was necessary, we need to take a short trip
down computer memory lane.

Before .NET
Practical, general-purpose computers have been around since the mid-20th century.
However, they were inaccessible to most people because (a) they cost millions of dol-
lars; (b) they consumed gobs of electricity; (c) maintenance and programming could
be done only by highly trained specialists; and (d) they tended to clash with the liv-
ing room furniture.

Fast-forward about 30 years. IBM comes out with the “personal” computer. These
“desktop” computers represented a great advance in technology, but only a minority
of people ever used them. They continued to be expensive (thousands of dollars),
and maintenance and programming still required significant investments in training.
IBM PCs also looked hideous around the living room furniture.

Then came the Apple Macintosh. With its sleek design and its user-friendly function-
ality, it introduced the joy of computing to the masses. And while programming it
was not always straightforward, it did give nice results. It’s no wonder that Microsoft
decided to copy—oops, I mean improve upon—its functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2 | Chapter 1: Introducing .NET

Microsoft Windows 1.0 brought a greater level of usability to the IBM/Intel comput-
ing platform. But it wasn’t a free ride for programmers. MS-DOS development was
hard enough without the addition of the “message pumps” and the hundreds of
Application Programming Interface (API) calls needed by Windows programs. Visual
Basic 1.0, introduced in 1991, greatly simplified the development process, but with
the advent of 32-bit systems, ActiveX and COM components, and the Web, even VB
programmers soon felt overwhelmed.

Throughout the 1990s, the situation only seemed to worsen. Microsoft saw increased
competition in the form of the Java™ language and the Linux operating system.
Hackers were exploiting buffer overruns and other security issues present in the
Windows platform. Users experienced myriad computer problems stemming from
conflicting standards, competing data integration technologies, registry bloat, and
“DLL hell.” In frustration, an Excel user’s group set fire to the entire Microsoft cam-
pus in Redmond.

Well, it didn’t get that bad. But Microsoft did see that it needed to address the over-
all software development and usability issues on its beloved Windows platform. Its
solution came in the form of the .NET Framework.

Back to Introducing .NET
When Microsoft announced its plans for .NET, it surprised many developers, espe-
cially Visual Basic developers, who saw it as a giant step backward for “Rapid Appli-
cation Development.” But the release of the .NET Framework version 1.0 in 2002
did bring many needed benefits:

.NET introduced a unified programming environment
All .NET-enabled languages compile to “Microsoft Intermediate Language”
before being assembled into platform-specific machine code. Visual Basic, C#,
and other .NET languages are wrappers around this common .NET “language.”
Since all .NET-enabled compilers speak the same underlying language, they no
longer suffer from the many data and language conflicts inherent in other cross-
language component-based systems such as COM. The .NET version of Visual
Studio also unified the standard user interface that lets programmers craft source
code.

.NET committed developers to object-oriented technologies
Not only does .NET fully embrace the object-oriented programming paradigm,
but everything in .NET is contained in an object: all data values, all source code
blocks, and the plumbing for all user-initiated events. Everything appears in the
context of an object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .NET Object | 3

.NET simplified Windows programming
Programming in Visual Basic before .NET was easy enough, until it came time to
interact with one of the API libraries, something that happened a lot in profes-
sional programming. With .NET, most of the regularly used APIs are replaced
with a hierarchy of objects providing access to many commonly needed Win-
dows features. Since the hierarchy is extensible, other vendors can add new func-
tionality without disrupting the existing framework.

.NET enhanced security
Users and administrators can now establish security rules for different .NET fea-
tures, to limit malicious programs from doing their damage. .NET’s “managed”
environment also resolves buffer overrun issues and memory leaks through fea-
tures such as strong data typing and garbage collection.

.NET enhanced developer productivity through standards
The .NET Framework is built upon and uses many new and existing standards,
such as XML and SOAP. This enhances data interchange not only on the Win-
dows platform, but also in interactions with other platforms and systems.

.NET enhanced web-based development
Until .NET, a lot of web-based development was done using scripting languages.
.NET brings the power of compiled, desktop development to the Internet.

.NET simplified the deployment of applications
If .NET is installed on a system, releasing a program can be as simple as copying
its EXE file to the target system (although an install program is much more user-
friendly). Features such as side-by-side deployment, ClickOnce deployment, and
an end to file version conflicts and “DLL hell” (the presence of multiple versions
of the same DLL on a system, or the inability to remove a version of a DLL)
make desktop and web-based deployments a snap.

If you didn’t understand some of the terms used in this section, that’s all right. You
will encounter them again, with explanations, in later chapters.

The .NET Object
To fully understand software development in .NET, you must understand what an
object is. (If you are familiar with object-oriented programming—OOP—you can
probably skip down to the next section, although you will miss some really great
content.) While some of this section’s information will also appear in Chapter 8, it is
so important to the discussion of .NET that a portion appears here as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4 | Chapter 1: Introducing .NET

Objects and Data
From a programming standpoint, a computer performs four basic tasks:

• It stores data in the computer’s memory area.

• It supports processing of this data through basic operations, including addition
and subtraction, Boolean algebra, and text string manipulation.

• It allows the user to interact with the data stored in memory.

• It provides a way to bring the data in and out of memory, through input and out-
put devices such as keyboards and printers, and through long-term storage
media such as hard drives.

The core of these four activities is data. Computers exist to manipulate data. Operat-
ing systems provide the basic foundation for these activities, but it is software appli-
cations that make these features—the ability to manipulate data—real and
meaningful to the user. High-level programming languages are the primary tools
used to develop these applications, each of which uses some general methods to
make data manipulation features available to the programmer. Back in the good old
days of assembly language development, if you knew the memory address of a piece
of data, you could access and manipulate it directly. In early flavors of BASIC and in
most other “procedural” languages, data was accessed through variables.

As languages grew in complexity and purpose, so did their view of data. In the LISP
(short for “List Processing” or “Lots of Irritating Silly Parentheses”) language, any
data value exists within a larger list or set of data. But in .NET languages, data is
viewed through the object.

Objects are collections of data values and associated source code. While in older
BASIC dialects, each data element was more or less independent through its named
variable, related data values in OOP languages can be grouped into objects. Object
implementations often include source code designed to manipulate the data values of
that object.

Objects generally represent some thing, often a thing that has a real-world counter-
part, whether physical or conceptual. For instance, your code may include a House
object that has data fields or properties for the address, the exterior paint color, and
the number of people living in the house. Associated source code could manage that
data; a Paint method could alter the color value used for the exterior paint.

The data and code elements within an object are called members. Some members are
hidden inside the object and can be accessed only by the object’s source code. Other
members are more public; any code in your application can use them, not just that
subset of application code found inside the object. Consider a television as an object
(see Figure 1-1).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .NET Object | 5

The public members of a TV are generally easy to use: the power button, channel
selector, volume control, and so on. They are the conduits through which the user
controls the data values of the TV (its video and audio output). There are also hid-
den members inside the TV; you could use these members to impact the picture and
sound quality, although this would be a bad idea for most users. You don’t want me
messing with the internal members of your TV set, trust me. In the same way, an object
doesn’t want code outside the object to mess with its internal members except through
the public members. I don’t care how a TV works internally, as long as I can get pictures
and sound out of it by using the controls that are exposed (power, channel, volume).

Objects and Interfaces
The public members of an object represent its interface. If code outside the object wants
to manipulate the data belonging to that object, it uses the members of the interface. It
doesn’t have to figure out the hidden members or how they work, and that’s good. It’s
especially good if those internal members ever change for any reason, which happens
more often than you think. Consider how the internals of TVs have changed just in the
past 30 years. Here’s a drawing of the TV my family had when I was a kid. Compare it
to modern flat-panel TVs available today (see Figure 1-2).

My family’s TV was cool. It had an AM/FM stereophonic hi-fi radio, a turntable that
could play 33 1/3, 45, and 78 rpm records, and a large 19-inch screen with a vivid,
black-and-white, crystal-clear display. Two kids could hide behind it when playing
hide-and-seek. And my friend who had the same model said that you could draw
these really cool permanent lines on the screen with a magnet. Who cares that the
speaker panels looked like vertical shag carpet? Who cares that the unit took up 30%
of the floor space in the room? Who cares that you could cook sausages on top of it
from the heat generated by the vacuum tubes? It was more than a TV; it was an
entertainment center.

Figure 1-1. A TV: it’s an object, not just objectionable

Outside view Inside view

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6 | Chapter 1: Introducing .NET

Now compare it to the wimpy little flat-panel job on its right. If you look closely, you
find that the interface to the TV hasn’t really changed much in three decades. There
are still controls for power, volume, and channel selection (although Horizontal
Hold and Vertical Hold are gone, sniff). What has changed is the internal configura-
tion. Gone are the humming vacuum tubes, all replaced with efficient transistors and
solid-state components. But it doesn’t really make much difference to the TV viewer,
since the public interface remains the same.

Objects in OOP development work in the same way. As long as the public interface
remains the same, the object’s actual code and internal data storage system—also
known as the object’s implementation—can change with no impact to the overall
application.

Objects and Instances
The interface and implementation of an object really represent only its design; these
are the parts the programmer creates through the source code. They exist even before
the program is compiled and installed on the user’s computer. In fact, at this level,
objects really aren’t even known as objects. In most languages (including Visual
Basic), the word class indicates the implementation of an object’s interface.

Once your application is installed on a computer and starts up, the code creates
instances of the class to store actual data in memory. These instances are the true
objects of OOP development. Depending on how your code is written, a single class
implementation might be used to create one or even hundreds of objects in memory
at the same time.

Figure 1-2. Are those really TVs?

The TV of my childhood A newfangled thing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Parts of the .NET Framework | 7

In .NET, all of your code and data values appear inside objects. Pretty much every-
thing you see in a running program is an object: a Windows form is an object; a list-
box control on that form is an object; and a single item in that listbox is an object.

The Parts of the .NET Framework
So, now you know all about objects, and you are probably thinking it’s time to toss
this book into the pile and start programming. But there are a few more parts of the
.NET Framework still to discuss. These parts show up ad nauseam in the .NET doc-
umentation, and they each have a three-letter acronym (TLA), or thereabouts.

The Common Language Runtime
At the center of the .NET Framework is the Common Language Runtime (CLR), so
named not because it is common or ordinary, but because all .NET-enabled lan-
guages share it in common. Everything you do in a .NET program is managed by the
CLR. When you create a variable, thank the CLR and its data management system.
When you say goodbye to a piece of data, thank the CLR and how it manages the
release of data through its garbage collection system. Did you notice how the word
manage keeps showing up in those sentences? My editor sure did. But “manage” is
the mot juste, since that is what the CLR does. In fact, software written for the .NET
Framework is called managed code. Any code that falls outside the CLR’s control,
including COM (ActiveX) components used by your .NET application, is known as
unmanaged code.

The CLR is a lot like Los Angeles International Airport. If you have ever been to
LAX, you know that there is a whole lot of activity going on. Airplanes arrive and
depart each minute. Cars by the thousands enter and leave the two-level roadway
and the central parking structures. People and pickpockets move constantly among the
eight main terminals and the massive international terminal. There’s a lot happening,
but so much of it is managed. Planes cannot take off or land without approval from the
control tower. Access points and gates manage the roadways and parking garages.
Friendly, courteous TSA agents manage the flow of passengers and pickpockets into
and out of the secure areas of the terminals.

The control and management structures in place at LAX ensure an orderly and
secure flow of people between their planes and the city of Los Angeles. The control
and management structures of the CLR ensure an orderly and secure flow of data
between .NET code and the rest of the computer or connected network.

You’d probably like to know the secret of how the CLR is able to process programs
written in any .NET language, including Visual Basic, C#, and FORTRAN. So
would Microsoft’s competitors. Actually, they do know, because there is no secret.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8 | Chapter 1: Introducing .NET

All .NET-enabled languages convert (i.e., “compile”) your source code into Microsoft
Intermediate Language (or MSIL, pronounced “missile,” and more commonly abbre-
viated as just IL). For those of you familiar with assembly language, it looks a lot like
that. For those of you not familiar with assembly language, it looks a lot like gibber-
ish. For example, here is some Visual Basic source code for a console application (a
non-Windows text-based program, like the old MS-DOS programs) that simply out-
puts “Hello, World!” from a code procedure called Main:

Module Module1
 Sub Main()
 Console.WriteLine("Hello, World!")
 End Sub
End Module

That’s the whole .NET program. When the Visual Basic compiler converts it to
MSIL, the Main procedure looks like this (slightly modified to fit on this page):

.method public static void Main() cil managed
{
 .entrypoint
 .custom instance void [mscorlib]System.
 STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 11 (0xb)
 .maxstack 8
 IL_0000: ldstr "Hello, World!"
 IL_0005: call
 void [mscorlib]System.Console::WriteLine(string)
 IL_000a: ret
} // end of method Module1::Main

Yes, it is gibberish. But that’s OK, because it fulfills the International Computer
Book Association’s requirement that every Chapter 1 include a “Hello, World” code
sample. Also, the CLR understands it, and that’s what really counts in .NET. As long
as you can get your code into IL, .NET will process it. The Visual Basic compiler just
happens to generate IL for you. Other .NET language compilers, including C#, tar-
get IL as well. You can even write your own IL code, but you’re probably reading the
wrong book for that. Just to put your mind at ease, this will be the last bit of IL you
will see in this book.

The Common Language Specification
Languages that claim to support .NET cannot just say so for any old reason. They
truly have to be compatible with .NET and its workings. This is done through the
Common Language Specification (CLS). The CLS defines a minimum set of features
that a language must implement before it is considered to be .NET-compliant, or
more accurately, CLS-compliant.

A language can go beyond that minimum if it wants, and .NET includes many addi-
tional features upon which language-specific features may be built. A language that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Parts of the .NET Framework | 9

implements only the minimum CLS-specified features may not be able to fully inter-
act with components from languages that exceed the minimum specification. Visual
Basic is, of course, CLS-compliant, and in fact it goes way beyond that minimum.

The Common Type System
Since the CLR is controlling your source code anyway, Microsoft thought it would
be good to have it control the source code’s data as well. The .NET Framework does
this through its Common Type System (CTS), which defines all of the core data types
and data mechanisms used in .NET programs. This includes all numeric, string, and
Boolean value types. It also defines the object, the core data storage unit in .NET.

The CTS divides all objects into two buckets. The first bucket, called value types,
stores actual data right in the bucket. If you have a 32-bit integer value, it gets put
right in the value type bucket, ready for your immediate use. The other bucket con-
tains reference types. When you look in this bucket, you see a map that tells you
where to find the actual data somewhere else in the computer’s memory. It seems
like value types are easier to use, and they are, but they come with a few restrictions
not imposed on reference types.

Programs and components written using the CTS standard can exchange data with
one another without any hindrances or limitations. (A few .NET data types fall out-
side the “core” CTS types, but you need to avoid them only when you want to specif-
ically interact with components that can use only the core CTS types.)

When you write your applications in Visual Basic, most of your code will appear in
classes. Classes are reference types that include both data values and associated code.
The data values included in a class are most often the core CTS data types, but they
can also contain objects that you design elsewhere in your application. Visual Basic
also includes structures, the weaker yet quicker younger brother of classes. Struc-
tures implement value types, and also include both data and code.

Classes and structures are just two of the data/code types available in Visual Basic.
Interfaces are class and structure skeletons; they include design details of what
should appear in a related class or structure, but don’t include any actual implemen-
tation or working code. Delegates define a procedure “signature” sans implementa-
tion, and are used to support events, those actions (initiated by the user, by the
operating system, or by your code) that tell your code, “Get to work now!” Sea otters
are aquatic mammals that are curiously related to the weasel, and like to eat sea
urchins. Modules are blocks of code and data, but unlike classes and structures, you
can’t create independent objects from them. Enumerations group a set of related inte-
ger values, generally for use as a list of choices.

In .NET parlance, all of these terms (class, structure, interface, delegate, module, and
enumeration, but not sea otter) are known collectively as types. You probably already
knew that .NET had some confusing elements in it; you wouldn’t have bought a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10 | Chapter 1: Introducing .NET

book about it if it were easy. But despite all the complex technology, it is this simple
word, type, which causes the most confusion. You will likely experience some angst
throughout this book each time you read it. The problem: it’s too general. Not only
does it refer to these core elements of the CTS, but it is also used when talking about
just the Visual Basic-specific value types (more often called the Visual Basic “data
types”). The nickname for structures is “user-defined types,” yet another confusing
use of “type.” Programmers who used Visual Basic before its .NET incarnation also
remember “Type” as the language statement used to create user-defined types.
Arrrgh! Microsoft should have used some word other than type for the world of
classes, interfaces, enumerations, and so on. “Banana” would have been a better
choice since it is only sometimes used to discuss software. But “type” is the word, so
you better get used to seeing it. I will try to include as much context as possible when
using the word throughout this volume.

The members of a type usually consist of simple data fields and code procedures, but
you can also include other types as members. That is, a class can include a nested
class if it needs to. Only certain types support nesting—see Chapter 8 for details. I
also talk about access levels in that chapter. Each member has an access level that
says what code can use that member. There are five access levels, ranging from pub-
lic (anybody and their brother can use the member) to private (you have to be inside
the type to even know it’s there).

Chapter 6 discusses the .NET type system in greater detail, including the informa-
tion you crave on classes, structures, and other bananas.

.NET Class Libraries
Computers are actually quite stupid. Whereas I can count all the way to 17, a com-
puter tops out at 1; it only knows the digits 0 and 1. The CPU includes a set of sim-
ple operators used to manipulate the digits 0 and 1, and a few more operators that
compare 1s and 0s in complex ways. The computer’s last great trick is its ability to
move 0s and 1s into and out of memory, but whoop-de-doo. Sure it does these things
at nearly the speed of light, but can it calculate π to 3 million decimal places?

Well, actually it can. Computers don’t know anything about the letters of the alpha-
bet, and they really can handle only the digits 0 and 1, yet here I am using a com-
puter to write an award-winning book. It is the ability to combine the simple 1-bit
data values and operators into increasingly complex libraries of functionality that
makes useful computers possible.*

The .NET Framework is built upon decades of increasingly complex functionality.
When you install the .NET Framework, the CLR and its associated type system

* If you want to read a truly fascinating book on how complex software and hardware operations are formed
from the most basic uses of 0 and 1, read Charles Petzold’s Code: The Hidden Language of Computer Hard-
ware and Software (Microsoft Press).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Parts of the .NET Framework | 11

represent the core of the framework. By itself, the framework includes all the basic
functionality needed to let you add 2 and 2 together and correctly get 4. And as a
business application developer, you spend a lot of time doing just that. But what if
you want to do something more complex, something that you know some other pro-
grammer has already done, like sorting a list of names or drawing a colored circle on
a form? To get that answer, go to the class libraries, the .NET Class Libraries. These
libraries, installed with the framework, include a lot of prewritten (increasingly com-
plex) functionality that you don’t have to write from scratch.

There are two class libraries in .NET: the Base Class Library (BCL) and the Frame-
work Class Library (FCL). The BCL is smaller, and contains the most essential fea-
tures that a program just couldn’t do without. It includes only those classes that are
an absolute must for supporting applications on the framework if Microsoft were to,
say, port the framework to Linux.

The FCL is larger, and includes everything else Microsoft thought you would want to
have in your programs, but was not absolutely essential to have in the BCL. Don’t
even ask how many classes there are in the FCL; you don’t want to know. I bet that
Microsoft doesn’t even really know the full number. I am convinced that those
wacky pranksters at Microsoft have included “gag” classes in the FCL, but they are
so deeply buried that few programmers ever encounter them.

With thousands (yes, thousands!) of classes, enumerations, interfaces, and other
types included in the BCL and FCL, you would think that it would be hard to find
just the class you need. But it’s not that difficult, at least not overwhelmingly diffi-
cult. The .NET Framework includes a feature called namespaces. All types in .NET
appear in a hierarchy—a tree-like structure—with just a few minimal entries at the
root. Each node in the hierarchy is a namespace. You uniquely identify any class or
other type in the libraries by naming all the namespaces, from the root down to the
local namespace that contains the class, separating each node with a period (.).

Unlike most hierarchies that have all branches starting from a single root node, the
.NET namespace hierarchy has multiple root nodes. The largest root namespace is
named System. It includes many classes, but it also includes several next-tier hierar-
chy nodes (namespaces). Since the framework includes features for both Windows-
based and web-based application development, there are namespaces that contain
the Windows-specific and web-specific development features. These namespaces
appear just within the System namespace, and are called Windows and Web. All code
related to on-screen forms in the Windows namespace appears in the Forms namespace,
and within this namespace is the actual class that implements a form, named Form.
Figure 1-3 presents an image of this namespace subset.

In Visual Basic, you identify a class by qualifying it with all its namespaces, starting
from its root namespace. The Form class has the following fully qualified name:

System.Windows.Forms.Form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12 | Chapter 1: Introducing .NET

All classes and types exist somewhere in the hierarchy, although not every class
descends from System. Many of the supporting features specific to Visual Basic
appear in the Microsoft.VisualBasic namespace, which has “Microsoft” as its root
node instead of “System.” When you create new projects in Visual Basic, the name of
the project is, by default, a new top-level node in the hierarchy. If you create a new
Windows application named WindowsApplication1, the default “Form1” form has the
following fully qualified name:

WindowsApplication1.Form1

This new application’s namespace is not just a second-class appendage hanging off
the System namespace. It is fully integrated into the full .NET namespace hierarchy;
the WindowsApplication1 namespace is a root node, just like the System and Microsoft
root nodes. Visual Basic includes features that let you alter the default namespace for
your application, or place one of the application’s classes in a specific namespace.
You can even place your application’s classes in the System namespace branch.
Changing WindowsApplication1 to System.MySuperApp moves Form1 to:

System.MySuperApp.Form1

If your application is actually a component or library destined for use in programs,
your app’s classes will appear in the namespace you specify when the other program
loads your component into its application area. Your code will look like it is part of
the Microsoft-supplied namespaces. Is that cool or what?

Although you can add your classes to the System namespace, you will incur the wrath
of other .NET programmers. The System namespace is supposed to be for “system”
(read: Microsoft-supplied) features, and that’s it. Also, there’s a chance that two ven-
dors might use the same namespace path. So, to avoid potential namespace conflicts
and dirty looks from other programmers, you should name your application’s classes as:

CompanyName.ApplicationName.ClassName

A single class or other type cannot be split across multiple namespaces, even within
the same hierarchy branch. However, two classes or types may share a common
name in different namespaces, even within the same branch.

Figure 1-3. A hierarchy of namespaces and classes

System

Web

Windows

Forms

Form

= Namespace

= Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Parts of the .NET Framework | 13

All classes of the BCL and FCL appear intermingled throughout the entire
namespace hierarchy. This means that you cannot necessarily tell whether a particu-
lar class is from the BCL or the FCL. Frankly, it doesn’t really matter; your code
won’t care which library a class comes from, as long as it is available for use on the
user’s workstation.

Just before the release of Visual Studio 2008, Microsoft announced that it would
make the source code for much of the Framework Class Library version 3.5 available
for developers to review. This means that programmers who want to know how
Microsoft sorts a list of names in memory or draws a colored circle on a form will get
at least a partial glimpse of how it is done.

Assemblies and Manifests
An assembly is a “unit of deployment” for the parts of a .NET application or library.
In 99.9% of cases, an assembly is simply a .NET executable file (an .exe file) or a .NET
library of classes and other types (a .dll file). It is possible to split an assembly among
multiple files, but usually it is one file for one assembly.

What makes an ordinary .exe or .dll file an assembly is the presence of a manifest. For
single-file assemblies, the manifest appears right in the file; it can also appear in a file
of its own. The manifest is a chunk of data that lists important details about the
assembly, including its name, version information, default culture, information on
referencing external assemblies and types, and a list of all the files contained in the
assembly. The CLR will not recognize an assembly without its manifest, so don’t lose it.

Assemblies can include an optional strong name. This helps to ensure the integrity
and authenticity of an assembly through a digital signature attached to the manifest.
The strong name uses public key cryptography to guarantee that the assembly is
unique and has not been tampered with. Visual Studio and the .NET Framework
include tools that let you add a strong name to an assembly.

When you deploy your application, you will normally place all assembly files, config-
uration files, and any related files specific to your application into the application’s
install directory, just like in the old Jurassic days before .NET. Shared assemblies
designed to be used by more than one application on a single machine can be stored
in the Global Assembly Cache (GAC). All assemblies placed in the GAC must have
strong names. Some systems may allow only the system administrator to add assem-
blies to the GAC.

Metadata and Attributes
Assemblies are brought to you by the letter m. In addition to manifests and type
members, assemblies also contain metadata. The application code and data elements
stored in an assembly parallel the code and data items found in the related Visual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14 | Chapter 1: Introducing .NET

Basic source code; for each type and member in your source code, there is associated
executable code in the deployed assembly. This makes sense, and is not much of a
change from pre-.NET deployments. What is different is that the Visual Basic com-
piler now attaches additional information—metadata—to each type and member in
the assembly. This metadata documents the name of the associated content, infor-
mation about required data types, information on class inheritance for the element,
and security permissions required before the element can be used by the user or
other software.

Your Visual Basic source code can enhance the metadata for any element of your
assembly through attributes. The metadata generated by an attribute is more than
just some ID number. Attributes implement full .NET classes, with their own data
values and associated logic. Any .NET code that knows how to process attributes can
examine the attributes for a type or member and take action as needed. This includes
Visual Studio, the Visual Basic compiler, and your own custom applications.

How’s this for a mundane example: the .NET Framework includes an attribute
named ObsoleteAttribute. This attribute lets you mark types or members of your
assembly as obsolete or no longer supported. (Visual Studio uses this attribute to dis-
play a warning whenever you attempt to use an out-of-date BCL or FCL feature.) To
use the attribute, add it to a member of your application using angle brackets:

Class MyClassWithOldMembers
 <ObsoleteAttribute> Sub DoSomeWork()
 End Sub
End Class

This code defines a single class (MyClassWithOldMembers) with a single member proce-
dure (DoSomeWork), a procedure that clearly does some work. The procedure is tagged
with the ObsoleteAttribute attribute. By custom, all attribute names end in the word
Attribute. You can leave off this portion of the word if you wish, as long as the result-
ant word does not conflict with any Visual Basic language keyword:

Class MyClassWithOldMembers
 <Obsolete> Sub DoSomeWork()
 End Sub
End Class

When you compile the class and store it in an assembly, the <ObsoleteAttribute>
attribute is stored as part of DoSomeWork’s definition. You can now write a separate
Visual Basic application that scans an assembly and outputs the name and status of
every type and member it finds. When that analysis program encounters the obso-
lete member, it will detect ObsoleteAttribute in the metadata, and output the status:

DoSomeWork Procedure: Obsolete, don't use it!

Most attributes are designed with a specific purpose in mind. Some attributes
instruct Visual Studio to display the members of a class in specific ways. You’ve
probably already played with the form-editing features of Visual Studio to design a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Parts of the .NET Framework | 15

simple Windows desktop application. When you add a control (such as a button or a
listbox) to a form and select that control, Visual Studio lets you edit details of that
control through the Properties panel area (see Figure 1-4).

The Button control is implemented as a class, and many of its class members appear
in the Properties panel, but not all of them. When the Button class was designed,
attributes were added to its members that tell Visual Studio which members should
appear in the Properties panel, and which should not. Visual Studio dutifully exam-
ines these attributes, and displays only the requested properties.

Versioning
Like yours, my applications are perfect from their initial release, and I never have a
reason to modify them or add features. But there are software development organiza-
tions—including one large company that, so as not to cause embarrassment, I will
refer to only by its initial letter of M—that feel the need to “one-up” their competi-
tion by coming out with “improved” versions of their previously released software
offerings. Let’s say that “M” happened to have a popular word processor that
includes version 1.0 of a spellcheck component. “M” also happens to sell an email
tool that depends specifically on version 1.0 of that same shared component. If, in a
show of competitive machismo, “M” releases an update to the word processor and
the spellcheck component (now version 2.0), what happens to the email tool’s
spellchecking ability?

Figure 1-4. The Properties panel in Visual Studio

I'm talking
about this
Properties
area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16 | Chapter 1: Introducing .NET

Not that this ever happens in real life. But if it did, the replacement of a vital shared
component with a newer but somewhat incompatible version could cause real prob-
lems. A related problem is the deployment of multiple versions of a single component
on the same workstation, all in different directories. Can any of them be safely deleted?

.NET solves these problems through versioning. All assemblies that use shared com-
ponents identify exactly which versions of the shared components they require.
Although an application can be reconfigured to use a later version, it will use only
the originally specified version of a shared component by default.

Multiple versions of a single shared component can be added to the GAC, a feature
called side-by-side deployment. The CLR ensures that the right application links up
with the right component. You can even run applications simultaneously that use
different versions of the same component.

From Source Code to EXE
Now you know pretty much everything there is to know about .NET except for that
pesky programming thing. Before delving into some actual code, let’s take a little
snack break and examine the lifetime of an application, from start to finish (see
Figure 1-5).

So, here’s what happens, step by step:

1. You, as the programmer, are responsible for preparing the basic ingredients (a)
of the application. For Visual Basic programs, this means creating one or more
source code files with a .vb extension. Your ingredients may also include other
support files, such as resource files (text and graphics files, often used for multi-
language support).

Figure 1-5. The real Visual Basic development process

(a) (b) (c) (e)

(d)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What About Visual Studio and Visual Basic? | 17

2. Your application is cooked by the Visual Basic compiler (b). The result is an
assembly, complete with a manifest and metadata. The output is actually semi-
compiled MSIL and includes ready-to-execute versions of the original source
code’s types and members, including all member and type names. All this con-
tent can be “decompiled” (returned back to full MSIL, although not to full
Visual Basic) using a tool named ildasm.exe (the Microsoft Intermediate Lan-
guage Disassembler), which is included with the .NET Framework. Since you
probably don’t want just anyone disassembling your application and looking at
the code, Microsoft (and other third parties) also supplies an obfuscator, which
sufficiently scrambles the content of your code to make it just difficult enough to
discourage prying eyes.

3. The assembly (c) is deployed to the user’s workstation. A few different methods are
used to deploy the application, including (1) generating a standard Windows
Installer setup package; (2) generating a ClickOnce deployment; or (3) performing
an xcopy install, which involves nothing more than copying the EXE assembly itself
to the destination machine. No matter which deployment method you choose,
the .NET runtime (d) must also be installed on the user’s workstation.

4. The user eats—I mean runs—the program (e). The CLR does a final just-in-time
(JIT) compile of the MSIL assembly, to prepare it for use on the local platform. It
then presents the application to the user, and manages all aspects of the applica-
tion while it runs. The user experiences a level of joy and satisfaction rarely
encountered when using other software applications.

As with the preparation of a Thanksgiving meal, the actual development process is
somewhat more involved than just reading a paragraph (or a recipe book) about it.
But it’s not so difficult that it can’t be put in a book like this one.

What About Visual Studio and Visual Basic?
Wait a minute, what about Visual Studio? That last section didn’t even mention it.
And it didn’t need to, since you do not need to use Visual Studio to develop, compile,
deploy, or run Visual Basic applications. The entire .NET Framework—including the
Visual Basic compiler—is available for free from Microsoft’s web site; download it
and use it to develop and deploy applications that are every bit as powerful and com-
plex as, well, Visual Studio.

The July 1983 issue of Datamation magazine includes an article from manly reader Ed
Post, titled “Real Programmers Don’t Use Pascal.”* I highly recommend that you read
this article, as it will help you quickly separate the real programmers from the “quiche
eaters.” And when you do, run away as fast as you can from the real programmers.

* Datamation 29 (7): July 1983, pp. 263–265. I also found the text of the article on the Internet by doing a
search on the title. A similar version of the text, with only minor editorial changes, also exists under the title
“Real Programmers Don’t Write Pascal.”

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18 | Chapter 1: Introducing .NET

Oh, sure, they can reconstruct your source code from the obfuscated .NET assembly,
but they will be useless on a team project using Visual Studio.

A “real programmer” could code any .NET application using Notepad, and it would
run. Actually, real programmers would use Emacs or vi instead of Notepad (since
Windows does not include a keypunch interface), but the results would be the same.
They would growl as you blissfully type away in Visual Studio’s elegant, well-
designed, and fully customizable and extensible user interface. They would gripe and
bare their cheese-cracker-with-peanut-butter-encrusted teeth at you while you use
the IntelliSense and AutoCompletion features built into the Visual Studio code edi-
tor. They would consume another slice of quiche-shaped cold pizza while you drag-
and-drop both Windows and web-based user interfaces.

Yes, the real programmer could generate full applications with just a text (or hex)
editor and a .NET compiler, but you would get the glory, since you would be done in
a fraction of the time it would take the FORTRAN lover to eek out his code.

Visual Studio 2008
Since this is a book on Visual Basic development and not on Visual Studio usage, I
won’t be delving too much into Visual Studio’s features or its user interface ele-
ments. It is a great application, and its tight integration with the .NET Framework
makes it the best tool for developing applications with .NET. But as the real pro-
grammer would tell you, it is really just a glorified text editor. Visual Studio hides a
lot of the complexity of .NET code, and its automatic generation of the code needed
to build your application’s user interface is a must-have. Most of its features exist to
simplify the process of adding code to your application.

Although I will not be including a 20-page review of Visual Studio right here, you
will find images of Visual Studio throughout the text, placed so as to advance your
understanding of the topics under discussion in each chapter. When you start up
Visual Studio for the first time, it displays the Start Page. (See Figure 1-6. The screen-
shots in this book are taken from the Professional Edition of Visual Studio 2008.)

Visual Studio 2008 is the fourth major release of the product since .NET’s initial
introduction in 2002. Each release (in 2002, 2003, 2005, and 2008) corresponds to a
related release of the .NET Framework (versions 1.0, 1.1, 2.0, and 3.5, respectively)
and of the .NET implementation of Visual Basic. The 2008 release of Visual Studio is
major. It is packed with new usability features, and comes in four delicious flavors:

Visual Studio 2008 Express Edition
This entry-level product is geared toward the home hobbyist or weekend pro-
grammer who wants to learn .NET and one of its core programming languages,
but won’t be snuggling up to it on a daily basis. Visual Studio 2008 Express Edi-
tion is actually multiple Express Edition language products promoted together,
including Visual Basic 2008 Express Edition. Microsoft’s goal is to introduce as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Studio 2008 | 19

many people as possible to the joys of .NET programming, so it offers the
Express Edition products at no cost. This edition includes a simplified Visual
Studio-like user interface, but it does impose a few restrictions on your program-
crafting ability. You can still edit the source code directly and craft applications
of any complexity, but the Express UI won’t always assist you with this. For
instance, you cannot develop web applications with the Visual Basic Express
product unless you install the separate Visual Web Developer 2008 product.
Also, Express doesn’t include much support for deployment; applications
designed with the Express Edition are generally expected to be used on your own
workstation only.

Visual Studio 2008 Standard Edition
Visual Studio’s Standard Edition is just like the Express Edition, with a few
extras thrown in, such as multiple-language support, web development tools,
and deployment support through both ClickOnce and Windows Installer meth-
ods. SQL Server 2005 Express Edition is included.

Visual Studio 2008 Professional Edition
This is the minimum level required by programmers who will develop applica-
tions on a daily basis for money. It’s the version that I use, and it includes all the
“power” features needed by a single programmer for both desktop and web-
based development. The straightjacketed Express user interface is out, replaced

Figure 1-6. The Visual Studio Start Page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20 | Chapter 1: Introducing .NET

by the full Visual Studio “mighty” Integrated Development Environment (IDE)
and all documentation. Also included are special tools that help you develop
applications for Microsoft Office, and for mobile devices. But wait, there’s more.
You also get SQL Server 2005 Developer Edition. All instructions in this book
that relate to using the development environment refer to the Professional Edi-
tion. But if you are following along using the Express or Standard Edition, you
will be just fine since the interfaces are quite similar.

Visual Studio Team System 2008
The crème de la crème of the Visual Studio product line is Team System. It
includes features needed by development teams that work on projects together,
features such as project management tools and source code control. Visual Studio
Team System 2008 Team Foundation Server, a separate product, can be installed
on a shared server, and enhances the features of the Team System package.

SQL Server 2008, the latest edition of Microsoft’s flagship database product, was
officially launched on the same day as Visual Studio 2008. Unfortunately, “launch”
had two different meanings depending on which of the products you were talking
about. For Visual Studio 2008, “launch” meant you could download the product
from Microsoft’s web site several months before the launch event. For SQL Server, a
mirror was used to allow access to the product a few months after the event. That
difference was enough to prevent SQL Server 2008 from being the database version
bundled with Visual Studio. But you do get SQL Server 2005 in your Visual Studio
goodie bag, and you can always upgrade if needed.

Beyond the database support, Visual Studio 2008 has been endowed with several
new usability and feature enhancements:

LINQ-specific features
We’ll discuss the new LINQ feature in Chapter 17. Beyond the code changes
added to .NET to support LINQ, Visual Studio includes special designers that
assist you in programming with LINQ.

Support for Windows Presentation Foundation projects
Windows Presentation Foundation, formerly code-named Avalon, is a new
XML-based user interface system supported by Windows for both desktop and
web-based applications. Visual Studio 2008 lets you create WPF-based applica-
tion or control projects. This book discusses Windows Presentation Foundation
briefly in Chapter 18.

Improved HTML (web page) editor
The new HTML editor improves on the previous editions found in earlier
releases of Visual Studio. The 2008 release includes a “split view” editor show-
ing HTML and WYSIWYG views simultaneously (see Figure 1-7). Cascading Style
Sheets (CSS) finally get their due with a new CSS style editor and IntelliSense sup-
port for CSS content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Studio 2008 | 21

Targeted library support
Earlier releases of Visual Studio were closely tied to the related release of .NET.
Visual Studio 2008 continues that tradition through its association with version 3.5
of the .NET Framework. However, you can now target earlier versions of .NET
(back through version 2.0) in Visual Studio 2008 with just the click of the mouse.

Enhanced debugging support
Visual Studio 2008 includes better support for remote debugging, especially on
Windows Vista. But the most amazing of the new debugging features is the abil-
ity to step into the source code for the .NET Framework libraries, with Visual
Studio dynamically obtaining the right version of the source code based on your
project type and framework version.

Transparent IntelliSense
IntelliSense is a productivity tool that helps speed you along in your code-crafting
frenzy. But sometimes the IntelliSense windows that popped up would obscure
your source code. Visual Studio 2008 now lets you look through the IntelliSense
list window just by holding down the Ctrl key (see Figure 1-8).

JavaScript IntelliSense and debugging support
Although Visual Studio once claimed amnesia concerning Java and JavaScript, it
now fully embraces the latter. This enhanced JavaScript environment simplifies the
creation of new Ajax applications. While not specifically needed for Visual Basic,
this new support is a big plus for those who develop web-based applications.

Figure 1-7. Have it both ways: HTML markup and display

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22 | Chapter 1: Introducing .NET

Despite all these great new features, Microsoft still refuses to implement the most
requested Visual Studio feature, Procedure AutoCompletion, in which Visual Studio
would create the entire content of a source code procedure based on your entry of
its name and the use of the Ctrl-Space bar key combination. Instead, Microsoft frit-
ters away its time on other so-called productivity features. With Procedure Auto-
Completion, you could write entire applications in minutes. Until that feature
becomes available, you and I will have to continue writing software, crafting the
quality code that users have come to expect from our fingers.

Summary
Nearly two decades ago, Visual Basic transformed the Windows development land-
scape with its drag-and-drop programming model and its glitzy event-driven devel-
opment structure. But Windows has changed a lot since those days of Windows 3.x.
As Windows has changed, Visual Basic has changed right along with it. Visual Basic
2008, through its association with the .NET Framework, provides access to the pro-
gramming tools needed to develop quality applications for the Windows desktop,
the Internet, and the next generation of mobile devices.

And Microsoft is not halting this progress with the 2008 release. The next version of
Visual Basic, code-named both VBx and Hawaii, promises to include even more
advanced features. That release will be built on top of Microsoft’s Dynamic Lan-
guage Runtime (DLR), allowing it to freely interact with libraries from languages
such as Ruby and Python.

Figure 1-8. Seeing right through Visual Studio’s tricks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 23

Project
Welcome to the “Project” section, the part of each chapter where you have an oppor-
tunity to get “hands-on” with Visual Studio 2008 and Visual Basic. Development of
the Library Project, the main project focus of this book, formally begins in
Chapter 3, but there’s still project work to do in the meantime. In this chapter, I’ll
introduce you to the sample source code provided with this book, and we’ll take a
stab at using it.

Since most “Project” sections, including this one, will involve Visual Studio, make
sure you have it installed and ready to use. Also, since each “Project” section is
designed for you to use interactively with the supplied source code, I will assume
that you have downloaded and installed the source code (see Appendix A for instruc-
tions), and are viewing the source code with one eye while you read this section with
the other. I will print sections of the source code in the book, but with tens of thou-
sands of source code lines in the Library Project, I will not be able to print every line
here. You will certainly get a lot out of each “Project” section by simply reading it,
but you will get even more if you have access to the full source code.

In this chapter’s project, we’ll load a sample program into Visual Studio and run it.
There are two ways to do this. The first way is just to open the existing project
directly from the installation directory. Browse to the directory where you installed
this book’s source code, open the Chapter 1 subdirectory, and double-click the
Chapter1.vbproj file. This will open the project directly in Visual Studio, ready to
use.

The second way is to use the chapter-specific project templates to create new
projects in Visual Studio. The Setup program for this book’s source code modifies
your installation of Visual Studio, adding new entries in the New Project dialog win-
dow. Each of these new “project templates” can be used as the starting point for a
new Visual Basic project. To load the Chapter 1 sample program using the template,
start Visual Studio. The Start Page will appear, as shown way back in Figure 1-6.
From the File menu, select New Project to display the New Project dialog window
(see Figure 1-9).

Your New Project dialog window may differ slightly depending on the features you
chose to install with Visual Studio. The available projects are grouped by the descrip-
tion in the “Project types” field. For instance, Figure 1-9 shows the various default
project types you can create in Visual Basic, including Windows Forms Application (a
standard desktop application for the Windows platform), Class Library (a DLL of class-
defined features), and Console Application (command-line, text-based applications).
To create a new application, first select the project type, select the template to use,
and finally enter the name of the new project in the Name field. Clicking the OK but-
ton creates a new project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24 | Chapter 1: Introducing .NET

To use the sample Chapter 1 project, select the Programming Visual Basic 2008 entry
within the Visual Basic project type, and then select Chapter 1 Sample from the Tem-
plates field (see Figure 1-10). Finally, click OK to create the new sample project.

Once the project loads, access the program’s main form by double-clicking on the
Form1.vb file in the Solution Explorer (see Figure 1-11).

This default presentation of Visual Studio Professional Edition includes three editing
components: (1) the main editing area, where the view of “Form1” appears; (2) the
Solution Explorer panel, which provides access to all files included in the project;
and (3) the Properties panel, which lets you edit various aspects of the currently
selected item in the main editor area or elsewhere in the user interface.

The sample project is pretty basic. It includes one form with a single action button.
Clicking this button in the running application displays a simple message. Run the
project by pressing the F5 key. When the main form appears, clicking on the “Go
Ahead, Click Me!” button displays the message in Figure 1-12 (goal, sweet goal).

Figure 1-9. The New Project dialog window: so many choices

Figure 1-10. Selecting the Chapter 1 Sample project

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 25

So, what about all that complex code I had to write to develop this multifaceted
application? It’s all there for the viewing. From the Solution Explorer panel, right-
click on the Form1.vb entry and select View Code from the shortcut menu. (As with
most source code samples presented in this book, I have had to slightly adjust the
code so that it displays properly on the printed page. Generally, this involves split-
ting a long logical line into two or more shorter ones.)

Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 MsgBox("Hello, World!")
 End Sub
End Class

Figure 1-11. The main form of the sample application

Figure 1-12. Hello again, world!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26 | Chapter 1: Introducing .NET

We’ll get into the intricacies of such code in later chapters, but here is the gist:

• The main form, Form1, is represented in code by a class, named “Form1.”

• The form includes a command button named Button1 that exposes a Click
event. This event is handled by the Button1_Click procedure, a member of the
Form1 class.

• The “event handler,” Button1_Click, includes a single statement, a MsgBox state-
ment. This statement does the heavy lifting by presenting the ever-friendly mes-
sage box to the world.

That’s all the code that I wrote for Form1.vb. It sure seems pretty short for all the
work it does. There has to be more code hiding somewhere. And sure enough, a half
dozen or so additional files are included in the project. Visual Studio hides these by
default, since it manages some or all of the content in these files on your behalf. To
view the files, click on the Show All Files button (the second toolbar button from the
left in the Solution Explorer panel). Look at all those files! To see the additional files
associated with Form1, expand it by clicking on the plus sign (+) to its left (see
Figure 1-13).

Double-click on the Form1.Designer.vb entry to see the code that Visual Studio auto-
matically wrote for this form. (Dramatic pause.) Wow! Look at all that scary code.
Actually, it’s not that bad. By the end of this book, you will have a firm grasp on all
of it. Here in Chapter 1, it’s not really necessary to comprehend it all, but there are a
few interesting lines to note. I’m including line numbers to make it easier to find the
matching code in Visual Studio. If you want to view line numbers in Visual Studio
(Professional Edition instructions listed here):

Figure 1-13. Viewing hidden files through the Solution Explorer

Click here

Then here

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 27

1. Select the Tools ➝ Options menu item to display Visual Studio’s options.

2. Select Text Editor ➝ Basic ➝ Editor from the tree view to the left. If the “Show all
settings” field is checked, the last component you click in the tree view will be
General, not Editor.

3. Select (check) the Line Numbers field on the right.

4. Click OK to apply the changes.

If you’re new to Visual Basic or .NET programming, don’t worry now if this code
doesn’t make sense; it will all become clear as you pass through the pages of this
book.

01 <Global.Microsoft.VisualBasic.CompilerServices. _
 DesignerGenerated()> _
02 Partial Public Class Form1

20 <System.Diagnostics.DebuggerNonUserCode()> _
21 Protected Overloads Overrides Sub Dispose _
 (ByVal disposing As Boolean)

These lines show attributes in action. These two attributes (DesignerGenerated and
DebuggerNonUserCode) are somewhat like the Obsolete attribute discussed earlier, in
that they provide some informational identity to the related code. DesignerGenerated
modifies the entire section of Form1’s code, whereas DebuggerNonUserCode modifies
only the Dispose member. For clarity, both attributes include their full namespace
paths. The Global keyword at the beginning of the DesignerGenerated attribute is
actually a Visual Basic keyword that says, “Start at the very tippy-top of the
namespace hierarchy; this is not a relative path.”

02 Partial Public Class Form1

Did you see the word Partial right there on line 02? I know I did. Hey, wait a minute;
“Public Class Form1” also appeared in the Form1.vb file, but without the Partial
keyword. Visual Basic 2008 includes a feature that lets you divide a single class
(Form1 in this case) among multiple source code files by including the Partial key-
word with at least one of the parts. Pretty cool, eh? It allows Visual Studio to add
complex initialization code for your form (as found in this Form1.Designer.vb file)
without it bothering your main source code file (Form1.vb).

03 Inherits System.Windows.Forms.Form

The Inherits keyword defines the inheritance relationship between this new Form1 class
and the previously written System.Windows.Forms.Form class. Form is the “base” class and
Form1 is the “derived” class; Form1 inherits all the functionality of the Form class,
including its initial look and feel. I’ll discuss these class relationships in more detail
in Chapter 8.

44 Friend WithEvents Button1 As System.Windows.Forms.Button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28 | Chapter 1: Introducing .NET

Line 44 defines the “Go Ahead, Click Me!” button that appears in the center of the
form. All controls that appear on your form are separate instances of classes. (Friend
is a declaration statement described in Chapter 6.) The WithEvents keyword indi-
cates that this instance of the Button class will respond to events, such as a user click-
ing on it with the mouse. This line doesn’t actually create an instance of the Button
class; that happens back on line 22.

22 Me.Button1 = New System.Windows.Forms.Button

The New keyword creates new instances of classes. In this case, that new instance is
assigned to the Button1 class member defined on line 44. At this moment, Button1 is
a default instance of the Button class; it doesn’t have any of its custom settings, such
as its size and position, or the “Go Ahead, Click Me!” display text. All of that is set in
lines 27 to 31:

27 Me.Button1.Location = New System.Drawing.Point(64, 104)
28 Me.Button1.Name = "Button1"
29 Me.Button1.Size = New System.Drawing.Size(152, 23)
30 Me.Button1.TabIndex = 0
31 Me.Button1.Text = "Go Ahead, Click Me!"

Finally, the button is “glued” onto the form on line 38:

38 Me.Controls.Add(Me.Button1)

This adds the Button1 instance to the list of Controls managed by Form1. The Me key-
word used throughout this code refers to the Form1 class itself, so Me.Button1 refers to
the Button1 class member specifically in the current Form1 class.

Most of the code in this file appears in the InitializeComponent member procedure:

21 Private Sub InitializeComponent()
 ...
43 End Sub

When Visual Basic creates an instance of Form1 to display on the screen, it calls the
InitializeComponent procedure to do the work of adding the controls to the form.
Actually, Visual Basic calls the form’s constructor, which in turn calls
InitializeComponent. Constructors are special class members that perform any
needed initialization on a class instance. They are called automatically by .NET each
time a class instance is created. In Visual Basic, all constructors use the name New, as
with the following code:

Friend Class ClassWithConstructor
 Public Sub New()
 ' ----- All initialization code goes here.
 End Sub
End Class

I’ll talk much more about constructors in Chapter 8, but for now, locate the con-
structor in the code for Form1. (Very long pause.) What? There is no constructor? So,
if there isn’t a constructor, how is the InitializeComponent member ever called?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 29

That’s what I’d like to know. Actually, when the Visual Basic compiler generates the
MSIL code for Form1, it adds a constructor silently, a constructor that calls
InitializeComponent. How about that! Why didn’t Microsoft simply include the con-
structor’s code right in the source code? It’s a simplicity-for-the-programmer thing.
Microsoft needed to have a default constructor that would call InitializeComponent,
but it didn’t want a conflict to arise if you added your own default constructor in the
non-Designer file. So it hid all the code until it came time to actually compile the
form. Clearly, it’s all rather hush-hush, so let’s move on.

Well, that’s pretty much the entire code, at least the part that matters to us now.
Although we will rarely, if ever, examine the Visual Studio-generated code for the
forms in the Library Project, it’s good to see what’s going on behind the scenes. If
you were a Visual Basic 6 programmer, you probably looked at the source code for
your forms through Notepad at one time or another. If you did, you noticed that the
form and all its controls were defined with a hierarchy of special commands, and not
with actual Visual Basic code. In .NET, that’s all changed; the form and all its con-
trols are created with ordinary Visual Basic code, so you can access it all and see
what is really going on.

Now, turn to Chapter 2, where I delve into the Visual Basic language itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30

Chapter 2CHAPTER 2

Introducing Visual Basic 2

It was a dark and stormy night. Hector gazed wearily through his bloodshot eyes,
through the black-rimmed corrective lenses, and through the haze of the fluorescent
overhead lights at the phosphor-enriched display. Had it really been four months
since he started the six-month project? Did his boss really threaten to fire him after
seeing his progress? It seemed like all of those MS-DOS programs he had written for
the company over the years meant nothing. Why did he promise to port the com-
pany’s main internal system to Windows? In a moment of despair, tears streamed
down his cheeks, diluting his last remaining can of Jolt Cola.

It’s 8:00 a.m. A loud thump on Hector’s desk brings him suddenly out of his slum-
ber, the drool still trickling from the corner of his mouth. What’s that? What’s that
box on his desk? “V-i-s-u-a-l B-a-s-i-c?” A note on the box says to rewrite his code in
“this.” Desperate to try anything, Hector installs the three floppy disks on his ’386
powerhouse.

Six weeks later, Hector has completed the project, ahead of schedule, feature-complete,
and with the accolades of his boss and department. And it’s all due to Visual Basic.
But VB didn’t just improve his programming life. Overall, he’s happier, has kicked
the caffeine habit, is able to bench-press 300 pounds, no longer walks with a limp,
has increased libido, and has whiter teeth. “Thank you, Visual Basic 1.0!”

The History of the Visual Basic Revolution
It’s possible that I got a few of the details wrong in Hector’s life. But for many busi-
ness developers, Visual Basic 1.0 was a breath of fresh air. It’s not that they could do
more with Visual Basic; programs written in C were more powerful and had greater
flexibility. But business programmers didn’t always need that flexibility back in the
transition from MS-DOS. They just wanted to manage data, and they didn’t want to
worry about how to present every little pixel on the screen. Visual Basic provided the
tools to write applications quickly and with much less effort than that required by
other Windows development tools and languages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The History of the Visual Basic Revolution | 31

Visual Basic’s simplicity was embraced by developers everywhere, but the honey-
moon quickly wore off. Given the speed at which programs of reasonable quality
could be cranked out with Visual Basic, programmers and businesses began demand-
ing more. And Microsoft responded. Visual Basic 2.0 and 3.0 were released in quick
succession in 1992 and 1993, providing enhanced database integration and addi-
tional visual development features. Version 4.0, released in 1996, introduced 32-bit
programming to the language, and support for the already-popular Windows 95
platform. Two more quick releases—Visual Basic 5.0 in 1997 and Visual Basic 6.0 in
1998—added even more features and complexity to the otherwise “basic” language,
features supporting some but not all object-oriented programming (OOP) tech-
niques, ActiveX control development, and web-based logic coding. Microsoft had even
integrated the core Visual Basic engine—christened Visual Basic for Applications, or
VBA—into its suite of Office products, proclaiming it as the new official macro lan-
guage and making the engine available to any third party that wanted to do the same.

Seven years after its initial introduction, Visual Basic had taken the programming
world by storm. Millions of developers were using the language, including in-house
developers at Fortune 500 companies, writing applications that supported core busi-
ness functions. VB still retained some of the flavor of the original BASIC language—a
“beginner’s” programming language developed by John Kemeny and Thomas Kurtz
at Dartmouth College back in 1963. This caused no end of snickering from C and
C++ developers and other cola addicts. But VB programmers could see a powerful
future for their language of choice.

Then the unthinkable happened. Microsoft announced that it would no longer
enhance the core Visual Basic engine. Instead, it would rewrite and reimplement
Visual Basic using its soon-to-be-released .NET development platform. Yes, Visual
Basic would be endowed with all the power promised for Microsoft’s new C- and
Java-like language, C#. But for many hardcore VB developers, it was wrong, just
wrong. Words were exchanged. Petitions were crafted. Letters to the editor sounded
the call to the Visual Basic faithful, urging them to never write a single line of Visual
Basic .NET code, ever. In frustration, a Visual Basic user’s group set fire to the entire
Microsoft campus in Redmond.

Well, that didn’t happen. In fact, nothing bad happened at all. Visual Basic .NET
turned out to be a software wunderkind, providing power and features that far sur-
passed anything available in Visual Basic 6.0. Its initial release in 2002 was proof
that. Visual Basic .NET 2002 was powerful, but it was also a little hard to use, at
least compared with version 6.0, and especially when compared with the original 1.0
product. Visual Basic .NET 2003, released just a year later (obviously), was a rela-
tively minor update with not much in the way of new or easier functionality.

Visual Basic 2005 marked a return to the simpler days of Visual Basic development,
days of harmony and peace between “newbies” and their general-purpose program-
ming language. Not only did Microsoft remove the term “.NET” from the product

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32 | Chapter 2: Introducing Visual Basic

name, but it also removed some of the barriers that kept entry-level programmers
from approaching the language. Pre-.NET features, such as Edit and Continue and
the display of forms through the simple use of the form’s name, once again found
their way into the language and into the hearts of software engineers. Visual Basic
still retained all the power it gained with .NET, but with true improvements in
usability. It was like when they add a label to your toothpaste that says, “New pack-
age, same great regular flavor!” Except that Visual Basic’s flavor was improved, too.
Visual Basic was once again accessible to first-time developers.

Since the 2005 release, Microsoft hasn’t just been sitting on its laurels, as painful as
that would be. It dug into its bag of tricks with both hands and came out with Visual
Basic 2008, the latest VB offering. Formerly code-named Orcas, Visual Basic 2008
brings additional power and simplicity—yes, both of those—to the language. The
biggest new feature, LINQ, makes data access easier by letting you tell the system
what data you want instead of detailing how to obtain that data. The language also pro-
vides more direct access to new technologies such as Ajax and the Windows Presenta-
tion Foundation (WPF). But enough fawning. Let’s start learning about the language.

Visual Basic from the Inside Out
As a general-purpose development language, Visual Basic includes gobs of features
that allow you to develop just about any type of application supported by the
Microsoft Windows platform. As such, all of its features could never be covered in a
concise, 20- or 30-page chapter, and I won’t try. What I will do in this chapter is to
introduce you to the basics of the language, and its core features. Features not cov-
ered in this chapter are discussed throughout the rest of the book. It has to be that
way, since I don’t want you to finish this chapter and then say to yourself, “That Tim
Patrick is so amazing. I learned all I needed to know about Visual Basic in one chap-
ter; I didn’t even have to read the rest of the book.” My publisher would not be
amused.

In the remainder of this chapter, I will take the “from the inside out” approach, start-
ing the discussion with the core concepts of logic and data, and adding layer after
layer of Visual Basic functionality as you turn the pages.

The Basics of Logic and Data
Lest you forget it, let me remind you again: computers are not really very smart.
They know how to do only the simplest of tasks. If you want them to do anything
remotely complex, you have to give precise, step-by-step instructions down to
moving individual bits of data—only 1s and 0s, remember—around in memory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Basics of Logic and Data | 33

Fortunately, most of the code you would ever need at that low level has already been
written for you, and incorporated into the Windows operating system and the .NET
Framework. Microsoft- and third-party-supplied code libraries give you a lot of pre-
written functionality that’s available for use in your own programs. And that’s good,
because you would rather be hurtled into space on a giant bungee cord than have to
write business applications at the machine code level all day long.

Even though you have all this great prewritten code in your arsenal, you still have to
tell the computer precisely what you want it to do, in fine detail, or it won’t do it.
And that’s where high-level languages like Visual Basic come in. They provide the
grammar you need to communicate with the computer. For any given tasks that the
computer needs to perform, your job as a programmer is to determine the individual
steps to accomplish that task—the logic—and translate those steps into computer-
ese using the programming language.

As an example, let’s say you receive a request from the sales department for a pro-
gram that will reverse all the letters in any chunk of text provided to the program.
“Our customers are clamoring for this; we need it by Tuesday,” they say. OK, so first
you figure out the logic, and then you implement it in Visual Basic. Using
pseudocode, an artificial programming language that you make up yourself to help
you write programs, you can sketch out the basics of this task (with leading line
numbers):

01 Obtain the original text (or string) from the user.
02 If the user didn't supply any content, then quit now.
03 Prepare a destination for the reversed string, empty for now.
04 Repeat the following until the original string is empty:
05 Copy the last character from the remaining original string.
06 Put that character onto the end of the destination string.
07 Shorten the original string, dropping the last character.
08 [End of repeat section]
09 Show the user the destination string.

You could write this logic in many ways; this is just one example. You can now con-
vert this pseudocode into your language of choice; in this case, Visual Basic (don’t
worry about the syntax details for now):

01 originalText = InputBox("Enter text to reverse.")
02 If (Len(originalText) = 0) Then Return
03 finalText = ""
04 Do While (originalText <> "")
05 oneCharacter = Right(originalText, 1)
06 finalText &= oneCharacter
07 originalText = Left(originalText, _
 Len(originalText) - 1)
08 Loop
09 MsgBox("The reverse is: " & finalText)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

34 | Chapter 2: Introducing Visual Basic

This source code is now ready to be used in a Visual Basic program. And it also dem-
onstrates several essential aspects of coding:

• The individual steps of the step-by-step instructions are called statements. In
Visual Basic, each statement appears on a line by itself. You can break long state-
ments into multiple lines by connecting the lines with a space-underscore pair,
as shown in line 07 of the code. When a single statement is spread across multi-
ple lines in this manner, the entire statement is sometimes called a logical line.
Since a single logical line often includes only a single primary Visual Basic action
(such as the If or Do action, or the various assignment actions using the equals
sign [=]), these actions are also referred to as statements.

• The statements of the code are processed one at a time, from top to bottom.
However, certain statements alter the normal top-to-bottom flow of the pro-
gram, as is done with the Do While...Loop block on lines 04 and 08 of the sam-
ple code. Such statements are called flow control statements, and include loops
(repeating a block of code), conditions (optionally processing a block of code
based on a comparison or calculated result), and jumps (moving immediately to
some other section of the code).

• Data can be stored in variables, which are named containers for data values. The
sample code block includes three variables: originalText, oneCharacter, and
finalText, all of which store text (string) data. The .NET Common Type System
(CTS) allows you to create variables for four primary types of basic data values:
text (both single characters and longer strings), numbers (both integer and deci-
mal values), dates (and times), and Booleans (true or false values). You can also
build more complex types of data by grouping the basic types.

• Data is stored in a variable through an assignment. Generally, this involves plac-
ing a variable name on the left side of an = assignment operator, and putting the
data or calculation to store in that variable on the right side of that same equals
sign. The statement finalText = "" on line 03 stores an empty string ("") in the
variable finalText. The &= assignment statement on line 06 shows a slightly dif-
ferent assignment syntax.

• Statements can include function calls, blocks of prewritten functionality, all
squished down into a single name. Function calls do a bunch of work, and then
return a final result, a data value. Function names are followed by a set of paren-
theses, which may include zero or more arguments, additional data values sup-
plied by the calling code that the function uses to generate its result.

The sample code includes many examples of function calls, including the Right
function on line 05. This function returns a copy of the rightmost characters
from another text string. It accepts two parameters: the original string from
which to extract the rightmost characters, and an integer value indicating the
number of characters to return. The code Right(originalText, 1) returns a copy
of the rightmost single character (1) from originalText.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Types and Variables | 35

When you use a function in your source code, the function acts a little like a
variable; all the text of the function call, from the start of its name to the end of
its closing parenthesis, could be replaced by a variable that contained the same
resulting data. Function calls cannot appear on the lefthand side of an assign-
ment statement, but they can appear almost anywhere else that a variable can
appear. For example, the following two lines could be used to replace line 02 in
the sample:

' Replacing --> If (Len(originalText) = 0) Then Return
lengthOfText = Len(originalText)
If (lengthOfText = 0) Then Return

• In addition to functions, Visual Basic also includes procedures. Procedures bun-
dle up prewritten code in a named package, just like functions, but they don’t
return a value. They must be used as standalone statements; you cannot use
them where you would use a variable or a function call. The call to MsgBox on
line 09 is a typical example of a procedure call in use. (MsgBox is actually a func-
tion, but in this code it is masquerading as a procedure; more on that later.)

The sample code listed previously could be made a little more efficient. In fact, it’s
entirely possible that Microsoft obtained an early draft of this book, since it included
a string-reversal feature right in Visual Basic, and called it StrReverse:

originalText = InputBox("Enter text to reverse.")
If (Len(originalText) = 0) Then Return
finalText = StrReverse(originalText)
MsgBox("The reverse is: " & finalText)

That’s right; Visual Basic already includes a string-reversal feature, some of that pre-
written library code I keep talking about. Visual Basic includes many such intrinsic
functions that are considered part of the language, and that bundle up useful prewrit-
ten functionality. Many of these functions appear in the Microsoft.VisualBasic
namespace, which is automatically made available to your Visual Basic source code
when you create a new VB project.

Data Types and Variables
Take my data...please! Ha, ha, that one always cracks me up. But it’s actually what I
ask my Visual Basic application to do: take data from some source (keyboard, hard
disk, Internet, etc.) and present it in some useful way. All programs I write will
actively manage at least some data in memory. Each data value is stored in a specific
area of the computer’s memory, as determined by the Common Language Runtime
(CLR). The statements in Visual Basic exist primarily to manage and manipulate this
data in useful and complex ways.

All data managed by the CLR is stored in the computer’s memory, with each data
value separated and protected from all others. It’s as though each data value had its
own individual teacup, as in Figure 2-1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

36 | Chapter 2: Introducing Visual Basic

All data values managed by the CLR have content and type. Content is the actual
data: the text string “abc,” the number 5, a sales invoice, orange pekoe. Whatever
you put in the teacup, that’s the content. In some cases, .NET allows you to store
absolutely nothing in the teacup (for reference types as described shortly, or “nul-
lable” value types as described in Chapter 6).

Type indicates the kind of content stored in the teacup. In Figure 2-1, this is shown
by the shape of each teacup. Each teacup has limits on the type of data that can be
poured into the teacup: a text string, an integer number, a customer invoice.

Literals
Some basic data values, such as numbers and text strings, can be entered into your
source code and used just as they are. For instance, the MsgBox procedure displays a
window with a supplied text message. The statement:

MsgBox("The answer is " & 42)

includes a literal string, “The answer is,” and a literal integer value, 42. (The “&”
symbol is an operator that connects two values together into a new string.) Literals
are used once, and then they’re gone. If I wanted to show the same “The answer is
42” message again, I would have to once again type the same literal values into a dif-
ferent part of the source code.

Visual Basic supports several types of basic literals. String literals are always sur-
rounded by quote marks. If you want to include a quote mark itself in the middle of
a string, include two instead of one:

"This is ""literally"" an example."

String literals can be really, really long, up to about 2 billion characters in length; if
you were to type just one character per second, it would take more than 63 years to
reach the maximum string length. Visual Basic also includes a character literal that is
exactly one character in length; if you were to type just one character per second,
well, never mind. These character literals are recognized by the “c” trailing after the
string. The character literal “A” is entered as:

"A"c

Figure 2-1. All types of teacups and data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Types and Variables | 37

Date and time literals are surrounded by number signs instead of quote marks. The
date or time (or both) that you include can be in any format recognized by Microsoft
Windows in your specific region. If you are using Visual Studio, it will reformat your
date when you type in the literal:

#7/4/1776#

Eleven different kinds of numeric data values—both integers and floating-point val-
ues—make up the “core” set of numeric teacups. And who needs more than 11?
With these 11 teacups, you can manage numbers from zero all the way to 1 × 10300

and beyond. To use a numeric literal, type the number right in your code, like 27, or
3.1415926535. Visual Basic also lets you specify which of the 11 numeric teacups to
use for a number, by appending a special character to the end of the number. Nor-
mally, 27 is an integer 27. To make it a currency-focused “decimal,” append an at
sign (@):

27@

When I talk about data types in full detail in Chapter 6, I will list the different spe-
cial characters, like @, that set the data type for literal numbers.

The fourth and final type of Visual Basic literal is the Boolean literal. Boolean values
represent the simplest type of computer data: the bit. Boolean values are either true
or false, on or off, yes or no, delicious or disgusting, cats or dogs, zero or nonzero.
Booleans always represent any two opposite values or states. Back in the 1800s,
George Boole invented Boolean algebra, a language he used to represent logic state-
ments as mathematical equations. It just so happens that computers love Boolean
algebra. All the basic operations of a computer, such as addition, are implemented
using Boolean functionality.

Visual Basic includes the Boolean literals True and False. No quotes; no number
signs—just the words True and False. Question: is Tim Patrick telling the truth
about this? Answer:

True

In certain cases, you can treat numbers as Boolean values. I’ll talk about it more later
on, but for now just know that False equates to zero (0), and True equates to every-
thing else (although generally, –1 is used for “everything else”).

Variables
Literal data values are all well and good, but they are useful only once, and then
they’re gone. Each time you want to use a literal value, you must retype it. It’s as
though the data values are stored in disposable cups instead of fine china teacups.
And besides, only programmers enter literal values, not users, so they are of limited
use in managing user data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

38 | Chapter 2: Introducing Visual Basic

Variables are not simply disposable cups; they are reusable. You can keep putting the
same type of tea over and over into the teacup. A string variable teacup can hold a
string for reuse over and over. For instance, in this block of code, response holds the
various strings assigned to it:

01 response = "A"
02 MsgBox("Give me an 'A'!")
03 MsgBox(response)
04 MsgBox("Give me another 'A'!")
05 MsgBox(response)
06 MsgBox("What's that spell?")
07 response = StrDup(2, "A")
08 MsgBox(response)

The variable response is assigned twice with two different strings: an “A” (line 01)
and then “AA” (line 07). It keeps whatever value was last assigned to it; both lines 03
and 05 display “A” in a message box window. And you don’t have to assign just lit-
eral strings to it; anything that generates a string can assign its result to response.
Line 07 uses a built-in Visual Basic function, StrDup, to return the two-character
string “AA” and assign it to response.

Using variables is a two-step process. First you must declare the variable, and then
you assign a value to it. The Dim statement takes care of the declaration part; it lets
you indicate both the name and the type of a variable. Its basic syntax is pretty
straightforward:

Dim response As String

where response is the name of the variable and String is its type. Assignment occurs
using the = assignment operator:

response = "The answer"

A single variable can have new values assigned to it over and over again. For those
times when you want your variable to have some specific value immediately upon
declaration, you can combine declaration and assignment into a single statement:

Dim response As String = "The answer"

Of course, you’re not limited to just a single declaration; you can create as many
variables as you need in your code. Each one normally uses its own Dim statement:

Dim question As String
Dim answer As String

You also can combine these into a single statement, although I think it’s just plain
ugly:

Dim question As String, answer As String

See, I told you it was ugly. This is just the start of what’s possible with the Dim state-
ment. I’ll get into more details as the chapter progresses.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Types and Variables | 39

Value Types and Reference Types
I talked about value types and reference types in Chapter 1. Value type variables store
an actual value; the tea in a value type teacup is the content itself. All of the literal
data values I mentioned previously, except for Strings, are value types.

Reference type variables store a “reference” to the actual data, data found some-
where else in memory. When you look into a reference type teacup, you have to read
the tea leaves at the bottom to determine where the real data resides.

Either reference types have data or they don’t. In the absence of data, a reference
type has a value of Nothing, a Visual Basic keyword that indicates no data. Value
types are never Nothing; they always contain some value, possibly the default value
for that type (such as zero for numeric types). A special “nullable” type does let you
assign Nothing to a value type, allowing you to implement the same “is there any data
here at all” logic that exists with reference types. I’ll talk about nullable types in
Chapter 6.

Data Types
The String data type is useful, but it’s only one of the teacup shapes at your dis-
posal. The .NET Framework defines several core data types. Each data type is imple-
mented as a specific class within the System namespace. The most basic data type, a
large teacup that can hold any type of data, is called Object. More than just an
object, this is object with a capital O. In the .NET Class Library namespace hierar-
chy, it’s located at System.Object. It’s the mother of all classes in .NET; all other
classes, structures, enumerations, and delegates, no matter where they reside in the
namespace hierarchy, whether they are written by Microsoft or by you, derive from
System.Object. There’s no getting around it; you cannot create a type that ultimately
derives from anything else.

So, back to these “core” data types I’ve been hinting at. They match the four types of
literal data values I listed before: strings, dates, numbers, and Boolean values.
Table 2-1 lists these core data types. Each type also has a Visual Basic-specific name
that you can (and should) use instead.

Table 2-1. Core .NET and Visual Basic data types

VB name .NET name Description

Boolean Boolean The Boolean data type supports only values of True and False. It’s possible to convert
numbers to Boolean values: 0 becomes False and everything else becomes True. When
you convert a Boolean back to a number, False becomes 0 and True becomes –1.a

Byte Byte A numeric data type, Byte stores single-byte (8-bit) unsigned integers, ranging from 0 to
255. The Byte data type is pretty useful for working with nontext data, such as graphical
images.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

40 | Chapter 2: Introducing Visual Basic

Char Char The Char data type holds exactly one text character. Each Char data value represents two
bytes (16 bits) of storage, so it can manage double-byte character sets, providing support for
languages such as Japanese that have a large number of characters. Although it is used to
store single text characters, internally the Char data type maintains the characters as inte-
ger values, ranging from 0 to 65,535.

Date DateTime This date and time data type handles all dates between January 1, 1 AD and December 31,
9999 AD, in the Gregorian calendar. The time can be included as well; if no time is specified,
midnight is used. Internally, the Date data type stores the date and time as the number of
“ticks” since midnight on January 1, 1 AD. Each tick is 100 nanoseconds.

Decimal Decimal The Decimal data type is designed with currency in mind. It is very accurate in mathemat-
ical calculations, and has a pretty good range, supporting numbers just beyond 79-octillion,
positive or negative. (Did he say 79-octillion?) That’s 29 digits long, and that’s important to
remember, since you get only 29 digits total on both sides of the decimal point. That 79-
octillion number comes with the limitation of no digits to the right of the decimal point. If
you want one decimal position, you have to give up one to the left (the mantissa) and only
keep numbers up to 7.9-octillion. If you want 29 digits after the decimal, you get a big fat
zero for the mantissa. If you used to use Visual Basic 6.0, Decimal is similar to the
Currency sub-data type.

Double Double The Double data type handles the largest possible numbers of all the core numeric data
types. Its range is about 4.94 × 10–324 to 1.798 × 10+308 for positive numbers, with a simi-
lar range for negative values. While you may think you are in giganto-number heaven, it’s
not all harps and wings. The Double data type is notoriously inaccurate in complex calcula-
tions. Sometimes a calculation that should result in zero will actually calculate as something
like 0.00000000000005434, which is close. But comparisons of this number with zero will
fail, since it is not zero.

Integer Int32 The Integer data type is a 4-byte (32-bit) signed integer type. It handles numbers from
–2,147,483,648 to 2,147,483,647. If you are a pre-.NET Visual Basic programmer, this new
Integer data type is equivalent to the version 6.0 Long data type.

Long Int64 The Long data type is even bigger than Integer; it’s an 8-byte (64-bit) signed integer
type. It handles numbers from –9,223,372,036,854,775,808 (wow!) to
9,223,372,036,854,775,807 (wow! wow!). It is not the same as the old Visual Basic 6.0
Long data type, as it has twice the storage capacity.

Object Object Object is the core type for all .NET types. It sits at the top of the class and type hierarchy; it
is the ultimate base class for all other classes. It is a reference type, although value types
eventually derive from it, too.

SByte SByte A numeric data type, SByte stores single-byte (8-bit) signed integers, ranging from –128
to 127. It is the signed version of the unsigned Byte data type.

Short Int16 TheShortdata type is a 2-byte (16-bit) signed integer type. It stores numbers from –32,768 to
32,767. If you are a pre-.NET Visual Basic programmer, this new Short data type is equiva-
lent to the version 6.0 Integer data type.

Single Single The Single data type is pretty much like the Double data type, only smaller. Its range for
positive numbers is about 1.4 × 10–45 to 3.4 × 10+38, with a similar range for negative
numbers. Like the Double data type, the Single data type suffers from slight inaccura-
cies during calculations.

Table 2-1. Core .NET and Visual Basic data types (continued)

VB name .NET name Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Types and Variables | 41

The Microsoft developers in charge of Visual Basic data types lucked out on that job
since all core Visual Basic data types are simply wrappers for specific data types
implemented by .NET. The Visual Basic names given for each of these core data
types are fully interchangeable with the .NET names. For example, Integer is fully
equivalent to System.Int32. In fact, when writing Visual Basic code, it is better to use
the Visual Basic synonyms, since most Visual Basic developers expect these data type
names in the code they read and write.

Except for Object and String, all of these data types are value types. All value types
are derived from System.ValueType (which in turn derives from System.Object).

The SByte, UInteger, ULong, and UShort data types were added to Visual Basic with its
2005 release, although their System namespace equivalents have been in .NET since its
inception. Unlike the other core data types, these four types are not “CLS-compliant”;
that is, they cannot be used to interact with .NET components and languages that
limit themselves to just the very core required features of .NET. Generally this is not
much of a limitation, but be on your guard when working with third-party compo-
nents or languages.

Advanced Declaration
When I mentioned the need for declaration and assignment of variables, I was really
focusing on value types. Reference types require one additional step: instantiation.
Consider the following declaration statements:

Dim defaultValue As Integer
Dim nonDefaultValue As Integer = 5
Dim defaultReference As Object

String String The String data type is a reference type that stores up to about 2 billion characters of text.
It stores Unicode characters, which are 2-byte (16-bit) characters capable of storing charac-
ters from most languages in the world, including languages with large alphabets, such as
Chinese.

UInteger UInt32 UInteger stores 4-byte (32-bit) unsigned integers, ranging from 0 to 4,294,967,295. It is
the unsigned version of the signed Integer data type.

ULong UInt64 ULong stores 8-byte (64-bit) unsigned integers, ranging from 0 to
18,446,744,073,709,551,615. It is the unsigned version of the signed Long data type.

UShort UInt16 UShort stores 2-byte (16-bit) unsigned integers, ranging from 0 to 65,535. It is the
unsigned version of the signed Short data type.

a This is true only in Visual Basic. In other .NET languages, such as C#,False becomes 0, butTrue becomes 1, not –1. If you keep a Boolean
value as Boolean, it is normally not an issue. But if you first convert your Booleans to numbers, and then start passing them around willy-
nilly between code from different .NET languages, you may get surprising results.

Table 2-1. Core .NET and Visual Basic data types (continued)

VB name .NET name Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

42 | Chapter 2: Introducing Visual Basic

These lines declare three separate variables: two value types (the Integers) and one
reference type (the Object). Although only one variable has an explicit data assign-
ment, all three have actually been assigned something, either explicitly or implic-
itly. Let’s look at those statements again and see what is truly being assigned to each
variable.

Dim defaultValue As Integer = 0
Dim nonDefaultValue As Integer = 5
Dim defaultReference As Object = Nothing

Both declaration and assignment already occurred for all the variables, just by using
the Dim statement. The defaultValue variable, with its default assignment of 0, can
be used immediately in equations. However, the reference type variable
defaultReference is just an empty teacup, with no default data to manipulate. There
are features in Visual Basic that let you compare a reference type with Nothing, and
you could do this immediately, but it’s not really data. And remember, variables live
to manage data.

Reference data values need instantiation, and instantiation needs the New keyword:

Dim defaultReference As Object = New Object

Now defaultReference points to a real object; now the defaultReference teacup has
something consumable inside it, although since it is just System.Object, it doesn’t
have much in the way of flavor. Strings are a little more interesting, and they also
have more interesting constructors.

As you may recall from way back in Chapter 1, a constructor is a block of initializa-
tion code that runs when you create a new data value or object. Some objects allow
you to supply extra information to a constructor, additional information that is used
in the initialization process. A default constructor doesn’t allow you to supply any
extra information; it just works on its own, initializing data like it was nobody’s busi-
ness. There is no limit on the number of constructors in a class, but each one must
vary in the type of extra information passed to it.

So, back to Strings. The default constructor for a string simply creates a blank, zero-
length string:

Dim worldsMostBoringString As String = New String

Now, nobody ever does this, since the following statement works just as well:

Dim worldsMostBoringString As String = ""

That’s because Strings are treated specially by Visual Basic. String literals are actu-
ally instantiations of String data values; it’s as though you created a new String
instance using the System.String class. At least that’s true when using the String data
type’s default constructor. But String also has more interesting constructors. (I’ll
delve into the details of constructors in Chapter 8.) One of the constructors creates a
new String instance initialized with a specific character repeated a number of times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Types and Variables | 43

For instance, to create a String instance with a 25-character string of the letter M,
use the following syntax:

Dim mmGood As String = New String("M"c, 25)

If you’re going to use the same data type just after the As keyword that you use right
after the New keyword, you can use a collapsed syntax:

Dim mmGood As New String("M"c, 25)

As with value types, you can also break the statement into distinct declaration and
assignment statements:

Dim mmGood As String
mmGood = New String("M"c, 25)

Constants
Literals don’t change, but you can use them only once in your code. Constants are a
cross between a literal and a variable; they have a single, never-changing value just
like data literals, but they also have a name that you can use over and over again, just
like variables.

You declare constants using the Const keyword instead of the Dim keyword:

Const SpeedOfLight As Integer = 186000

Actual assignment of the value to the constant occurs in the statement itself, with the
value following the = operator. Once your constant is declared and assigned, it’s
available for use in actual statements of your actual code:

MsgBox("Lightspeed in miles/second: " & SpeedOfLight)

Local Declaration and Fields
In the real world, you need to keep some data private, for your use only. Your neigh-
bors have other juicy bits of data and information that they share among themselves.
And then there is public data that isn’t hidden from anyone. But it’s not just this way
in the real world; the fake world of Visual Basic has different levels of access and pri-
vacy for your data.

A little later in the chapter, we’ll see that your application’s logic code will always
appear in procedures, named blocks of source code. You declare local variables (and
constants) in these same procedures when you need a short-lived and personal vari-
able that is only for use within a single procedure. Other variables (and constants)
can appear outside procedures, but still within the context of a class or similar type.
These fields, whether variable or constant, are immediately available to all the differ-
ent procedures that also call the current class home.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

44 | Chapter 2: Introducing Visual Basic

You define all local variables using the Dim keyword. The Dim statement works for
field definitions, but it’s more common to use special access modifier keywords
instead. These modifiers determine what code can access the fields, from Private
(used only by code inside the class) to Public (also available outside the class):

Private ForInClassUseOnly As Integer

There are five access modifiers in all. I’ll talk more about them and about fields in
general in Chapter 6.

Intermission
That was a lot to take in. Getting your mind around data and variables is probably
the most complex part of programming in Visual Basic. Once you have the data in
variables, it’s pretty easy to manipulate.

Although the thought of a cup of tea may cause you to run out of the room like a rav-
ing lunatic, you might want to take a few minutes, grab a cup, glass, saucer, or mug
of your beverage of choice, and relax. I’ll see you in about 20 or 30 minutes.

Comments
If you’re an opera fan, you know how exciting a good opera can be, especially a clas-
sic work presented with the original foreign language libretto. If you’re not an opera
fan, you know how irritating it can be to listen to several hours of a foreign language
libretto. With the advent of “supra titles” conveying the English-language interpreta-
tion of the content, those who until now have gotten little joy out of the opera expe-
rience will still find it repulsive, only this time in their native tongue. But at least now
they will know why they don’t enjoy the story.

That’s really what comments do: tell you in your own language what is actually
going on in a foreign language. In this book, the foreign language is Visual Basic, and
English is the vernacular. You may find a particular block of Visual Basic code to be
poorly written or even detestable, but if the accompanying comments are accurate,
you can be disgusted in your own language, with a human-language understanding
of the process.

Comments normally appear on lines by themselves, but you may also attach a com-
ment to the end of an existing code line. If a logical line is broken into multiple phys-
ical lines using the “_” line continuation character, a trailing comment is valid only
at the end of the final physical line:

' ----- This is a standalone comment, on a line by itself.
Dim counter As Integer ' This is a trailing comment.
MsgBox("The counter starts at " & _ ' INVALID COMMENT HERE!
 counter) ' But this one is valid.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Statements | 45

Comments begin with the comment character, the standard single quote character
('). Any text following the comment character is a comment, and is ignored when
your code is compiled into a usable application. Any single quote that appears within
a literal string is not used as a comment marker.

MsgBox("No 'comments' in this text.")

Comments can also begin with the REM keyword (as in “REMark”), but most pro-
grammers use the single-quote variation instead.

Option Statements
A few code examples ago you saw that Visual Basic would supply a default assign-
ment to a variable—at least for value types—if you neglected to include one. In cer-
tain cases, Visual Basic will also supply the declaration if you leave it out. In the
statement:

brandNewValue = 5

if there is no related Dim statement that defines brandNewValue, Visual Basic will
declare the variable on your behalf, assigning it to the Object data type. Don’t let this
happen to you! You don’t know what kind of trouble you will have if you allow such
practices in your code. You will quickly find your code filled with mysterious logic
bugs, esoteric data issues, recurrent head lice, and so on.

The problem is that Visual Basic will not complain if you mistype the name of your
auto-declared variable. Left unchecked, such practices could lead to code such as
this:

brandNewValue = 5
MsgBox(brandNewVlaue)

My, my, my, look at that spelling mistake on the second line. What? Visual Basic
compiled without any error? And now your message box displays nothing instead of
5? You could avoid such trauma by judicious use of the Option statements included
in the Visual Basic language. There are four such statements:

Option Explicit On
This statement forces you to declare all variables using Dim (or a similar state-
ment) before use. It’s possible to replace “On” with “Off” in the statement, but
don’t do it.

Option Strict On
Visual Basic will do some simple data conversions for you when needed. For
instance, if you assign a 64-bit Long data value to a 32-bit Integer variable, Visual
Basic will normally convert this data to the smaller size for you, complaining
only if the data doesn’t fit. This type of conversion—a narrowing conversion—is
not always safe since the source data will sometimes fail to fit in the destination.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

46 | Chapter 2: Introducing Visual Basic

(A widening conversion, as with storing Integer data in a Long, always works,
since the destination can always hold the source value.) The Option Strict On
statement turns off the automatic processing of narrowing conversions. You will
be forced to use explicit conversion functions to perform narrowing conver-
sions. This is good, since it forces you to think about the type of data your vari-
ables will hold. You can replace “On” with “Off” in this statement, but if I’ve
warned you once, I’ve warned you twice: don’t even try it.

Option Infer On
This new Visual Basic 2008 statement tells the compiler to make a guess at
which data type you want a variable to use when you don’t specifically tell it. I
discuss type inference in Chapter 6, so I’ll delay the details for now. Usually you
will want to keep this option set to “On.”

Option Compare Binary and Option Compare Text
These two variations of the Option Compare statement instruct your code to use
specific sorting rules for certain string comparison features. In general, Binary
comparisons are case-sensitive, whereas Text comparisons are not. It’s up to you
which method you want to use; the default is Binary.

These statements appear at the top of each source code file in your project, before
any other code:

Option Explicit On
Option Strict On

Or, to save on precious disk space, set default values that apply to your entire project
through the project’s properties. In Visual Studio, select the Project ➝ Properties
menu command. On the project’s properties window that appears, select the Com-
pile tab, and set your default choices for the “Option explicit,” “Option strict,”
“Option compare,” and “Option infer” fields (see Figure 2-2).

Figure 2-2. Options, options everywhere

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Basic Operators | 47

Basic Operators
Visual Basic includes several basic operators that let you do what your code really
wants to do: manipulate data. To use them, just dial zero from your phone. No,
wait; those operators let you place operator-assisted calls for only $2.73 for the first
minute. The Visual Basic operators let you perform mathematical, logical, bitwise,
and string management functions, all at no additional cost.

The most basic operator is the assignment operator, represented by the equals sign
(=). You’ve already seen this operator in use in this chapter. Use it to assign some
value to a variable (or constant); whatever appears to the right of the operator gets
assigned to the reference type or value type variable on the left. The statement:

fiveSquared = 25

assigns a value of 25 to the variable fiveSquared.

Most operators are binary operators—they operate on two distinct values, one to the
operator’s left and one to the right; the result is a single calculated value. It’s as
though the calculation is fully replaced by the calculated result. For instance, the
addition operation:

seven = 3 + 4

becomes:

seven = 7

before the final application of the assignment (=) operator. A unary operator appears
just to the left of its operand. For instance, the unary negation operator turns a posi-
tive number into a negative number:

negativeSeven = -7

I’ll comment on each operator in detail in Chapter 6. But we’ll need a quick sum-
mary for now so that we can manipulate data before we get to that chapter.
Table 2-2 lists the main Visual Basic operators and briefly describes the purpose of
each one.

Table 2-2. Visual Basic operators

Operator Description

+ The addition operator adds two numbers together.

+ The unary plus operator retains the sign of a numeric value. It’s not very useful until you get into operator
overloading, something covered in Chapter 12.

- The subtraction operator subtracts the second operand from the first.

- The unary negation operator reverses the sign of its associated numeric operand.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

48 | Chapter 2: Introducing Visual Basic

* The multiplication operator multiplies two numeric values together.

/ The division operator divides the first numeric operand by the second, returning the quotient including any
decimal remainder.

\ The integer division operator divides the first numeric operand by the second, returning the quotient, but
with the decimal remainder truncated.

Mod The modulo operator divides the first numeric operand by the second, and returns only the remainder as an
integer value.

^ The exponentiation operator raises the first operand (the base) to the power of the second (the exponent).

& The string concatenation operator joins two string operands together, and returns a new string with the com-
bined results.

Anda The conjunction operator returns True if both Boolean operands are also True.

AndAlso This operator is just like the And operator, but it doesn’t examine or process the second operand if the first
one is False.

Ora The disjunction operator returns True if either of the operands is also True.

OrElse This operator is just like the Or operator, but it doesn’t examine or process the second operand if the first one
is True.

Nota The negation operator returns the opposite of a Boolean operand.

Xora The exclusive or operator returns True if exactly one of the operands is also True.

<< The shift left operator shifts the individual bits in an integer operand to the left by the number of bit positions
in the second operand.

>> The shift right operator shifts the individual bits of an integer operand to the right by the number of bit posi-
tions in the second operand.

= The equal-to comparison operator returns True if the operands are “equal” to each other.

< The less-than comparison operator returns True if the first operand is “less than” the second.

<= The less-than-or-equal-to comparison operator returns True if the first operand is “less than or equal to” the
second.

> The greater-than comparison operator returns True if the first operand is “greater than” the second.

>= The greater-than-or-equal-to comparison operator returns True if the first operand is “greater than or equal
to” the second.

<> The not-equal-to comparison operator returns True if the first operand is “not equal to” the second.

Like The pattern comparison operator returns True if the first operand matches a string pattern specified by the
second operand.

Is The object equal-to comparison operator returns True if both operands truly represent the same instance of
a data value in memory. Setting the second operand to Nothing lets you test a reference variable to see
whether it contains data.

IsNot The object not-equal-to comparison operator is the opposite of the Is operator.

a The And, Or, Not, and Xor operators also work as “bitwise” operators. I’ll talk about that in “Operators” in Chapter 6.

Table 2-2. Visual Basic operators (continued)

Operator Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Functions and Subroutines | 49

As powerful as operators are, they possess even more power when you combine
them. This works because any of the operands can be a complex expression that
includes its own operands. Parentheses grouped around clauses in operands ensure
that values are processed in the order you expect.

circleArea = pi * (radius ^ 2)

In this statement, the second operand of the * multiplication operator is another
expression, which includes its own operator.

Using Functions and Subroutines
Years ago I worked for a software company that sometimes published software
developed outside the organization, all for a non-Windows platform. While most of
these programs were written in the C language, we also published software written in
Pascal, assembly language, and good ol’ BASIC. I inherited one such external appli-
cation written entirely in BASIC, a program that assisted the user in 3D modeling
and graphics rendering. It was a complex program, containing about 30,000 lines of
source code. The problem was that it was one large block of 30,000 source code
lines. No comments, no variable names longer than a few characters, no extra-
strength buffered aspirin product. Just thousands of lines of code with flow control
statements jumping this way and that. And, of course, it had a bug.

I was able to move past that event in my life without too much therapy, but at the
time it was a shock to see code in that condition. And it was so unnecessary, since
that flavor of BASIC was a procedural language, just like C and Pascal. Procedural
languages allow you to break your code into named blocks of logic, called procedures.
These procedures let you take a “divide and conquer” approach to programming; you
write procedures that accomplish a specific logical portion of the code within your
entire application, and then access these procedures from other procedures.

Visual Basic includes three types of procedures:

Subroutines
These procedures, also called subprocedures, do a bunch of work and then return
to the calling procedure. Data can be sent into the subroutine through its argu-
ment list, and some values may come back through that same list, but the proce-
dure does not send an official final result back. A subroutine does its work, and
once it is complete, the calling code continues on its merry way.

Functions
Functions are just like subroutines, with one additional feature: you can return a
single value or object instance from the function as its official result. Usually, the
calling code takes this return value into consideration when it completes its own
logic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

50 | Chapter 2: Introducing Visual Basic

Properties
When used, properties actually look like variables. You assign and retrieve val-
ues to and from properties just like you would for a variable. However, proper-
ties include hidden code, often used to validate the data being assigned to the
property.

Subroutines, functions, and properties are the code members of each class or similar
type. I’ll delay discussion of properties until a little later in the chapter. For now, let’s
enjoy functions and subroutines, which together are also known as methods. Let’s
start with subroutines. To call a subroutine, type its name as a statement, followed
by a set of parentheses. Any data you need to send to the subroutine goes in the
parentheses. For instance, the following subroutine call does some work, passing the
ID number of a customer, and a starting date:

DoSomeWork(customerID, startDate)

Each subroutine defines the data type and order of the arguments you pass. This
argument list may include one or more optional arguments, which are assigned
default values if you don’t include them. A subroutine might also be overloaded,
defining different possible argument lists based on the number and data type of the
arguments. We’ll encounter a lot of these later.

Functions are a little more interesting since they return a usable value. Often, this
value is assigned to a variable:

Dim balanceDue As Boolean
balanceDue = HasOutstandingBalance(customerID)

Then you can do something with this result. If you want, you can ignore the return
value of a function, and we already have. The MsgBox function used earlier returns the
identity of the on-screen button clicked by the user to close the message box. If you
include only an OK button (the default), you probably don’t care which button the
user clicks.

MsgBox("Go ahead, click the OK button.")

But you can also capture the result of the button:

whichButton = MsgBox("Click Yes or No.", MsgBoxStyle.YesNo)

In this case, whichButton will be either MsgBoxResult.Yes or MsgBoxResult.No, two of
the possible results defined by the MsgBox function.

Conditions
Sometimes you have to make some choices, and conditional expressions will help
you do just that. Visual Basic includes support for conditions, which use data tests to
determine which code should be processed next.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conditions | 51

If Statements
The most common conditional statement is the If statement. It is equivalent to
English questions in the form “If such-and-such is true, then do so-and-so.” For
instance, it can handle “If you have $20, then you can buy me dinner,” but not “If a
train departs Chicago at 45 miles per hour, when will it run out of coal?”

If statements have syntax that spans multiple source code lines:

01 If (hadAHammer = True) Then
02 DoHammer(inTheMorning, allOverThisLand)
03 DoHammer(inTheEvening, allOverThisLand)
04 ElseIf (hadAShovel = True) Then
05 DoShovel(inTheNoontime, allOverThisLand)
06 Else
07 TakeNap(allDayLong, onMySofa)
08 End If

The If statement lets you define branches in your code based on conditions. It is
built from three main components:

Conditions
The expression found between the If (or ElseIf) keyword and the Then keyword
is the condition. The sample includes two conditions, on lines 01 and 04. Condi-
tions may be simple or complex, but they must always result in a Boolean True
or False value. They can include calls to other functions and multiple logical and
comparison operators.

If ((PlayersOnTeam(homeTeam) >= 9) And _
 (PlayersOnTeam(visitingTeam) >= 9)) Or _
 (justPracticing = True) Then
 PlayBall()
Else
 StadiumLights(turnOff)
End If

The original condition always follows the If keyword. If that conditions fails,
you can specify additional conditions following an ElseIf keyword, as on line
04. You may include as many ElseIf clauses as you need. The optional Else con-
dition doesn’t let you specify a test expression. Instead, it matches everything
not yet caught by the If or ElseIf clauses. Only one Else clause is allowed per If
statement.

Branches
Each condition’s Then keyword is followed by one or more Visual Basic state-
ments that are processed if the associated condition evaluates to True. All state-
ments up to the next Else, ElseIf, or End If are included in that branch’s
statement block. You may include any number of statements in a branch block,
including additional subordinate If statements. In the sample code, branch lines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

52 | Chapter 2: Introducing Visual Basic

02 and 03 are processed if the original hadAHammer condition is true. Line 05 is pro-
cessed instead if the original condition fails, but the second hadAShovel condition
passes. If none of the conditions is True, the Else’s branch, on line 07, executes.

Statement keywords
The If statement is one of several multiline statements in Visual Basic, all of
which end with the keyword End followed by the original statement keyword (If
in this case). The If statement’s keywords, which give the statement its struc-
ture, include If, Then, ElseIf, Else, and End If. All ElseIf and Else clauses and
related branches are optional. The simplest If statement includes only an If
branch.

If (phoneNumberLength = 10) Then
 DialNumber(phoneNumber)
End If

For conditions with simple single-statement branches and no ElseIf clauses, a
single-line alternative can keep your code looking clean.

If (SaveData() = True) Then MsgBox("Data saved.")
If (TimeOfDay >= #13:00#) _
 Then currentStatus = WorkStatus.GoHome _
 Else currentStatus = WorkStatus.BusyWorking

If statements are cool because they make your code more than just a boring set of
linear step-by-step instructions that never deviate for any reason. Software is written
to support some real-world process, and real-world processes are seldom linear. The
If statement makes it possible for your code to react to different data conditions,
taking the appropriate branch when necessary.

Once the entire If...End If block completes, processing continues with the next
statement that follows the End If statement.

Select Case Statements
Sometimes you might write an If statement that tests a variable against one possible
value, then another, then another, then another, and so on:

If (billValue = 1) Then
 presidentName = "Washington"
ElseIf (billValue = 2) Then
 presidentName = "Jefferson"
ElseIf (billValue = 5) Then
 presidentName = "Lincoln"
...

And on it goes, through many more ElseIf clauses. It’s effective, but a little tedious,
as your code must specifically test every case. The Select Case statement provides a
cleaner alternative for simple value comparisons against a list:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conditions | 53

01 Select Case billValue
02 Case 1
03 presidentName = "Washington"
04 Case 2
05 presidentName = "Jefferson"
06 Case 5
07 presidentName = "Lincoln"
08 Case 20
09 presidentName = "Jackson"
10 Case 50
11 presidentName = "Grant"
12 Case 10, 100
13 presidentName = "!! Non-president"
14 Case > 100
15 presidentName = "!! Value too large"
16 Case Else
17 presidentName = "!! Invalid value"
18 End Select

Unlike the If statement, which checks for a Boolean result, Select Case compares a
single value against a set of test case values. In the example, the billValue variable is
compared against the different values identified by each Case clause. All code that
follows a Case clause (until the next Case clause) is the branch that is processed when
a match is found. An optional Case Else condition (line 16) catches anything that is
not matched by any other Case. Normally, Case clauses list single values for compari-
son. They can also include a list of comma-separated comparison values (line 12), or
simple range comparison expressions (line 14).

IIf and If Functions
Visual Basic includes two variations of the If statement for “inline” use. Consider
the following statement:

If (gender = "F") Then fullGender = "Female" _
 Else fullGender = "Male"

Using the IIf function, this statement compresses into a single assignment state-
ment with an embedded condition:

fullGender = IIf(gender = "F", "Female", "Male")

The IIf function has three comma-delimited arguments. The first is the condition,
which must result in a Boolean True or False value. The second argument is returned
by the function if the condition is True; a condition result of False returns the third
argument. For simple conditions that are destined to return single values to a com-
mon variable, it’s really a useful function. But with anything really useful, there are
caveats. The caveat with IIf is that anything appearing inside the IIf statement will be
processed, even if it is not returned as a result. Here’s a dangerous example:

purgeResult = IIf(level = 1, PurgeSet1(), PurgeSet2())

http://lib.ommolketab.ir
http://lib.ommolketab.ir

54 | Chapter 2: Introducing Visual Basic

The statement will correctly return the result of either PurgeSet1() or PurgeSet2()
based on the value of level. The problem, or potential problem, is that both func-
tions, PurgeSet1() and PurgeSet2(), will be called; if level is 1, both PurgeSet1() and
PurgeSet2() will be called, even though only the function result from PurgeSet1() will
be returned.

To help avoid such side effects, Visual Basic 2008 added the new If operator. It
looks just like the IIf function, except for the keyword If replacing the IIf keyword:

purgeResult = If(level = 1, PurgeSet1(), PurgeSet2())

Now only PurgeSet1() or PurgeSet2() will be called based on the condition, but not
both. Although the If operator looks like a function, it is actually a true operator,
known as the ternary operator. At compile time, Visual Basic treats it and its argu-
ments as operator and operands and generates the appropriate logic.

A variation of the If operator takes just two arguments, excluding the initial Bool-
ean argument.

realObject = If(object1, object2)

In this version of the If operator, if the first argument evaluates to Nothing, the oper-
ator returns the second argument. If the first argument is not Nothing—that is, if it
really is something—the operator returns that first argument instead. The goal is to
return non-Nothing, although that’s a double negative.

Loops
Visual Basic includes three major types of loops: For...Next, For Each...Next, and
Do...Loop. Just as conditions allow you to break up the sequential monotony of your
code through branches, loops add to the usefulness of your code by letting you
repeat a specific block of logic a fixed or variable number of times.

For . . . Next Loops
The For...Next loop uses a numeric counter that increments from a starting value to an
ending value, processing the code within the loop once for each incremented value.

Dim whichMonth As Integer
For whichMonth = 1 To 12
 ProcessMonthlyData(whichMonth)
Next whichMonth

This sample loops 12 times (1 To 12), once for each month. You can specify any start-
ing and ending values you wish; this range can also be specified using variables or
functions that return numeric values. Once the starting and ending values are
obtained, they are not recalculated each time through the loop, even if a function call
is used to obtain one or both limits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Loops | 55

' ----- Month(Today) returns the numeric month
' for the current date.
For whichMonth = 1 To Month(Today)
 ProcessMonthlyData(whichMonth)
Next whichMonth

Normally, the loop increments by one (1) each time through. You can alter this
default by attaching a Step clause to the end of the For statement line:

For countDown = 60 To 0 Step -1
 ...
Next countDown

One additional syntax variation allows you to declare the loop counter variable
within the statement itself. Such variables are available only within the loop, and
cease to exist once the loop exits.

For whichMonth As Integer = 1 To 12
 ProcessMonthlyData(whichMonth)
Next whichMonth

For Each . . . Next Loops
A variation of the For loop, the For Each...Next loop scans through a set of ordered
and related items, from the first item until the last. Arrays and collection objects also
work, as does any object that supports the IEnumerable interface (all these topics are
covered in Chapter 6). The syntax is quite similar to the standard For statement:

For Each oneRecord In setOfRecords
 ProcessRecord(oneRecord)
Next oneRecord

Do . . . Loop Loops
Sometimes you want to repeat a block of code as long as a certain condition is true,
or only until a condition is true. The Do...Loop structure performs both of these
tasks. The statement includes a While or Until clause that specifies the conditions for
continued loop processing. For instance, the following statement does some process-
ing for a set of dates, from a starting date to an ending date:

Dim processDate As Date = #1/1/2000#
Do While (processDate < #2/1/2000#)
 ' ----- Perform processing for the current date.
 ProcessContent(processDate)

 ' ----- Move ahead to the next date.
 processDate = processDate.AddDays(1)
Loop

Processing in this sample will continue until the processDate variable meets or
exceeds 2/1/2000, which indicates the end of processing. The Until clause version is
somewhat similar, although with a reversed condition result:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

56 | Chapter 2: Introducing Visual Basic

Do Until (processDate >= #2/1/2000#)
 ...
Loop

Make the included condition as simple or as complex as you need. Putting the Until
or While clause at the bottom of the loop guarantees that the statements inside the
loop will always be processed at least once:

Do
 ...
Loop Until (processDate >= #2/1/2000#)

If the loop condition is never met, the loop will continue forever. So, if you want
your loop to exit at some point (and usually you do), make sure the condition can
eventually be met.

There is another loop that is similar to Do...Loop, called the While...End While loop.
However, it exists for backward compatibility only. Use the Do...Loop statement
instead.

Exit Statements
Normally, when you enter a loop, you have every intention of looping for the full
number of times specified by the initial conditions of the loop. For For loops, you
expect to continue through the entire numeric range or collection of elements. In Do
loops, you plan to keep the loop going as long as the exiting condition has not yet
been met. But there may be loops that you want to exit early. You accomplish this
using an Exit statement.

There are two loop-specific Exit statements:

Exit For
Exits a For...Next or For Each...Next loop immediately

Exit Do
Exits a Do...Loop statement immediately

Each Exit statement exits the loop that contains the statement; processing continues
with the line immediately following the loop:

For whichMonth = 1 To 12
 If (ProcessMonthlyData(whichMonth) = False) Then Exit For
Next whichMonth
' ----- Code continues here no matter how the loop was exited.

The sample code is designed to loop through all 12 months. However, a processing
failure for any of the 12 months will immediately exit the loop, abandoning all
remaining month processing actions. The Exit Do statement similarly exits Do...Loop
loops immediately.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creating Your Own Procedures | 57

In an Exit loop statement within nested loops (where one loop appears within another),
only the matching loop that immediately contains the statement is exited:

For whichMonth = 1 To 12
 For whichDay = 1 to DaysInMonth(whichMonth)
 If (ProcessDailyData(whichMonth, whichDay) = False) _
 Then Exit For
 Next whichDay
 ' ----- The Exit For statement jumps to this line.
 ' Processing continues with the next month.
Next whichMonth

Continue Statements
Since exiting a loop abandons all remaining passes through the loop, you may miss
out on important processing that would have happened in subsequent passes. Visual
Basic includes a Continue statement that lets you abandon only the current pass
through the loop.

There are different Continue statement variations for each loop type:

Continue For
Immediately jumps to the end of the For...Next or For Each...Next loop and
prepares for the next pass. The loop variable is incremented and compared with
the range or collection limits.

Continue Do
Immediately jumps to the end of the Do...Loop statement and prepares for the
next pass. The Until or While condition is reevaluated.

Since the loop conditions are re-evaluated when using the Continue statements, there
are times when Continue may cause the loop to exit, such as when it had been the
final pass through the loop already.

In this example, the Continue For statement skips processing for months that have no
data to process:

For whichMonth = 1 To 12
 If (DataAvailable(whichMonth) = False) Then Continue For
 RetrieveData(whichMonth)
 ProcessData(whichMonth)
 SaveData(whichMonth)
Next whichMonth

Creating Your Own Procedures
All logic statements in your code must appear within a procedure, whether in a sub-
routine, a function, or a property. Although there are thousands of prewritten proce-
dures for you to choose from in the .NET Framework libraries, you can also add
your own.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

58 | Chapter 2: Introducing Visual Basic

Subroutines
Subroutines begin with a Sub declaration statement and end with an End Sub state-
ment. All of your subroutine’s logic appears in between these two mighty jaws.

01 Sub ShowIngredients(ByVal gender As Char)
02 Dim theMessage As String = "Unknown."
03 If (gender = "M"c) Then
04 theMessage = "Snips and snails and puppy dog tails."
05 ElseIf (gender = "F"c) Then
06 theMessage = "Sugar and spice and everything nice."
07 End If
08 MsgBox(theMessage)
09 End Sub

Line 01 shows the subroutine’s declaration line in its simplest form; throughout the
book, you will find that there are additional keywords that decorate procedure decla-
rations to change their behavior. The statement begins with the Sub keyword (for
subroutine), followed by the name of the procedure, ShowIngredients.

The parentheses following this name contain the subroutine’s parameters. Parame-
ters allow another block of code that will use this procedure to pass data into the
procedure, and optionally receive data back. You can include any number of parame-
ters in the subroutine definition; simply separate them by commas. Each parameter
specifies the name as it will be used in the procedure (gender in the sample) and its
data type (Char). The arguments are treated as declared variables within the proce-
dure, as is done with gender on lines 03 and 05.

The values supplied by the calling code are known as arguments. All arguments are
passed by value or by reference. In the sample code, the argument passed into gender
will be passed by value, as specified through the ByVal keyword. The related ByRef
keyword indicates an argument to be passed by reference. If you don’t include either
keyword, ByVal is assumed. This passing method impacts whether changes made to
the argument within the local procedure are propagated back to the calling code.
However, the ability to update the original data is also influenced by whether the
data is a value type or a reference type. Table 2-3 indicates the behavior for each com-
bination of passing method and data type.

Table 2-3. Updating data, the .NET way

Passing method Data type Behavior

ByVal Value type Changes made to the local version of the argument have no impact on the
original version.

ByVal Reference type Changes made to members of the data object immediately impact the
original data object. However, the object itself cannot be changed or
replaced with a completely new data object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creating Your Own Procedures | 59

In most cases, if you are interested in modifying the value of a parameter and having
the changes return to the caller, use ByRef; otherwise, use ByVal.

Lines 02 through 08 in the sample code comprise the body of the procedure, where
all your logic appears. Any variables to be used solely in the routine are also defined
here, as with the theMessage variable on line 02. The subroutine always concludes
with an End Sub statement.

Functions
The syntax of a function differs only slightly from subroutines, to support a return
value.

01 Function IsPrime(ByVal source As Long) As Boolean
02 ' ----- Determine whether source is a prime number.
03 Dim testValue As Long
04 If (source < 2) Then
05 Return False
06 ElseIf (source > 2) Then
07 For testValue = 2 To source \ 2&
08 If ((source Mod testValue) = 0) Then
09 Return False
10 End If
11 Next testValue
12 End If
13 Return True
14 End Function

As with subroutines, the function’s declaration line appears first (line 01), followed
by the body (lines 02 through 13) and the closing End Function statement (line 14).
The declaration line includes an extra data type definition after the parameter list.
This is the data type of the final value to be returned to the calling code. Use this
return value in the calling code just like any other value or variable. For example, the
following line calls the IsPrime function and stores its Boolean result in a variable:

primeResult = IsPrime(23)

To indicate the value to return, use the Return statement (described later in the chap-
ter). The sample code does this on lines 05, 09, and 13. (An older VB 6.0 syntax that
lets you assign the return value to the name of the function still works.)

ByRef Value type Changes made to the local version are returned to the calling procedure,
and permanently impact the original data value.

ByRef Reference type Changes made to either the data object or its members are also changed in
the original. It is possible to fully replace the object sent into the procedure.

Table 2-3. Updating data, the .NET way (continued)

Passing method Data type Behavior

http://lib.ommolketab.ir
http://lib.ommolketab.ir

60 | Chapter 2: Introducing Visual Basic

Properties
A little earlier I mentioned fields, which are variables or constants that appear within
a class, but outside any procedure definition.

01 Class PercentRange
02 Public Percent As Integer
03 End Class

Properties are similar to fields; they are used like class-level variables or constants.
But they are programmed like functions, accepting parameters, having return values,
and including as much logic as you require.

Properties are often used to protect private class data with logic that weeds out inap-
propriate values. The following class defines a single property that provides access to
the hidden related field:

01 Class PercentRange
02 ' ----- Stores a percent from 0 to 100 only.
03 Private savedPercent As Integer
04 Public Property Percent() As Integer
05 Get
06 Return savedPercent
07 End Get
08 Set(ByVal value As Integer)
09 If (value < 0) Then
10 savedPercent = 0
11 ElseIf (value > 100) Then
12 savedPercent = 100
13 Else
14 savedPercent = value
15 End If
16 End Set
17 End Property
18 End Class

The Percent property (lines 04 to 17) protects access to the savedPercent field (line
03), correcting any caller-supplied values that exceed the 0 to 100 range. Properties
include separate assignment and retrieval components, also called accessors. The Get
accessor (lines 05 to 07) returns the property’s monitored value to the caller. The Set
accessor (lines 08 to 16) lets the caller modify the value of the property.

The property declaration statement (line 04) includes a data type that matches the
data type passed into the Set accessor (line 08). This is the data type of the value set
or retrieved by the caller. To use this sample Percent property, create an instance of
the PercentRange class, and then use the property:

Dim activePercent As New PercentRange
activePercent.Percent = 107 ' An out-of-range Integer
MsgBox(activePercent.Percent) ' Displays "100", not "107"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other Flow Control Features | 61

You can create read-only or write-only properties by including the ReadOnly or
WriteOnly keyword just before the Property keyword in the declaration statement
(line 04), and leaving out the unneeded accessor.

Properties do not need to be tied to fields. You can use properties to get and set any
type of value, and store it or act upon it in any manner you wish.

Where to Put Your Procedures
Back in the good ol’ days of Visual Basic 6.0, procedures could appear just about
anywhere in your source code files. You would open a source file, type a function,
and go; it was that easy. With the move to .NET, all Visual Basic procedures must
now appear within a defined class (or a structure or module).

Class Employee
 Sub StartVacation()
 ...
 End Sub

 Function TotalVacationTaken() As Double
 ...
 End Function
End Class

When you create instances of your class later in code, the methods can be called
directly through the object instance.

Dim executive As New Employee
...
executive.StartVacation()

Chapter 8 shows you how to use and build classes.

Other Flow Control Features
The loops and conditional statements available in Visual Basic let you reroute your
code based on data. The language includes a few other statements that let you con-
trol the action in a more direct manner.

The GoTo Statement
The GoTo statement lets you jump immediately to some other location within the cur-
rent procedure. The destination of a jump is always a line label, a named line posi-
tion in the current procedure. All line labels appear at the start of a logical line, and
end with a colon.

PromptUser:
 GetValuesFromUser(numerator, denominator)
 If (denominator = 0) Then GoTo PromptUser
 quotient = numerator / denominator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

62 | Chapter 2: Introducing Visual Basic

In this sample, the GoTo statement jumps back to the PromptUser label when the code
detects invalid data. Processing continues with the line immediately following the
PromptUser label. You can’t use the same label name twice in the same procedure,
although you can reuse label names in different procedures. If you want, include
another logic statement on the same line as your label, right after the colon, although
your code will be somewhat easier to read if you keep labels on their own lines.

LabelAlone:
 MsgBox("It's all alone.")
LabelAndCode: MsgBox("Together again.")

It’s all right to include as many labels in your code as you need, but the GoTo state-
ment is one of those elements of Visual Basic that is monitored closely by pesky
international software agencies, such as the International Committee to Keep GoTo
Always Gone (ICK-GAG). That group also scans computer books looking for
derogatory references to its organization name—not that it would find anything
like that in this book. But its core issue is that overuse of GoTo statements can lead
to spaghetti code, such as the following:

Dim importantMessage As String = "Do"
GoTo Step2
Step6: importantMessage &= "AG!"
GoTo Step7
Step3: importantMessage &= "wit"
GoTo Step4
Step2: importantMessage &= "wn "
GoTo Step3
Step5: importantMessage &= "CK-G"
GoTo Step6
Step4: importantMessage &= "h I"
GoTo Step5
Step7: MsgBox(importantMessage)

Some people say that such code is hard to read. Others call it job security. No mat-
ter what you call it, it does make code very hard to maintain and review. You should
probably keep an eye on your use of GoTo statements; if you don’t, someone else
might.

Visual Basic itself places some limits on the use of GoTo. You cannot jump into or out
of certain multiline statements that would result in improperly initialized code or
data values. For instance, you cannot jump into the middle of a For...Next state-
ment from outside the statement, since the loop counter variable and the starting
and ending ranges would not be properly initialized.

' ----- This GoTo statement will fail.
GoTo InsideTheLoop
For counter = 1 to 10
InsideTheLoop:
 MsgBox("Loop number: " & counter)
Next counter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other Flow Control Features | 63

However, once you are inside the loop, you can jump to line labels that also appear
in the loop, and it’s acceptable to jump out of the loop using GoTo. Some other multi-
line structures impose similar restrictions.

The Return Statement
Not only can you jump around within a procedure using GoTo, but you can also jump
right out of a procedure anytime you want using the Return statement. Normally, a
procedure exits when processing reaches the last line of code in the procedure; pro-
cessing then continues with the code that called the procedure. The Return state-
ment provides a way to exit the procedure before reaching the end.

In subroutines, the Return statement appears by itself as a standalone statement:

Return

In functions, the statement must include the value to be returned to the calling code:
a variable, a literal, or an expression that must match the specified return value data
type of the function.

Return 25

Pre-.NET releases of Visual Basic used an Exit statement to immediately leave a pro-
cedure. These are still supported in .NET. There are three variations:

Exit Sub
Exits a subroutine

Exit Function
Exits a function

Exit Property
Exits a property

When exiting from a function, the Exit Function statement does not include a way to
specify a return value. You must set the return value separately by assigning the
return value to the name of the function.

Function SafeDivide(ByVal numerator As Double, _
 ByVal denominator As Double) As Double
 ' ----- The "#" sign makes a number a Double.
 If (denominator = 0#) Then
 ' ----- Return 0 on invalid division.
 SafeDivide = 0#
 Exit Function
 End If
 Return numerator / denominator
End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

64 | Chapter 2: Introducing Visual Basic

The End and Stop Statements
The End and Stop statements bring an immediate halt to your Visual Basic applica-
tion. The End statement exits your program immediately, aborting all further code
and data processing (although certain acquired resources are cleaned up).

The Stop statement suspends processing only when you are running your applica-
tion within a debugger, such as the Visual Studio development environment. Stop
returns control to the environment, allowing the developer to examine and possibly
alter data and code before continuing on with the program. If a Stop is encountered
in a standalone application running outside the debugger, it prompts the user to
debug the application using any debugger installed on the workstation. Needless to
say, the user will not be amused.

Events and Event Handlers
Visual Basic is an event-driven language. This is especially true of programs written to
run on the Windows desktop. After some important initialization, the user is gener-
ally in control of all actions in the program. Who knows what the crazy user will do.
He might click here. She might type there. It could be all mayhem and bedlam. But
whatever the user does, your program will learn about it through events.

Since the first days of Windows, desktop programs have used a message pump to
communicate user and system actions to your code. Mouse and keyboard input,
system-generated actions, and other notifications from external sources flow into a
program’s common message queue. The message pump draws these messages out
one by one, examines them, and feeds them to the appropriate areas of your code.

In traditional Windows programming, you craft the message pump yourself, includ-
ing code that makes direct calls to event-handling procedures based on the message
type. In a Visual Basic program (both in .NET and earlier), the language provides the
message pump for you. It analyzes the messages as they are pumped out of the mes-
sage queue, and directs them to the appropriate code. In .NET, this code appears
within classes. Once a class has a chance to analyze the message, it can generate an
event, which is ultimately processed by an event handler, a subroutine you write to
respond to the action. This calling of the event handler is known as firing an event.
So, there are two parts of an event: (1) some code that decides to fire the event; and
(2) an event handler that responds to the fired event.

Events are really just indirect calls to a procedure. Instead of having the main code
call another subroutine directly, it asks .NET to call the other subroutine for it, pass-
ing specific arguments that the calling code may wish to include. So, why would you
want to do this instead of just making the subroutine call directly? For one thing, this
indirect method lets you add event handlers long after the initial event-firing code
was written. This is good, since the event-firing code may be in a third-party assem-
bly that was written years ago. A second benefit is that one event can target multiple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Events and Event Handlers | 65

event handlers. When the event fires, each event handler will be called, and each can
perform any custom logic found in the handler subroutine.

The code that fires the event passes event-specific data to the target event handler(s)
through the handler’s parameter list. For the indirect subroutine call to work, the
event handler needs to contain the correct number of arguments, in the right order,
each of a specific and expected data type. The Event statement defines this contract
between the event and the handler.

Public Event SalaryChanged(ByVal NewSalary As Decimal)

This Event statement defines an event named SalaryChanged with a single argument,
a Decimal value. Any event handler wishing to monitor the event must match this
argument signature.

Sub EmployeePayChanged(ByVal updatedSalary As Decimal)...

Events can occur for any reason you deem necessary; they need not be tied to user or
system actions. In this sample class, an event fires each time a change is made to the
employee’s salary. The RaiseEvent statement performs the actual firing of the event,
specifying the name of the event to fire, and a set of arguments in parentheses.

Public Class Employee
 Public Name As String
 Private currentSalary As Decimal

 Public Property Salary() As Decimal
 Get
 Return currentSalary
 End Get
 Set(ByVal value As Decimal)
 currentSalary = value
 RaiseEvent SalaryChanged(currentSalary)
 End Set
 End Property

 Public Event SalaryChanged(ByVal NewSalary As Decimal)
End Class

The event handlers are not added directly to the class. Instead, they are attached to
an instance of the class. The instance, declared as a class field, must be defined using
the special WithEvents keyword, which tells Visual Basic that this instance will pro-
cess events.

Public WithEvents MonitoredEmployee As Employee

Event handlers are ordinary subroutines, but they include the Handles keyword to
indicate which event is being handled.

Private Sub EmployeePayChanged(_
 ByVal updatedSalary As Decimal) _

Handles MonitoredEmployee.SalaryChanged
 MsgBox("The new salary for " & _
 MonitoredEmployee.Name & " is " & updatedSalary)
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

66 | Chapter 2: Introducing Visual Basic

All that is needed is something to kick off the action.

Public Sub HireFred()
 MonitoredEmployee = New Employee
 MonitoredEmployee.Name = "Fred"
 MonitoredEmployee.Salary = 50000 ' Triggers event
End Sub

When the salary is set, the Employee class’s Salary property fires the SalaryChanged
event using the Visual Basic RaiseEvent command. This generates a call to the
EmployeePayChanged event handler, which finally displays the message.

The events built into the Windows Forms classes in .NET work just like this, but
instead of watching with me for a salary increase, they are watching for mouse clicks
and keyboard clacks. All of these system events use a common argument signature.

Event EventName(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)

The sender argument identifies the instance of the object that is firing the event, in
case the caller needs to examine its members. The e argument is an object that lets
the caller send event-specific data to the handler through a single class instance. The
System.EventArgs class doesn’t have much in the way of members, but many events
use a substitute class that is derived from System.EventArgs.

As we pass through the chapters of this book, there will be no end to the number of
event examples you will see and experience. I will save the more involved and inter-
esting samples until then.

Namespaces
Classes, structures, modules, enumerations, interfaces, and delegates—the major .NET
types—don’t just float around in the code of your application. They must all be
grouped and managed into namespaces. As described in Chapter 1, namespaces pro-
vide a hierarchy for your types, sort of a tree-shaped condominium where each type
has a home. Some of those homes (or nodes), such as System, get pretty crowded
with all those type families living there. Others, such as System.Timers, may have
only a few types dwelling in their ample abodes. But every type must live in the hier-
archy; none of the types is adventurous enough to strike out on its own and build a
ranch house.

At the very root of the hierarchy is Global, not a node itself, but a Visual Basic key-
word that indicates the root of all roots. You can include Global when referencing
your namespaces, but its use is required only when leaving it out would cause confu-
sion between two namespace branches.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespaces | 67

Directly under Global are the few top-level namespaces, including System and
Microsoft. Each top-level namespace contains subordinate namespaces, and each of
those can contain additional third-level namespaces, and so on. Namespace nodes
are referenced relative to one another using a “dot” notation.

System.Windows.Forms

This specifies the third-level Forms namespace. You could also have typed:

Global.System.Windows.Forms

which means the same thing. Relative namespaces are also supported:

Forms

However, to use relative namespaces, you must tell your Visual Basic code to expect
them. There are so many namespaces out there, and there may be several Forms
namespaces somewhere in the hierarchy.

Referencing Namespaces
Before namespaces can be used in your code, they must be referenced and optionally
imported. Referencing a namespace identifies the DLL assembly file that contains
that namespace’s types. Perform both of these actions through the References tab of
each project’s Properties form (see Figure 2-3).

Figure 2-3. References and imports for a project

http://lib.ommolketab.ir
http://lib.ommolketab.ir

68 | Chapter 2: Introducing Visual Basic

Actually, you are not referencing the namespaces in the DLL, but rather the types, all
of which happen to live in specific namespaces. However, for the core type DLLs
supplied with the .NET Framework, it feels like the same thing. In fact, Microsoft
even named many of the DLLs to match the namespaces they contain. System.dll
contains types within the System namespace. System.Windows.Forms.dll includes
types specific to Windows Forms applications, and all of these types appear in the
System.Windows.Forms namespace or one of its subordinates.

If you don’t reference a DLL in your project, none of its types will be available to you
in your code. Visual Studio loads several references into your project automatically
based on the type of project you create. Figure 2-3 shows the nine default references
included within a Windows Forms application: System, System.Core, System.Data,
System.Data.DataSetExtensions, System.Deployment, System.Drawing, System.Windows.
Forms, System.Xml, and System.Xml.Linq.

Once you have referenced a library of classes (or other types) in your code, access
any of its classes by specifying the full namespace to that class. For instance, the class
for an on-screen form is referenced by System.Windows.Forms.Form. That’s three lev-
els down into the hierarchy, and some classes are even deeper. I hope that your
health insurance plan covers carpal tunnel syndrome.

To avoid typing all those long namespaces over and over again, Visual Basic includes
an imports feature. Imports are namespace-specific; once a namespace has been
imported, you can access any of the types in that namespace without specifying the
namespace name. If you import the System.Windows.Forms namespace, you only have
to type “Form” to access the Form class. The bottom half of Figure 2-3 shows how to
set these imports through the project’s properties. The “Imported namespaces” list
shows all available referenced namespaces. Simply check the ones you wish to
import; System.Windows.Forms is already checked for you by default in Windows
Forms applications.

You can also import a namespace directly in your source code. Use the Imports state-
ment at the very start of a source code file:

Imports System.Windows.Forms

The Imports statement supports namespace abbreviations, short names that repre-
sent the full namespace in your code. Using the statement:

Imports Fred = System.Windows.Forms

lets you reference the Form class as “Fred.Form.” Unlike the imports list in the
project’s properties, which impacts the entire project, the Imports statement affects
only a single source code file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The My Namespace | 69

Namespaces in Your Project
By default, all the classes and types in your project appear in a top-level namespace
that takes on the name of your project. For a Windows Forms application, this
default namespace is called WindowsApplication1. To specify a different top-level
namespace, modify it through the Application tab of the project’s properties, in the
“Root namespace” field. All the types in your project appear in this namespace; if
you specify an existing Microsoft-supplied namespace as your project’s root
namespace, all your types will appear in that specified namespace mixed in with the
preexisting types. For standalone applications, this mixture will be visible only from
your code.

From the root namespace, you can place types within subordinate namespaces by
using the Namespace statement. Namespace is a block statement that ends with the End
Namespace clause. Any types you create between the Namespace and End Namespace
clauses will be contained in that subordinate namespace. For example, if your root
namespace is WindowsApplication1, the following statements create a class whose full
name is WindowsApplication1.WorkArea.BasicStuff.BusyData:

Namespace WorkArea.BasicStuff
 Class BusyData
 ...
 End Class
End Namespace

You can include as many Namespace statements in your code as needed. Nesting of
namespaces is also supported:

Namespace WorkArea
 Namespace BasicStuff
 Class BusyData
 ...
 End Class
 End Namespace
End Namespace

The My Namespace
Visual Basic 2005 introduced a new “My” top-level namespace, designed to simplify
common programming tasks. Microsoft added it to the language in part to draw
holdout Visual Basic 6.0 stalwarts into the .NET fold. But most of it is really not that
dramatic. My collects commonly used features that are currently sprinkled around the
Framework Class Library (FCL), and puts them in a mini-hierarchy for convenient
access. It’s really not much more complicated than that. The hierarchy is nicely orga-
nized, with sections for user, application, and computer-specific information. It’s
used just like any other part of the framework, although you cannot use the Imports
keyword to access its components by a relative path.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

70 | Chapter 2: Introducing Visual Basic

Overall, My is very easy to use. To display the version number of your application, for
instance, use the following statement:

MsgBox(My.Application.Info.Version.ToString)

Some areas of the My namespace are dynamic; classes are added or removed as you
modify your source code. In Windows Forms applications, the My.Forms branch
includes entries for each one of the project’s forms. As you add new forms, new
entries are added automatically. The My.Forms object then makes a reference to each
form available for use in your code.

My.Forms.Form1.Text = "Welcome"

Summary
Sadly, this chapter has reached its conclusion. You may feel that it went by all too
fast; you may feel that you didn’t really learn how to write Visual Basic programs;
you may feel that a mild sedative would be right just about now. But don’t fret. This
chapter served as an introduction to the syntax and major features of Visual Basic.
Now begins the deeper training. As we start this book’s main focus—the Library
Project—you will encounter specific examples of all features covered only briefly in
this chapter.

Project
In this chapter, we will use the Code Snippets feature of Visual Studio to insert
source code into a basic sample code framework. Code Snippets is essentially a hier-
archical database of saved source code text. If you have installed the code for this
book, you will find code snippets for most chapters included right in Visual Studio.
In this chapter’s project, I will show you how to use them to add chapter-specific
code into your project.

Since we haven’t officially started the Library Project, this chapter’s project will sim-
ply extend the “Hello, World!” project we developed in Chapter 1, but with fun
parts added. I will include some of the language features we discovered throughout
this chapter.

PROJECT ACCESS

Load the Chapter 2 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 2 (After) Code instead.

Each chapter’s sample code includes a “Before” and “After” version. The “After” ver-
sion represents the code as it will look when all the changes in that chapter’s

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 71

“Project” section have been applied. The “Before” version doesn’t have any of the
chapter’s project changes included, just placeholders where you will insert the code,
one block at a time.

Like the project in Chapter 1, this chapter’s project includes a basic Windows form
with a single button on it. Clicking on the button displays the same “Hello, World!”
message. However, this time, the message starts in an encoded form, and a separate
class decodes the message and triggers an event that displays the form.

Once the project is open, view the source code attached to Form1. It should look
somewhat like the following:

Public Class Form1
 ' *** Insert Code Snippet #2 here.

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' *** Insert Code Snippet #3 here.
 End Sub

 ' *** Insert Code Snippet #4 here.
End Class

' *** Insert Code Snippet #1 here.

This sample uses a separate class to process the displayed message. The code for this
class appears as snippet number 1. To insert the snippet, move the cursor just after
the #1 snippet marker line, which reads:

' *** Insert Code Snippet #1 here.

To insert a snippet through the Visual Studio menus, select Edit ➝ IntelliSense ➝

Insert Snippet. The equivalent keyboard sequence is Ctrl-K, Ctrl-X. Or type a ques-
tion mark (?) anywhere in the source code, followed by pressing the Tab key. Any of
these methods displays the first level of snippets (see Figure 2-4).

Figure 2-4. Snip, snip, snip

http://lib.ommolketab.ir
http://lib.ommolketab.ir

72 | Chapter 2: Introducing Visual Basic

From the snippet list, select Programming Visual Basic 2008, and then select
Chapter 2. A list of the available snippet items for this chapter appears (see
Figure 2-5).

Finally, select Item 1. The content magically appears within the source code. All
insertions of code snippets throughout this book occur in exactly this way.

Snippet 1 inserts the SayHello class, part of the HelloStuff namespace, a portion of
which appears here:

Namespace HelloStuff
 Friend Class SayHello
 Private secretMessage As String
 Private reverseFlag As Boolean
 Private decoded As Boolean

 Public Event MessageDecoded(_
 ByVal decodedMessage As String)

 Public Sub New(ByVal codedMessage As String, _
 ByVal reverseIt As Boolean)
 ...

 Public Sub DecodeMessage(ByVal rotationFactor As Integer)
 ...

 Public Sub ReportMessage()
 ...
 End Class
End Namespace

The SayHello class includes three private fields (secretMessage, reverseFlag, and
decoded), which monitor the current status of the display message. A constructor
(New) allows the user to create a new instance of SayHello with an initial message text,
and a flag that indicates whether the text should be reversed before display. The
DecodeMessage subroutine converts each letter of the encoded message to its final
form by shifting each letter a rotationFactor number of places. If the letter E appears
and rotationFactor is 3, the letter E is shifted three spaces forward, to H. A nega-
tive rotation factor shifts the letters lower in the alphabet. The alphabet wraps at
the A–Z boundary. Only letters are rotated, and upper- and lowercase are handled
independently.

Figure 2-5. Item, item, item

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 73

The ReportMessage method fires the MessageDecoded event, sending the previously
decoded message to the event as an argument. So, where is this event handler? It’s
attached to an instance of SayHello that will be added to the Form1 class.

INSERT SNIPPET

Insert Chapter 2, Snippet Item 2.

Private WithEvents HelloDecoder As HelloStuff.SayHello

The HelloDecoder class is an instance of the HelloStuff.SayHello class that we just
wrote, and the snippet makes it a member of the Form1 class. The WithEvents key-
word says, “This instance will respond to events”; specifically, the MessageDecoded
event from the SayHello class.

Let’s add the code that triggers the message to display when the user clicks on the
on-form button. This occurs in the button’s click event.

INSERT SNIPPET

Insert Chapter 2, Snippet Item 3.

HelloDecoder = New HelloStuff.SayHello("!iqwtB ,tqqjM", True)
HelloDecoder.DecodeMessage(-5)
HelloDecoder.ReportMessage()

These three lines create an instance of the SayHello class, storing it in the
HelloDecoder class field. Can’t read the first argument in the constructor? It’s
encoded! It’s a secret! And the True flag says that it’s been reversed to make it an
even bigger secret (you don’t know what it is!). The DecodeMessage removes the
secrets by shifting each letter as needed, although the reversal doesn’t happen until
the call to ReportMessage.

The ReportMessage method doesn’t actually display the message. Instead, it fires an
event that makes the unscrambled message available to an event handler.

INSERT SNIPPET

Insert Chapter 2, Snippet Item 4.

Private Sub HelloDecoder_MessageDecoded(_
 ByVal decodedMessage As String) _
 Handles HelloDecoder.MessageDecoded
 ' ----- Show the decoded message.
 MsgBox(decodedMessage)
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

74 | Chapter 2: Introducing Visual Basic

The Handles keyword connects the subroutine with the fired event. The decoded
message comes into the handler through the decodedMessage argument, and is
splashed all over the screen with a simple yet powerful call to the MsgBox function.

That’s it for the sample code. Now it’s time to roll up your sleeves and embark on a
full Visual Basic 2008 project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

75

Chapter 3 CHAPTER 3

Introducing the Project3

You’re sitting in your office, surfing the...I mean reading up on the latest technol-
ogy issues most pressing to software developers. You’re minding your own business,
when boom, someone walks up to your desk and offers to pay you money to write a
program. It happens every day, all over corporate America, and sometimes it just
makes me sick.

But enough about my health problems. This desk-hovering somebody informs you
that you must develop a software application, possibly a database application with a
user-friendly interface. Although the feature set will be specified by the primary
users, you, as the lead (or only) programmer, will design, document, develop, and
deliver discs dripping with distinguished, dazzling, and dynamic digital...um...soft-
ware. (Darn.)

Well, that’s what happened to me. A client of mine had a large collection of books
that they needed to organize as a traditional library. Seeing that I was a reasonably
codependent software architect, the client asked me to develop some software to
manage the books and such. Out of this request came the Library Project.

As you read through this chapter, you will have to keep my day job in mind. I write
custom Visual Basic applications for small to medium-size organizations. Most of the
projects are sized so that I can complete them by myself, including all design and
documentation requirements, in less than a year. All my projects involve a “key
user,” one person—or sometimes a very small group—who speaks for the user com-
munity. These projects also involve someone who has “signature authority,” a per-
son authorized to pay for the project, or decide on its continued existence. This
individual may be the same as the key user.

If you were developing, say, a replacement for Microsoft Word, you would likely
lack a “key user.” To obtain the specific requirements for the project, you may have
to conduct general user interviews with dozens of user candidates. Or you might cre-
ate a “persona,” a fictional person who represents your intended target audience.
(For Visual Studio, Microsoft used three personas named Einstein, Elvis, and Mort.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

76 | Chapter 3: Introducing the Project

Whichever method applies to you, the general discussion in this chapter should
guide you to the happy conclusion: a design document that you will use to build the
application.

The Library Project
My client needed a program that would manage a database of books and media
items, and control how those items moved between bookshelves and patrons. The
software needed to have both patron- and administrator-focused features. It would
include various reports, including the printing of a receipt of checked-out items for
the patron. And most of all, it needed to both print and read bar codes.

It sounds like a lot for one man to do, and it is a sizable project. But I don’t have to
do it alone; you will help me. Together, through the pages of this book, you and I
will design that program, and develop that code, and bring joy to the users, and col-
lect that paycheck. Actually, I will collect the paycheck, although it wouldn’t hurt to
ask your boss to pay you to read this fine book.

The remainder of this section documents the key features of the Library manage-
ment application.

Library Item Features
The Library system will manage an inventory of books and other media items, locate
them, and manage the details and status of each copy of an item. To make this a real-
ity, the Library program will:

• Allow patrons or administrators to search for items currently in inventory. The
program allows searches based on several different properties of each item.

• Support multiple search methods, including by title, by author name, by subject
or topic, by a miscellaneous keyword, by the name of the related publisher, by
the name of a series or group that contains the item, or by a bar code number
attached to the actual item.

• Limit search results by the location of the item, or by the type of media (book,
CD, DVD, etc.).

• Support the definition and use of distinct physical locations. The client has
books and media stored at three different sites within their building, including a
storage closet for seldom-accessed items.

• Display the details of a retrieved item in a familiar browser-style interface. For
instance, when looking up a book by title, the user clicks on the author’s name
to access all other items by that same author.

• Allow access to each library item through a bar code scan. As is common in most
libraries today, the items in this library’s collection each have a bar code affixed,
which serves as a unique identifier for the individual item copy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Library Project | 77

Patron Features
In addition to books and other items, the program manages a list of patrons, the
“customers” of the library who are permitted to check out items. To support interac-
tion with patrons, the application will include these patron-specific features:

• Items can be checked out to patrons, and checked back into the library inventory.

• All patrons are assigned a “PIN” that acts as their password.

• Patrons can check out items without librarian and administrator assistance.
They can use a bar code scanner to scan a patron library card and library items.

• The “media type” of an item determines its checkout (and subsequently its
renewal) duration.

• Patrons can view their library record, including all books currently checked out,
and a list of fines owed to the library.

• If permitted on a specific item, the patron can renew an item he has currently
checked out.

• Patron-centric online help is available through the standard F1 key. This help
file includes no information on administrative features, so as to reduce
experimentation.

• Patrons can be divided into “patron groups” for the reporting and processing
convenience of the administrative staff.

Administrative Features
Administrators include librarians, IT staff, and others who need advanced access to
application features. They are the primary users of the system, not the patrons. The
application includes the following administrator-specific features:

• A “login” feature provides access to the administrative features of the applica-
tion. Only authorized users can log in through an assigned password. The login
feature is normally hidden from view from ordinary patrons.

• Administrators can view patron details just like patrons can, but they also have
access to additional patron details. Specifically, administrators can add new
patrons and manage their identity and demographic details. Administrators can
also disable a patron record to prevent further item checkouts.

• Administrators collect and manage patron fines, including the ability to add
nonstandard fines or to dismiss unpaid fines.

• Administrators define the records for each item managed by the system’s inven-
tory database. This includes the basics of each item, such as title and authors.
Each item includes one or more copies, which represent physical items that can
be checked out. Bar codes are assigned to copies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

78 | Chapter 3: Introducing the Project

• Beyond the items and copies, administrators define all supporting values and
lists, including author names and categories, the list of media types, publishers,
book series names, status codes that identify the disposition of each item copy,
and locations.

• Designated administrators can add, edit, and remove the accounts of other
administrators. Each account includes feature-specific authorization settings
(group rights).

• In addition to the scanning of bar codes, the program can assist administrators
in the design and printing of both patron and item bar codes.

• A simple program-managed process allows the administrative staff to process
overdue items and fines on a regular basis.

• The application allows holidays to be added and maintained. When a patron
checks out a book, the program adjusts the due date of the item to avoid holidays.

• Administrator-centric online help provides assistance to the enhanced features of
the application through the same F1 key available to patrons.

• The application includes some basic administrative reports, and the ability to
“plug in” reports as needed in the future without the need to update the pro-
gram itself.

The Application As a Whole
Beyond the basic features of the program as experienced by the patrons and adminis-
trators, there are a few other requirements:

• The program is “user-friendly” and easy to navigate, especially for patrons, with-
out much training or assistance.

• The application stores its data in a SQL Server database.

• Distribution of the application is done by administrative staff that has local admin-
istrative privileges, so a standard Windows installation package is sufficient.

• Configuration of the application uses standard XML methods.

Except for these general and feature-specific requirements, I was given design free-
dom. But where did the listed requirements come from? They came from the users,
the masters of the application. It was their needs—the needs of my customers and
theirs, who would be using the product day in and day out—that determined the list
of requirements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Needs of the Users | 79

The Needs of the Users
Back in the old days of computers, there were no users. Who needed users? The only
ones manly enough to approach the hallowed inner sanctum of the computing sys-
tems were the programmers. Only they touched the vacuum tubes, connected the
cables, toggled the front panels, and fondled the punch cards that provided access to
the heart of the machine. These programmers were tough, and their programs,
tougher. “We don’t need no stinking users” was their mantra.

Then came the 1980s, with its Greatest American Hero-inspired attitude and its per-
sonal “personal” computers. Now there were users everywhere. They were like the
Blob, only with fewer computing skills. But they were the masters because most pro-
grams were written for them. Programmers rarely used the programs they wrote;
they were simply the interface between the user and the heart of the computer. Pro-
grammers provided the element of control needed by both the computer and the
users. In fact, that is a programmer’s job: to provide highly controlled access to the
computer and the data it contains.

Users have a lot of needs, most of which can’t be met by a computer. But for those
that can, the needs come in five parts: data and information, process, usability, com-
monality, and project-specific needs. The design process involves an examination of
these needs and the subsequent massaging of those needs into a software product. By
examining the current data and procedures, conducting user interviews, and per-
forming other need-extraction methods, you gather the details you require to craft
the right solution.

Data and Information
Your ability to provide convenient and specific access to the data and information
required by the user is what makes you, the programmer, so lovable. Most users got
along just fine before computers. They kept their information on 3 × 5 index cards, or
on legal pads, or on scrolls of parchment, or in hermetically sealed mayonnaise jars.
But they had a reason to move to a computer-based storage medium: the convenience.

Data is the raw information stored by your program: names, numbers, images, or
any other standalone values. Information is data in context: a customer record, an
order, a slide show. When you provide a quality program that moves data up to the
level of information, you are providing the level of convenience the user needs to
move from mayonnaise jars to silicon chips.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

80 | Chapter 3: Introducing the Project

Process
When the user demands her data back from the computer, you have three options:

• Dump every single byte of data to the screen, printer, or disk, and let the user
sort it out. Actually, this is the system that some users had before they started
using a computer.

• Protect the data from user access, insisting that the supplied password is invalid or
expired, or that the data is unavailable. “Abort, Retry, Fail” anyone? Actually, this
is the system that some other users had before they started using a computer.

• Present the data as information, in a format that is both usable and accessible.

Although the first two choices are indeed tempting, the third option is the best. And
given the amount of data that your application will likely manage, you will have to
dole out the interaction with it a bit at a time, and in an appropriate sequence. This
is process.

Through the implementation of a valid process, you control not only the user’s data,
but also the orderly interaction with that data. Most users need to supply or retrieve
only a small portion of their data at a time. But when they do, it will usually be in
the context of some process. For instance, in an order-taking situation, the user
(1) enters or confirms the customer’s contact information; (2) enters or updates the
order details; and (3) prints or electronically communicates the order information so
that it can be fulfilled. Your application (surprise!) manages this three-step process.

Usability
If your program presents data and information to the user, and in a specific arrange-
ment or order, but it is difficult to use, your users will hate you. They will loathe you.
They will spread mean stories about you, true or not. And when they appear in
groups, their vehemence can get downright ugly. I heard this story about an Excel
user’s group...but perhaps it was just a rumor.

As a programmer, it is your job to make the computer, and the software that runs on
it, as usable as possible. And although you may not be able to control many of the
basic system features, you are the king when it comes to your own software.

The more ease and usability you design into your programs, the happier your users
will be. But I must warn you, ease of use for the user always means more work for
the developer. Always. It’s one of those unfair laws of the universe, and there is no
way around it. But sometimes we try—to the user’s peril.

Many, many years ago, I wrote some programs to demonstrate a hot new version of
BASIC that ran on the Motorola 6809 processor. This release could handle pro-
grams that were twice the size of the previous version: a whopping 32 KB of source
code. I was charged with testing the system, writing “big” programs that would show

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Needs of the Users | 81

off the new functionality. I set to work in a fever of activity, but as my program
approached about 27 KB, things started to happen, things that involved a shaking
table and the smell of smoke. Seriously!

Since then, I have subconsciously feared the development of programs that I felt
were too large for a particular system. So, when I went to work on Visual Basic, I
brought to my projects some of this apprehension. I tried to make my programs easy
to use, but I also held back on the number of forms I would add to my projects. It
wasn’t an irrational fear; the original versions of Visual Basic did impose limits on
code size, the number of unique variable names, and the maximum number of
forms. I once hit the limit on the number of unique variable names, but I never came
close on the number of forms. Still, I held back. I was sure that if I added too many
forms, my users would require medical attention for smoke inhalation.

Unfortunately, my users were still suffering. I had put too much data on each form,
to the point where they were no longer communicating information. My phone
would ring constantly with the same user-sponsored question: “How do I use the
fields on such-and-such a form?” Of course, I always said, “Why don’t you press the
F1 key?” But it didn’t make a bit of difference, since my online help pages were as
long and complex as the forms they sought to simplify.

There did come a day when I escaped my phobia of form-laden applications. And on
that day, I came up with the following rules for my own programs:

• Don’t put too much information on a single form. When in doubt, move some
information to another form.

• Present only the most necessary information and data to the user by default.
Show additional information only if the user requests it.

• Make it easy for the user to access the enhanced data, but allow the program to
run properly without it.

• Use text, graphics, and colors to the user’s advantage.

• Simplify the application so that user documentation becomes unnecessary.

• Always provide user documentation. Make it simple enough so that calls to tech-
nical support become unnecessary.

These rules are generic enough to work with any type of application, and they are
in-your-face enough to make them meaningful to us, the programmers, and to them,
the users.

Commonality
Microsoft constantly touts innovation, and the ability to innovate has moved soft-
ware products forward at a tremendous pace. But unfortunately, users can handle
only so much innovation at a time. Consider the telephone. I inherited an old oak-
boxed telephone from my grandparents (see Figure 3-1).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

82 | Chapter 3: Introducing the Project

It’s a fun phone and so simple to use. When you want to make a call, you pick up
the handset and crank the handle on the side of the unit for about three or four sec-
onds. When the operator comes on the line, you tell her who you wish to call. What
could be simpler? What could be more user-friendly? What could be more expensive
than an operator-assisted call? But it was simple, and everyone instinctively knew
how to use it.

Today’s phones use buttons instead of cranks. Most of the buttons are simple digits
that let you directly dial a specific phone number. But there are other buttons as
well: Mute, Redial, Pause, Flash, #, and *. I’m afraid to push the Flash button, and
what’s with the SND and CLR buttons on cell phones? The problem is not the but-
tons themselves, but that every phone has a different selection of buttons. They have
lost the commonality that made crank phones easy to use. Sure, they have many
more features, but if the average person can’t figure out how to use that functional-
ity, what is the benefit?

Getting back to software: even new and innovative programs must retain some com-
monality with the operating system, and with other installed programs. As you speak
to users about their needs and think about the great advancements in software tech-
nology you will provide, don’t forget about commonality. Don’t forget about one of
the core needs of users: the need to not be overwhelmed by new ways of doing tasks
they thought they already could do. Users need consistency.

Figure 3-1. What a great phone!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Life of a Project | 83

Project-Specific Needs
Beyond the general user needs required of every project, there are needs specific to each
project. As an application designer or software architect, this is where you spend most
of your time. If you have a lot of programming experience, you may be able to fulfill
the other needs without ever meeting with a user. But the project-specific needs
require an understanding of the tasks that the user needs to accomplish with the pro-
posed application.

Once the users discover that you have a real interest in their needs, they may dump
on you. They might start listing off a whole wish list of features, more features than
they could ever use. That’s OK. When they hear how much time it will take or how
much it will cost to implement, they may back off on a few requests. The important
thing is to document everything. Write down what the user asks for, combine it with
a reasonable time schedule (always) and cost estimate (if required), and return it to
the key user for confirmation. If possible, have the user sign a document that says he
agrees with the specific requirements listed in the document.

It is essential that there be agreement on the project design, at least for the initial
phase or release. Since users’ needs are so often a moving target, it is vital that an
agreement on the project exist at some point in time. Later, after you have begun
work on the project, the user will come to you, probably on a daily basis, and say,
“Hey, that’s not what I asked for.” When that happens, point to the agreement and
say, “Hey, yes it is.” Changes will occur; I’ll discuss how to handle those a little later
in this chapter.

The Life of a Project
Projects have a lifetime all their own. Some are short-lived; I’ve written programs
that were used for two weeks and then discarded when the business project was
complete. Some programs go on forever, with continual improvements made over a
series of version iterations. I’m typing into such a program right now.

As a developer, you should be aware of the lifetime of your project. Once you under-
stand the lifetime, you can apply business processes to each major phase of the
project’s life. The skills needed to guide a project to its conclusion, or through each
successive version of the project, are collectively called project management. Many
organizations have dedicated project managers, especially for larger projects. For
small projects, the programmer may have to carry the project management burden
alone.

Fortunately, most project managers don’t just make things up as they go (although I
have met some who did). They work within a system, a project methodology framework,
a management system that keeps the project plan on track. I will hit the highlights of a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

84 | Chapter 3: Introducing the Project

typical framework in the remainder of this chapter. If you go back to the bookstore
where you received a discount on this book, you will find a full shelf of project meth-
odology framework resources. Microsoft even has its own recommended frame-
work, called the Microsoft Solutions Framework (MSF). Because most of the projects
Microsoft develops are renewed through successive versions, the MSF is cyclical or
iterative. For applications that, at least for now, will have only one major release, a
linear approach works well. (See Figure 3-2 for both approaches.)

Since this book will end with a completed project, and neither the next edition nor
the movie rights have been arranged yet by my publisher, I will use the linear
approach. Whichever approach you use, several major events happen between the
start and end of the line or iteration, beginning with the project kickoff.

Project Kickoff
Once everyone agrees that there should be a project, they all come to a big meeting
to get things started. Everyone who is considered to be in charge of any part of the
project is there: the technical lead (you), the key user, the project manager, and the
person with signature authority. If you’re writing a program for yourself, only you
will be in the room, but you can still provide bagels. This event, the project kickoff,
marks the official start of the project. This meeting of the minds usually determines
the initial schedule for information and resource gathering.

Documentation
It’s important to document everything as you go through the entire project, espe-
cially in the early design stages. Not only will this help you recall essential aspects of
the project later during the development phase, but it will also help you keep all
involved parties informed about the status of the project. Imagine this conversation
with your boss:

Figure 3-2. Two basic approaches to project management

Major
accomplishment

Start/End

Major
accomplishment

Start End

Major
accomplishments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Life of a Project | 85

Boss: Management is asking about the status of the Hazel Project. Do you have
 anything up-to-date that I can give them?

You: Sure, I’ve got the project plan right here. I’ll print you off a copy.

Boss: That’d be great. Hey, you see the new car Bernie in accounting just got?

You: I know! How does an accountant afford a car like that?

Boss: Beats me. It makes you wonder if he’s cooking the books or something.

You: Hey author, weren’t we talking about documentation?

Oh yeah, documentation. Proper and complete documentation is important in any
project. Precise documentation will keep Bernie from accounting out of the big house.
And it will keep you in step with the project from initial kickoff to final delivery.

Depending on the scope of the project and the requirements of your organization,
your project may need just some basic documentation, or it may need several three-
inch binders filled with design documents that examine every nook and cranny of the
system. Some project management documents require a signature before the project
can continue. Others are informational only. As a programmer, the two most impor-
tant documents are the main project design document (from which you will build the
application) and the schedule (that lets you gauge progress during the project).

Project Goals
The first important item you will document is the set of project goals. If a project (or iter-
ation) has a definite end, it should be possible to identify the major accomplishments
needed for that ending event. These goals should be broad, and concerned with the final
project deliverables. Deliverables are those items that are produced as a result of a
project. They generally include software, user and technical documentation, installation
media, and related materials. They can also include contractual and project manage-
ment items, such as a proposed schedule for the next phase or iteration of the project.

The project’s goals help determine its scope, the extent of the features and support-
ing materials that will be produced during the project’s lifetime. Determining scope
is important because it sets the constraints, the limits that will keep the project from
going out of control. Although some aspects of the project may change throughout
its lifetime, if you allow a project to continue without restraint, you will end up with
something like Windows Vista: a useful product that was over a year late and had
some features delayed until post-release.

Design and Planning
My mother recently gave me a rather old piece of paper with a drawing of a house
floor plan. As I examined this paper in more detail, I found that the design matched
the house in which I grew up, a house that is, alas, no longer part of the vast Patrick
family real estate holdings. Yet it is still part of the vast Patrick family memory cells,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

86 | Chapter 3: Introducing the Project

and the home I remembered from my childhood was remarkably similar to the sim-
ple sketch. Some forgotten builder was able to take that sketch, add wood and win-
dows and doors and red shag carpeting and an avocado-green refrigerator, and turn
it into a home.

Home builders don’t work off rough sketches. Between the sketch and the builder
was an architect, a designer who set down on paper precise details on how to build
the house. An architect provides a lot of detail, although not everything. The builder
still has the choice of basic materials and construction methodology. But without the
project plan—the blueprints—the builder would just be hammering boards together
at random, and applying red shag carpet where it didn’t belong.

During the design phase, you play the role of an architect, crafting the user’s dreams
and wishes into a design that can then be turned into a software creation. The level
of detail required in these specifications will vary by project and organization. For the
Library Project, the bullet items listed at the start of this chapter comprise the bulk of
the design detail. (It parallels the level of detail my clients have agreed to in similar
projects.) Other organizations require excruciating detail, demanding flowcharts and
functional specifications, diagrams, and pseudocode that is nearly as detailed as the
final source code. For projects that include multiple programmers, you will likely
have to specify the interfaces, the function or class member details that allow the
code written by two different programmers to communicate accurately.

Whatever level of detail you include in your plan, you will also document certain key
events that will happen throughout the entire project schedule. These milestones
identify interim deliverables, results expected at specified moments throughout the
timeline of the project. Comparing the milestone schedule against the actual results
produced during development provides an overall view of how the project is pro-
gressing over time. Failing to meet several milestone deadlines may require an adjust-
ment in the project schedule, cost, or scope.

Project Approval
A design document gives both the programmer and the user a point of agreement.
Both sides can look at the design and say, “Yes, this is it; this is the plan.” If the com-
pleted program is different from the proposed design, the user can say, “Hey, that
wasn’t what we agreed to.” Sometimes the opposite happens; the programmer devel-
ops the application according to the plan, but the user claims that she requested
something different. When this happens, the programmer can point to the design
and say politely, “This is what we agreed to, and this is what was built.”

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Life of a Project | 87

To provide additional stability, the completed design usually includes a project
approval document. This paper, signed by both the user representative and the devel-
opment representative, says that (1) both sides have read the design document;
(2) they agree with what it says; and (3) they commit to seeing the project through
to completion as designed. As each representative signs off on the document, they
pledge to give their support to the project.

The approval process also covers the project cost and schedule. A realistic estimate of
the total time and costs needed to complete the project is as important as the project
design itself. Any adjustments in the time and cost throughout the lifetime of the
project can also provide valuable feedback on the progress being made.

Software and Other Development
Software development usually consumes most of a project’s lifetime. Although the
majority of work is done by the programmer or programming team, the user some-
times has a role in this step. By reviewing prototypes of specific portions of the appli-
cation and testing beta versions of the nearly completed product, the user remains an
active participant in this long project phase.

Changes to the Project
In general, developers always complete projects on time, under budget, and with all
features included, and the satisfied user joyfully installs the software, using it daily to
meet his demanding business challenges.

Ha, ha. Now that you’ve had a good laugh, let’s continue with the chapter. Many
projects do go well, and generally stick to the plan agreed to by the user and the
developer. But other projects don’t. Somewhere in the middle of the project’s life, a
change occurs. It may be due to difficulties in building the project, resulting in a
schedule change. It may be due to new requirements in the user’s needs (or desires),
or in the related business process, resulting in a scope change.

Minor project changes may happen that neither the user nor the programmer is
overly concerned about. But other changes can have a significant impact on cost or
schedule, or both. Such changes can be documented and agreed to by both sides
through a scope change document, sometimes called a change order. If the develop-
ment team must adjust the schedule, or reduce or change the included features of the
application, communicating this to the user through a scope change document keeps
the user from being surprised at the ever-advancing end of the project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

88 | Chapter 3: Introducing the Project

Using scope change documents, and requiring sign-off from both sides, also helps
prevent scope creep, the continual adjustment or expansion of software features
included in the final product. As users see the progress you are making on the
project, and what a great job you are doing, they may show their confidence in you
by adding to the project, certain that you can complete the additional work well
within the original timeline. Funneling all change requests through the scope change
process provides a reality check to the user, giving him a sense of the effort (in terms
of cost and schedule) required to develop software.

Acceptance Criteria Testing
There will come a day when you will say, “There, that’s the last line of code I need to
write for this project.” Of course, you will be wrong, but it will feel good to say it. The
real last day of coding won’t be for several more weeks, after all of the testing is done.

Unit testing concentrates on the individual components, even down to the class and
method levels. It ensures that each component or code block returns expected results
when given specific input. Both good and bad inputs are sent into the components,
and the results analyzed. Unit testing is actually the most cost-effective form of test-
ing, since it is not concerned with the complex interactions of the various compo-
nents that make up the entire system.

Interface testing is concerned with these interactions. Components that interact with
one another are tested as a group, to make sure they work and play well together.
Components that expose public interfaces are also tested for consistent results and
secure access. System testing gives a chance for users to interact with the product,
doing all they can to certify that the entire application works in a real-life setting.
Beta testing is part of the system testing process. System testing may also involve
stress testing, where the system is tested in extreme computing conditions to see
whether it can support the load. Testing various installation scenarios ensures that
the new software does not negatively impact other software or operating system
components. Regression testing is a type of double testing. It involves retesting previ-
ously stable code to determine whether subsequent coding changes have introduced
direct or indirect bugs into that code.

All of these testing phases are important, but there is one more type of testing that
has a direct impact on the progression of the project: acceptance criteria testing. This
involves a checklist of testable items that both the user and the programmer agree
must pass successfully before the project is considered complete. This phase may
cover items found in the other phases of testing, but it might also check for basic ele-
ments and features, such as the inclusion of quality documentation, or the delivery of
the software on a certain medium, such as a CD-ROM. Once acceptance criteria testing
is complete, the user signs off on that phase, and the project moves to final acceptance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Life of a Project | 89

Project Acceptance
You’ve worked long and hard. It’s been difficult at times, and perhaps you weren’t
sure whether you would ever finish. And I’m just talking about this chapter. Some
projects take quite awhile to complete, and by the end everyone should be ready to
see the fruits of his or her labor. The final step in the agreement portion of the
project is the project acceptance document. This paper, signed by the user, says that
the project was completed as requested (or as modified through change orders).
Once this document is signed, the project is officially complete. The programmer is
now handsomely paid, and takes a well-deserved three days off.

Deployment and Distribution
The project is now ready for installation on each user’s workstation. The method of
distribution and delivery depends on the project and target audience. Whether it’s an
internal network distribution, CD distribution to a small number of locations, web-
based distribution to the general public, or boxed media product for sale in retail
stores, the programming team usually has limited interaction with the target work-
stations. Of course, that can change quickly once the technical support phone line is
plugged in.

Ongoing Support
After the product has been in use by the user population for a while, reports of appli-
cation errors or desired enhancements may trickle in to the development team. These
can be collected for consideration in a future versioned release, or acted on immedi-
ately in “service release” updates of the product. As you may have multiple versions
of the product in use within the user community, it is essential that you are able to
identify and test against any particular release. Source code control systems (includ-
ing Microsoft Visual SourceSafe that ships with some editions of Visual Studio and
Team Foundation Server) allow you to maintain version-specific images of the source
code. You can also maintain an archive of release executables and other files for later
testing.

If your application was written for a single customer or organization, there may be a
warranty period during which some or all errors that are reported during the length
of the warranty are fixed free of charge.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

90 | Chapter 3: Introducing the Project

Summary
Projects are more than just source code. From design documents to project manage-
ment tools to online help integration to web-based support functionality, a project
encompasses resources that go way beyond the basic task of coding. If you are a lone
developer, you will have to wear many hats to fully support the application. Those
who are part of a larger product team don’t have to worry about every possible com-
ponent of the project, but they also lose out on some of the joy that comes with
working on every aspect of a project.

Project
There are many tasks to complete before coding begins in a large project. The actual
coding of the Library Project starts in Chapter 5. For this chapter, we will complete
the project agreement document that describes the Library Project features.

This chapter does not include a Visual Studio project template that you can load and
examine in Visual Studio. Instead, you must access the Chapter 3 subdirectory from
the book’s installation directory. This subdirectory contains three files:

Project Agreement.doc
This is the primary project document that identifies the features of the com-
pleted project. It is agreed upon by both the developer and user representatives.
Deviation from this document occurs only through the “Change Order” process.

Change Order.doc
This file is used to modify the original project through the “Change Order” pro-
cess. When using this document, include a description of the change to be made
to the project, and any schedule and cost impact.

Project Acceptance.doc
This file is used when the project is complete, and the user is ready to accept the
finished product. This document combines the “Acceptance Criteria Testing”
and “Project Acceptance” elements described earlier in the chapter.

Please feel free to use these documents to support your own projects. However, the
legal team at O’Reilly Media would like to remind you that if you choose to use these
documents, you’re on your own, bucko. These documents are meant as examples
only. You should talk to a lawyer in your state if you wish to craft your own docu-
ments similar to these and have them be contractually binding.

The remainder of this section presents the Project Agreement.doc filled out with the
details of the Library Project. Its primary content is a copy of the bullet items listed in
the section “The Library Project” near the start of this chapter. It also documents
some other project-specific requirements, and includes a typical estimate of project
costs. For demonstration purposes, I have used an hourly rate of $25.00.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project Agreement | 91

Project Agreement
Project Name: Library

User: The ACME Library

Date: February 27, 2008

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This project agreement defines a project to be performed by the developer for the user.
By signing this agreement, the user representative acknowledges that he or she has read
the agreement, and accepts the terms of the agreement identified in this document. The
terms of this agreement, or the services provided, may be modified at a later time
through a Change Order document.

Authorized User Representative                                                                        Date

Authorized User Representative                                                                        Date

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Project Objective
The ACME Company houses a small library for its employees, filled with business-
specific documentation. The goal of this project is to develop a computer based
“library system” that tracks the inventory of books and other available library items.
Patrons (employees) may check items out from the library. Librarians (administra-
tors) have access to additional application features, including the ability to manage
inventory and patron fines.

Deliverables and Acceptance Criteria
Upon completion of the project tasks defined in this agreement, the developer will pro-
vide the following deliverables to the user. Also listed are any testable criteria that must
be met for adequate project acceptance by the user.

Page 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

92 | Chapter 3: Introducing the Project

• The library application. This Visual Basic 2008 application will be installed on
each workstation within the library, and will include both patron and adminis-
trative features.

• The library database. This database, stored in SQL Server 2005, will manage all
inventory, patron, and transaction data for the library.

• Documentation. The developer will supply both user documentation (online
help, distinct for patrons and administrators) and technical documentation
(especially concerning the database).

• Installation image. The developer will supply all scripts and supporting docu-
mentation needed for the installation of the database. For the client portion, the
developer will supply a standard Windows install package to be run on each
workstation. ACME’s IT department will install this product from a shared net-
work drive or CD.

• User training. The developer will provide up to five hours of administrator and
librarian training.

Project Tasks
The developer will accomplish the following tasks for the user.

Library Item Features

• Allow patrons or administrators to search for items currently in inventory. The
program allows searches based on several different properties of each item.

• Support multiple search methods, including: by title, by author name, by sub-
ject or topic, by a miscellaneous keyword, by the name of the related publisher,
by the name of a series or group that contains the item, or by a barcode number
attached to the actual item.

• Limit search results by the location of the item, or by the type of media (book,
CD, DVD, and so on).

• Support the definition and use of distinct physical locations. The client has
books and media stored at three different sites within their building, including a
storage closet for seldom-accessed items.

• Display the details of a retrieved item in a familiar browser-style interface. For
instance, when looking up a book by title, the user clicks on the author’s name
to access all other items by that same author.

• Allow access to each library items through a barcode scan. As is common in
most libraries today, the items in this library’s collection each have a barcode
affixed, which serves as a unique identifier for the individual item copy.

Page 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project Agreement | 93

Patron Features

• Items can be checked out to patrons, and checked back into the library inventory.

• All patrons are assigned a “PIN” that acts as their password.

• Patrons can check items out without librarian and administrator assistance.
They can use a barcode scanner to scan a patron library card and library items.

• The “media type” of an item determines its checkout (and subsequently
renewal) duration.

• Patrons can view their library record, including all books currently checked out,
and a list of fines owed to the library.

• If permitted on a specific item, the patron can renew an item he or she has cur-
rently checked out.

• Patron-centric online help is available through the standard “F1” key. This
help file includes no information on administrative features, so as to reduce
experimentation.

• Patrons can be divided into “patron groups” for the reporting and processing
convenience of the administrative staff.

Administrative Features

• A “login” feature provides access to the administrative features of the applica-
tion. Only authorized users can login through an assigned password. The login
feature is normally hidden from view from ordinary patrons.

• Administrators can view patron details just like patrons can, but they also have
access to additional patron details. Specifically, administrators can add new
patrons and manage their identity and demographic details. Administrators can
also disable a patron record to prevent further item checkouts.

• Administrators collect and manage patron fines, including the ability to add
non-standard fines, or dismiss unpaid fines.

• Administrators define the records for each item managed by the system’s inven-
tory database. This includes the basics of each item, such as title and authors.
Each item includes one or more copies, which represent physical items that can
be checked out. Barcodes are assigned to copies.

• Beyond the items and copies, administrators define all supporting values and
lists, including author names and categories, the list of media types, publishers,
book series names, status codes that identify the disposition of each item copy,
and locations.

• Designated administrators can add, edit, and remove the accounts of other admin-
istrators. Each account includes feature-specific authorization settings (group
rights).

• In addition to the scanning of barcodes, the program can assist administrators in
the design and printing of both patron and item barcodes.

Page 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

94 | Chapter 3: Introducing the Project

• A simple program-managed process allows the administrative staff to process
overdue items and fines on a regular basis.

• The application allows holidays to be added and maintained. When a patron
checks out a book, the program adjusts the due date of the item to avoid holidays.

• Administrator-centric online help provides assistance to the enhanced features of
the application through the same “F1” key available to patrons.

• The application includes some basic administrative reports, and the ability to
“plug in” reports as needed in the future without the need to update the pro-
gram itself.

The Application As a Whole

• The program is “user friendly” and easy to navigate, especially for patrons, with-
out much training or assistance.

• The application stores its data in a SQL Server database.

• Distribution of the application is done by administrative staff that has local admin-
istrative privileges, so a standard Windows installation package is sufficient.

• Configuration of the application uses standard XML methods.

Project Estimate and Timetable

The following table summarizes the estimated costs and time to complete the project:

Task Description Hourly Rate Time Estimate Price Estimate

1. Library Item Features $25.00 30 $750.00

2. Patron Features $25.00 35 $875.00

3. Administrative Features $25.00 100 $2,500.00

4. Application As a Whole $25.00 35 $875.00

Task Subtotal 200 $5,000.00

5. SQL Server 2005 (estimate only) $5,000.00

Project Total $10,000.00

Anticipated Project Start Date: March 1, 2008
Anticipated Project End Date: June 30, 2008

Page 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

95

Chapter 4 CHAPTER 4

Designing the Database4

Data. Databases. It just kind of makes sense. If you have data, you need to put it
somewhere. And what better place to put it than in a “data” base?

Just to make sure I had all the “bases” covered, I did a quick search on the Internet
for a useful definition. What a shock. According to virtually every web site I found, a
database is “a collection of data organized for easy retrieval by a computer.” With a
definition like that, pretty much everything I put on my system is stored in a data-
base. All my disk files are organized for easy access. My saved emails can be sorted
by subject or date received or sender, so they must be in a database, too. Even this
document can be searched and sorted in any manner I wish. Is it a database?

Relational Databases
Perhaps that definition is too broad. These days, when we think of “database,” it’s
generally a relational database system. Such databases are built on the “relational
model” designed by Edgar Codd of IBM. In 1970, he issued “A Relational Model of
Data for Large Shared Data Banks,” the seminal paper on relational modeling, and
later expanded on the basic concepts with C. J. Date, another “real programmer.”
Upon reading that 1970 paper—and if you have a free afternoon, you would really
benefit from spending time with your family or friends rather than reading that
paper—you will enter a world of n-tuples, domains, and expressible sets. Fortu-
nately, you don’t need to know anything about these terms to use relational data-
base systems.

The relational databases that most programmers use collect data in tables, each of
which stores a specific set of unordered records. For convenience, tables are pre-
sented as a grid of data values, with each row representing a single record and each
column representing a consistent field that appears in each record. Table 4-1 pre-
sents a table of orders, with a separate record for each line item of the order.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

96 | Chapter 4: Designing the Database

Putting all of your information in a table is really convenient. The important data
appears at a glance in a nice and orderly arrangement, and it’s easy to sort the results
based on a particular column. Unfortunately, this table of orders has a lot of repeti-
tion. Customer names and product names repeat multiple times. Also, although the
product ID “BEV01COF” indicates coffee, one of the lines lists it as “Tea.” A few
other problems are inherent in data that’s placed in a single flat file database table.

Mr. Codd, the brilliant computer scientist that he was, saw these problems, too. But
instead of just sitting around and complaining about them like I do, he came up with
a solution: normalization. By breaking the data into separate tables with data sub-
sets, assigning a unique identifier to each record/row in every table (a primary key),
and making a few other adjustments, the data could be “normalized” for both pro-
cessing efficiency and data integrity. For the sample orders in Table 4-1, the data could
be normalized into three separate tables: one for order line items, one for customers,
and one for products (see Tables 4-2, 4-3, and 4-4, respectively). In each table, I’ve put
an asterisk next to the column title that acts as the primary key column.

Table 4-1. Boy, a lot of people drink coffee and tea

Record ID Order ID Customer ID
Customer
Name Product ID Product Price Quantity

92231 10001 AA1 Al Albertson BEV01COF Coffee 3.99 3

92232 10001 AA1 Al Albertson BRD05RYE Rye bread 2.68 1

92233 10002 BW3 Bill Williams BEV01COF Coffee 3.99 1

92234 10003 BW3 Will Williams BEV01COF Tea 3.99 2

92235 10004 CC1 Chuck Charles CHP34PTO Potato chips 0.99 7

Table 4-2. The table of customers

Customer ID * Customer Name

AA1 Al Albertson

BW3 Bill Williams

CC1 Chuck Charles

Table 4-3. The table of products

Product ID * Product Name Unit Price

BEV01COF Coffee 3.99

BRD05RYE Rye bread 2.68

BEV01COF Coffee 3.99

CHP34PTO Potato chips 0.99

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Relational Databases | 97

To get combined results from multiple tables at once, join (or link) their matching
fields. For instance, you can link the Customer ID field in the table of line items with
the matching Customer ID primary key field in the table of customers. Once joined,
the details for a single combined line item record can be presented with the match-
ing full customer name. It’s the same for direct joins with any two tables that have
linkable fields. Figure 4-1 shows the relationships between the customer, product,
and order line tables.

To join tables together, relational databases implement query languages that allow
you to manipulate the data using relational algebra (from which the term relational
database derives). The most popular of these languages, SQL, uses simple English-
like sentences to join, order, summarize, and retrieve just the data values you need.
The primary statement, SELECT, provides basic data selection and retrieval features.
Three other common statements, INSERT, UPDATE, and DELETE, let you manipulate the
records stored in each table. Together, these four statements make up the primary
data manipulation language (DML) commands of SQL. SQL also includes data defini-
tion language (DDL) statements that let you design the tables used to hold the data,
as well as other database features. I’ll show examples of various SQL statements later
in this chapter.

Vendor-specific systems such as Microsoft’s SQL Server, Oracle’s Oracle, Microsoft’s
Access, and IBM’s DB2 extend these core DDL and DML features through addi-
tional data analysis and management tools. They also battle one another over impor-
tant features such as data replication, crash-proof data integrity, the speed at which
complex queries return the requested results, and who has the biggest private jet.

Table 4-4. The table of order line items

Record ID * Order ID Customer ID Product ID Quantity

92231 10001 AA1 BEV01COF 3

92232 10001 AA1 BRD05RYE 1

92233 10002 BW3 BEV01COF 1

92234 10003 BW3 BEV01COF 2

92235 10004 CC1 CHP34PTO 7

Figure 4-1. Three tables, and yet they work as one

Customer ID
Customer Name

Customers Record ID
Order ID
Customer ID
Product ID
Quantity

Line Items

Product ID
Unit Price

Products

http://lib.ommolketab.ir
http://lib.ommolketab.ir

98 | Chapter 4: Designing the Database

SQL Server 2005
Microsoft’s primary business-level database tool is SQL Server. Although it began its
life as a derivative of Sybase (another relational database), it has been given the
Microsoft touch. Unlike Access (Microsoft’s other relational database product), SQL
Server includes advanced data management and analysis features, and a nifty price
tag to go along with those features. Although Microsoft was somewhat late in join-
ing the relational database game, it has done a pretty good job at playing catch-up.
Oracle still gets high marks for at least its perception of being the most robust, the
most stable, and the most platform-independent of the various players. But SQL
Server scores big as well, especially with its somewhat lower costs and its more intui-
tive visual tools.

Originally, Microsoft touted SQL Server as a business-minded tool for business-
minded people with their business-minded agendas and their business-minded three-
piece poly-knit double-breasted suits, and it is still viewed in this way. But Microsoft
is increasingly identifying the database as a development tool, especially with the
2005 release. It was no coincidence that Microsoft chose to debut that version of
SQL Server November 7, 2005, the same day as the release of Visual Studio 2005. All
flavors of Visual Studio now include some version of SQL Server—even the low-end
Visual Studio Express Edition products have access to a SQL Server Express Edition
complement. (As of this writing, it was available at no cost from Microsoft’s web
site.) And it’s a two-way relationship between the products: you could always use
SQL Server data in your .NET applications, but SQL Server 2005 now allows you to
craft embedded stored procedures using .NET code, along with the native and more
traditional T-SQL scripting language.

Microsoft announced the release of SQL Server 2008, the latest ver-
sion of its star database product, in tandem with Visual Studio 2008.
However, although the two products share a common launch date, the
actual availability dates of the two products are months apart, with
SQL Server 2008 coming out after Visual Studio. Since I cannot be
sure that you, as a reader, already have access to SQL Server 2008, I
have opted to use SQL Server 2005 as this book’s core database.
Almost everything you read about SQL Server 2005 in this book will
work identically in SQL Server 2008. If you choose to use the 2008
version of the product, you should have no difficulties in following the
discussion in this book.

SQL Server, as the name implies, is a “server” product. It runs in the background on
a system and communicates with you, the user, by having you first establish a stan-
dard network connection with the server engine. This is true even if the SQL Server
engine runs on your own workstation. Watching a server product is about as exciting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server 2005 | 99

as reading some of those other Visual Basic 2008 tutorial books that you wisely
avoided, so Microsoft provides various client tools that let you manage databases,
tables, and other relational database properties. SQL Server Management Studio is
the standard enterprise-level client tool for managing SQL Server databases. For SQL
Server 2005 Express Edition, Microsoft supplies a reduced yet friendlier tool, SQL
Server Management Studio Express (see Figure 4-2). This tool lets you manage data-
bases and process DDL and DML statements. Management Studio Express is not
included in SQL Server 2005 Express Edition; you must download or obtain it sepa-
rately from Microsoft. As of this writing, it is available at no cost from Microsoft’s
web site.

Because some readers of Programming Visual Basic 2008 may only
have access to SQL Server 2005 Express Edition (and the related SQL
Server 2005 Management Studio Express tool), all examples in this
book are designed for use with that edition of the database engine.
This only impacts the few times when I refer specifically to the client
tools. All SQL statements (both DDL and DML) presented in this
book and in the Library Project’s source code will work with any edi-
tion of SQL Server 2005 or SQL Server 2008.

Although Microsoft continues to update and sell Microsoft Access, it is recommend-
ing more and more that professional developers use and distribute databases in SQL
Server format. Microsoft will even permit you to redistribute SQL Server 2005
Express Edition with your application. To do this, you must first obtain a “SQL
Server 2005 Express Edition redistribution license” from Microsoft. Fortunately, it’s
free and can be had for the asking from the SQL Server 2005 Express Edition web
site, http://www.microsoft.com/sql/express.

Figure 4-2. SQL Server Management Studio Express

http://www.microsoft.com/sql/express
http://lib.ommolketab.ir
http://lib.ommolketab.ir

100 | Chapter 4: Designing the Database

SQL
Conducting business in Japan is pretty easy—once you know the language. The
same is true of SQL Server: it’s pretty easy to manipulate and access data, once you
know the language. In this case, the language is SQL, or Structured Query Language.
Originally developed by IBM, SQL has since become a standard across the database
industry. Well, kind of. As with America and England, Microsoft’s SQL Server and
Oracle’s Oracle are two relational databases that are divided by a common language.
The core parts of the SQL language are pretty consistent between vendors, but each
supplier adds a lot of extra features and syntax variations designed by Edgar Codd
wannabes.

This section describes those DDL and DML statements that will be most useful in
our development of the Library program. You’ll be glad to know that SQL isn’t too
picky about the formatting of the various statements. Upper- and lowercase distinc-
tions are ignored; SELECT is the same as select is the same as SeLeCt. (Traditional
SQL code is mostly uppercase. I use uppercase for all keywords, and mixed case for
tables, fields, and other custom items. Whatever you choose, consistency is impor-
tant.) Also, employ whitespace as you see fit. You can put statements on one gigan-
tic line, or put every word on a separate line. The only time whitespace and case
matter is in the actual data text strings; whatever you type, that’s how it stays.

SQL statements normally end with a semicolon, but some tools do not require you to
include the semicolon, and other tools require that you exclude it. When using the
SQL Server visual client tools (Management Studio and Management Studio
Express), semicolons are optional, but it’s a good idea to include them when you are
using multiple statements together, one after another. SQL statements used in Visual
Basic code never include semicolons.

Later, when you look at a SQL script I wrote, you will see the word GO from time to
time. In SQL Server, this command says, “For all of the other statements that
appeared so far, go ahead and process them now.”

DDL Statements
This may come as a shock to you, but before you can store any data in a table, you have
to create that table. SQL has just the tool to do this: the CREATE TABLE statement. It’s one
of the many DDL statements. The basic syntax is pretty straightforward:

CREATE TABLE tableName
(
 fieldName1 dataType options,
 fieldName2 dataType options,
 and so on...
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL | 101

Just fill in the parts and you’re ready to populate (data, that is). Table and field names
are built from letters and digits; you can include spaces and some other special char-
acters, but it makes for difficult coding later on. Each vendor has its own collection
of data types; I’ll stick with the SQL Server versions here. The options let you specify
things such as whether the field requires data, whether it represents the table’s pri-
mary key, and other similar constraints. Extensions to the syntax let you set up con-
straints that apply to the entire table, indexes (which let you sort or search a specific
column more quickly), and data storage specifics.

Here’s a sample CREATE TABLE statement that could be used for the table of order line
items (refer to Table 4-4):

CREATE TABLE LineItems
(
 RecordID bigint IDENTITY PRIMARY KEY,
 OrderID bigint NOT NULL,
 CustomerID varchar(20) NOT NULL
 REFERENCES Customers (CustomerID),
 ProductID varchar(20) NOT NULL,
 Quantity smallint NOT NULL
)

The IDENTITY keyword lets SQL Server take charge of filling the RecordID field with
data; it will use a sequential counter to supply a unique RecordID value with each
new record. The PRIMARY KEY clause identifies the RecordID field as the unique identi-
fying value for each record in the table. The bigint and smallint data types indicate
appropriately sized integer fields, and the varchar type provides space for text, up to
the maximum length specified in the parentheses (20 characters). The REFERENCES
option clause identifies a relationship between this LineItems table and another table
named Customers; values in the LineItems.CustomerID field match the key values from
the Customers.CustomerID field. (Note the “dot” syntax to separate table and field
names. It shows up everywhere in SQL.) References between tables are also known
as foreign references.

If you need to make structure or option changes to a table or its fields after it is cre-
ated, SQL includes an ALTER TABLE statement that can change almost everything in
the table. Additionally, there is a related DROP TABLE statement used to get rid of a
table and all of its data. You might want to avoid this statement on live production
data, as users tend to get a bit irritable when their data suddenly disappears off the
surface of the earth.

Table 4-5 summarizes the available data types used in SQL Server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

102 | Chapter 4: Designing the Database

Table 4-5. SQL Server data types

Data type Description

bigint An 8-byte (64-bit) integer field for values ranging from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

binary Fixed-length binary data, up to 8,000 bytes in length. You specify the length through a parameter, as
in binary(100).

bit Supports three possible values: 1, 0, or NULL. Generally used for Boolean values. Internally, SQL
Server stores multiple bit fields from a single record in a merged integer field.

char, nchar Fixed-length standard (char) or Unicode (nchar) strings, up to 8,000 characters in length. You
specify the length through a parameter, as in char(100).

cursor This data type is used within stored procedures, and cannot be used to create a column.

datetime A general date and time field for dates ranging from January 1, 1753 AD to December 31, 9999
AD. Time accuracy for any given value is within 3.33 milliseconds. SQL Server 2008 adds several
new date-related data types: date (dates without times), time (times without dates),
datetime2 (same as datetime, but with a larger range and accurate to 100 nanoseconds),
and datetimeoffset (date and time ranges).

decimal, numeric A fixed-precision and scale decimal field. You specify the maximum number of digits to appear
on both sides of the decimal point (the precision) and the maximum number of those digits that
can appear on the right side of the decimal point (the scale). For instance, a setting of
decimal(10,4) creates a field with up to 10 total digits, four of which may appear after the
decimal point. The maximum precision value is 38. numeric is a synonym for decimal, as is
dec.

float A floating-point decimal field with variable storage. You can specify the number of bits used to
store the value, up to 53. By default, all 53 bits are used, so a setting of float is equivalent to
float(53). The pseudodata type real is equivalent to float(24). The values stored are
on the order of ±1.0 × 10±38; the exact range and precision vary by the bits used for storage.
This data type is susceptible to minor calculation errors.

hierarchyid This data type, new with SQL Server 2008, supports querying of hierarchical and tree-shaped
data. It is not available in SQL Server 2005.

image, text, ntext Don’t use these data types, as they will eventually be removed from SQL Server.

int A 4-byte (32-bit) integer field for values ranging from –2,147,483,648 to 2,147,483,647.

money An 8-byte (64-bit) high-accuracy field for storing currency values, with up to four digits
after the decimal point. Stored data values range from –922,337,203,685,477.5808 to
922,337,203,685,477.5807.

rowversion,
timestamp

This data type is used to record modification events on records. There are restrictions on its use,
and it is not guaranteed to be unique within a table. timestamp is a deprecated synonym for
rowversion; use rowversion instead.

smalldatetime A general date and time field for dates ranging from January 1, 1900 AD to June 6, 2079 AD.
Time accuracy for any given value is within one minute.

smallint A 2-byte (16-bit) integer field for values ranging from –32,768 to 32,767.

smallmoney A 4-byte (32-bit) high-accuracy field for storing currency values, with up to four digits after the
decimal point. Stored data values range from –214,748.3648 to 214,748.3647.

sql_variant A generic type that stores values from many other type-specific fields.

table A special field that temporarily stores the results of a query in a compacted table format. Defin-
ing a table field is somewhat complex, and its use naturally carries with it certain restrictions.

tinyint A 1-byte (8-bit) unsigned integer field for values ranging from 0 to 255.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL | 103

DML Statements
Although DDL statements are powerful, they aren’t used that much. Once you cre-
ate your database objects, there’s not much call for tinkering. The DML statements
are more useful for everyday data surfing.

The INSERT statement adds data records to a table. Data is added to a table one
record at a time. (A variation of INSERT lets you insert multiple records, but those
records must come from another existing table source.) To use the INSERT statement,
specify the destination table and fields, and then the individual values to put into
each field. One data value corresponds to each specified data column name.

INSERT INTO LineItems
 (OrderID, CustomerID, ProductID, Quantity)
 VALUES (10002, 'BW3', 'BEV01COF', 1)

Assuming this statement goes with the CREATE TABLE statement written earlier, this
insert action will add a new record to the LineItems table with five new fields—four
specified fields, plus the primary key automatically added to the RecordID field (since
it was marked as IDENTITY). SQL Server also does a variety of data integrity checks on
your behalf. Each data field you add must be of the right data type, but you already
expected that. Since we designed the CustomerID field to be a reference to the
Customer table, the insert will fail if customer BW3 does not already exist in the
Customer table.

Numeric literals can be included in your SQL statements as needed without any
additional qualification. String literals are always surrounded by single quotes, as is
done for the customer and product IDs in this INSERT statement. If you need to
include single quotes in the literal, enter them twice:

'John O''Sullivan'

Surround literal date and time values with single quotes:

'7-Nov-2005'

uniqueidentifier A 16-byte globally unique identifier (GUID). The related NEWID function generates values for
this field.

varbinary Variable-length binary data, up to 8,000 bytes in length. You specify the length through a para-
meter, as in varbinary(100). The field only consumes space for the actual content currently
stored in the field. A special setting of varbinary(max) allows entry of up to about 2 billion
bytes.

varchar, nvarchar Variable-length standard (varchar) or Unicode (nvarchar) strings, up to 8,000 characters in
length. You specify the length through a parameter, as in varchar(100). The field only con-
sumes space for the actual content currently stored in the field. A special setting of
varchar(max) allows entry of up to about 2 billion characters.

xml Provides storage for typed and untyped XML data documents, up to 2 GB.

Table 4-5. SQL Server data types (continued)

Data type Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

104 | Chapter 4: Designing the Database

Such date and time values accept any recognized format, although you should use a
format that is not easy for SQL Server to misinterpret.

Many field types support an “unassigned” value, a value that indicates that the field
contains no data at all. Such a value is known as the “null” value, and is specified in
SQL Server using the NULL keyword. You cannot assign NULL to primary key fields, or
to any field marked with the NOT NULL option.

To remove a previously added record, use the DELETE statement:

DELETE FROM LineItems WHERE RecordID = 92231

The DELETE statement includes a WHERE clause (the WHERE RecordID = 92231 part). WHERE
clauses let you indicate one or more records in a table by making comparisons with
data fields. Your WHERE clauses can include AND and OR keywords to join multiple con-
ditions, and parentheses for grouping.

DELETE FROM LineItems WHERE OrderID = 10001
 AND ProductID = 'BRD05RYE'

Such a DELETE statement may delete zero, one, or 1,000 records, so precision in the
WHERE clause is important. To delete all records in the table, exclude the WHERE clause
altogether.

DELETE FROM LineItems

The UPDATE statement also uses a WHERE clause to modify values in existing table records.

UPDATE LineItems SET Quantity = 4
 WHERE RecordID = 92231

Assignments are made to fields with the SET clause; put the field name (Quantity) on
the left side of the equals sign, and the new value on the right (4). To assign multiple
values at once, separate each assignment with a comma. You can also include formu-
las and calculations.

UPDATE LineItems SET Quantity = Quantity + 1,
 ProductID = 'BEV02POP'
 WHERE RecordID = 92231

As with the DELETE statement, the UPDATE statement may update zero, one, or many
records based on which records match the WHERE clause.

The final DML statement, and the one most often used, is SELECT.

SELECT ProductID, Quantity FROM LineItems
 WHERE RecordID = 92231

SELECT scans a table (LineItems), looking for all records matching a given criterion
(RecordID = 92231), and returns a smaller table that contains just the indicated fields
(ProductID and Quantity) for the matching records. The most basic query returns all
rows and columns.

SELECT * FROM LineItems

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL | 105

This query returns all records from the table in no particular order. The asterisk (*)
means “include all fields.”

The optional ORDER BY clause returns the results in a specific order.

SELECT * FROM LineItems
 WHERE Quantity > 5
 ORDER BY ProductID, Quantity DESC

This query returns all records that have a Quantity field value of more than five, and
sorts the results first by the ProductID column (in ascending order) and then by the
numeric quantity (in descending order, specified with DESC).

Aggregate functions and grouping features let you summarize results from the larger
set of data. The following query documents the total ordered quantity for each prod-
uct in the table:

SELECT ProductID, SUM(Quantity) FROM LineItems
 GROUP BY ProductID

You can use joins to link together the data from two or more distinct tables. The fol-
lowing query joins the LineItems and Customer tables on their matching CustomerID
columns. This SELECT statement also demonstrates the use of table abbreviations (the
“LI” and “CU” prefixes) added through the AS clauses; they aren’t usually necessary,
but they can help make a complex query more readable.

SELECT LI.OrderID, CU.CustomerName, LI.ProductID
 FROM LineItems AS LI INNER JOIN Customer AS CU
 ON LI.CustomerID = CU.CustomerID
 ORDER BY LI.OrderID, CU.CustomerName

This table uses an “inner join,” one of the five main types of joins, each of which
returns different sets of records based on the relationship between the first (left) and
second (right) tables in the join:

Inner join
Returns only those records where there is a match in the linked fields. This type
of join uses the INNER JOIN keywords.

Left outer join
Returns every record from the left table and only those records from the right
table where there is a match in the linked fields. If a left table record doesn’t
have a match, it acts as though all the fields in the right table for that record con-
tain NULL values. This type of join uses the LEFT JOIN keywords. One use might be
to join the Product and LineItems tables. You could return a list of the full prod-
uct name for all available products, plus the total quantity ordered for each one.
By putting the Product table on the left of a left outer join, the query would
return all product names, even if that product had never been ordered (and
didn’t appear in the LineItems table).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

106 | Chapter 4: Designing the Database

Right outer join
This works just like a left outer join, but all records from the right table are
returned, and just the left table records that have a match. This type of join uses
the RIGHT JOIN keywords.

Full outer join
Returns all records from the left and right tables, whether they have matches or
not. When there is a match, it is reflected in the results. This type of join uses the
FULL JOIN keywords.

Cross join
Also called a Cartesian join. Returns every possible combination of left and right
records. This type of join uses the CROSS JOIN keywords.

Joining focuses on the relationship that two tables have. (This use of “relationship,”
by the way, is not the basis for the term relational database.) Some tables exist in a
“parent-child” relationship; one “parent” record has one or more dependent “child”
records in another table. This is often true of orders; a single “order header” has mul-
tiple “line items.” This type of relationship is known as one-to-many, since one
record is tied to many records in the other table. And the relationship is unidirec-
tional; a given child record does not tie to multiple parent records.

A one-to-one relationship ties a single record in one table to a single record in another
table. It’s pretty straightforward, and is often used to enhance the values found in the
original record through a supplementary record in a second table.

In a many-to-many relationship, a single record in one table is associated with multi-
ple records in a second table, and a single record in that second table is also associ-
ated with multiple records in the first table. A real-world example would be the
relationship between teachers and students in a college setting. One teacher has mul-
tiple students in the classroom, but each student also has multiple teachers each semes-
ter. Practical implementations of many-to-many relationships actually require three
tables: the two related tables, and a “go-between” table that links them together. I will
show you a sample of such a table in the upcoming “Project” section of this chapter.

Beyond Basic SQL
The sample statements I listed here only scratch the surface of the data manipula-
tion possibilities available through SQL. But by now you should have noticed that
SQL is remarkably English-like in syntax, much more than even Visual Basic. In fact, the
original name for the language—SEQUEL—was an acronym for “Structured English
Query Language.” As the SQL statements get more complex, they will look less and less
like an eighth-grade essay and more like random collections of English words.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Databases in Visual Basic | 107

The goal here is to introduce you to the basic structure of SQL statements. Most of
the statements we will encounter in the Library Project will be no more complex than
the samples included here. If you’re hungry for more, the “Books Online” compo-
nent installed with SQL Server (a separate download for the Express Edition) has
some pretty good usage documentation. Several good books on the ins and outs of
SQL, including vendor-specific dialects, are also available.

Using Databases in Visual Basic
Visual Basic can interact with data stored in a database in a few different ways:

• Use ADO.NET, the primary data access technology included in the .NET Frame-
work, to interact with database-stored content. This is the method used
throughout the Library program to interact with its database. ADO.NET is dis-
cussed in Chapter 10, with examples of its use. I will also introduce ADO.NET-
specific code into the Library Project in that chapter.

• Use the “data binding” features available in Visual Basic and Visual Studio.
Binding establishes a connection between an on-screen data control or similar
data-enabled object and content from a database. Code written for you by
Microsoft takes care of all the communication work; you can even drag and drop
these types of interactions. Although I will discuss data binding in Chapter 10
(since binding is based on ADO.NET), I tend to avoid it since it reduces the
amount of control the programmer can exert on user data management. Data
binding will not be used in the Library program.

• Extract the data from the database into a standard file, and use file manipula-
tion features in Visual Basic to process the data. Hmm, that doesn’t seem very
useful, but I have actually had to do it, especially in the old days when some pro-
prietary databases could not interact easily with Visual Basic code.

• Each time you need some of the data, tell the user that somehow the data has
been lost, and that it must be reentered immediately. If you have ever been curi-
ous to know what the inside of an unemployment office looks like, this could be
your chance.

If you are a former Visual Basic 6.0 (or earlier) programmer, you may think that your
knowledge of ADO will translate directly into ADO.NET development. Ha! You
couldn’t be more wrong. Although the two data technologies share a partial name,
the code written to use each method varies considerably. I will not discuss the older
ADO technology at all in this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

108 | Chapter 4: Designing the Database

Documenting the Database
Technical content that describes the tables and fields in your application’s database
represents the most important piece of documentation generated during your appli-
cation’s lifetime. In fact, the need for good documentation is the basis for one of my
core programming beliefs: project documentation is as important, and sometimes
more important, than source code.

You may think I’m joking about this. Although you will (hopefully) find a lot of
humor in the pages of this book, this is something I don’t joke about. If you are
developing an application that centers on database-stored user content, complete
and accurate documentation of every table and field used in the database is a must.
Any lack in this area will—not might, not perhaps, but will—lead to data integrity
issues and a longer-than-necessary development timeline. Figure 4-3 puts it another
way.

Why do I think that database documentation is even more important than user doc-
umentation or functional specifications? It’s because of the impact the document will
have on the user’s data. If you have a documented database, you can make guesses
about the functional specification, and probably come pretty close. If you lack user
documentation, you can always write it when the program is done (as though there
was any other way?). But if you lack database documentation, you are in for a world
of hurt.

If you haven’t worked on large database projects before, you might not believe me.
But I have. I once inherited an existing enterprise-wide database system written in
Visual Basic 3.0. The source code was bad enough, but the associated undocu-
mented 100-table database was a mishmash of inconsistently stored data values. The
confusing stored procedure code wasn’t much better. Since there wasn’t a clear set of
documentation on each field, the six programmers who originally developed the sys-
tem had each made their own decisions about what range of data would be allowed
in each field, or about which fields were required or not.

Figure 4-3. Any questions?

This is your application with
database documentation.

This is your application. This is your application without
database documentation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 109

Tracing back through the uncommented 100,000 lines of source code to determine
what every field did was not fun, and it took a few months to complete it with accu-
racy. Since the customer had paid for and expected a stable and coherent system,
most of the extra cost involved in replacing the documentation that should have
been there in the first place was borne by my development group. Don’t let this hap-
pen to you!

Summary
Most Visual Basic applications target the business world and are designed to interact
with some sort of database. Understanding the database system used with your
application is important; even more important is documenting the specific database
features you incorporate into your application.

Because of the influence of relational databases and the SQL language on the data-
base industry, it won’t be hard to find a lot of resources to assist you in crafting SQL
statements and complex data analysis queries. The Library Project in this book uses
SQL Server 2005, but because of the generally consistent use of the core SQL lan-
guage features, the application could just as easily have used Oracle, Microsoft
Access, or any of a number of other relational databases.

Project
To assist in my development of Visual Basic database projects, I always write a
“Technical Resource Kit” document before I begin the actual coding of the applica-
tion. The bulk of this word processing document consists of the table- and field-level
documentation for the application’s associated database. Also included are the for-
mats for all configuration and custom datafiles, a map of the online help pages, and
information about third-party products used in the application. Depending on the
type of application, my expectations for the user, and the terms of any contract, I
may supply none, some, or all of the Resource Kit’s content to the user community.

Let’s begin the Technical Resource Kit for the Library Project by designing and docu-
menting the database tables to be used by the application. This Resource Kit appears
in the book’s installation directory, in the Chapter 4 subdirectory, and contains the
following three files:

ACME Library Resource Kit.doc
A Microsoft Word version of the technical documentation for the project

ACME Library Resource Kit.pdf
A second copy of the Technical Resource Kit, this time in Adobe Acrobat (PDF)
format

Database Creation Script.sql
A SQL Server database script used to build the actual tables and fields in the
database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

110 | Chapter 4: Designing the Database

Technical Resource Kit Content
This section includes a listing of the tables included in the Library database. Each
table includes a general description to assist you in your understanding of the data-
base structure. You will encounter all of these tables in successive chapters, along
with associated source code, so don’t freak out if some table or field seems unknow-
able right now.

Security-related tables

Although patrons do not need to log in to the application to look up items in the
database, administrators must log in before they can access enhanced features of the
program. The following four tables manage the security credentials of each adminis-
trator. The application uses SQL Server or Windows-based security credentials only
to access the database initially, not to restrict features.

Activity. This table defines the features of the application that can be secured
using group rights. These activities are linked with security groups (from the
GroupName table) to establish the rights for a particular group.

The following activities are defined at this time:

• 1—Manage authors and names

• 2—Manage author and name types

• 3—Manage copy status codes

• 4—Manage media types

• 5—Manage series

• 6—Manage security groups

• 7—Manage library materials

• 8—Manage patrons

• 9—Manage publishers

• 10—Manage system values

• 11—Manage administrative users

• 12—Process and accept fees

• 13—Manage locations

• 14—Check out library items

Field Type Description

ID bigint Primary key. This key is not auto-generated; the value supplied
matches internal values used within the Library application. Required.

FullName varchar(50) Descriptive name of this activity. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 111

• 15—Check in library items

• 16—Access administrative features

• 17—Perform daily processing

• 18—Run system reports

• 19—Access patrons without patron password

• 20—Manage bar codes

• 21—Manage holidays

• 22—Manage patron groups

• 23—View administrative patron messages

GroupName. Each record in this table defines a single security group. Librarians
and other administrators each belong to a single security group.

GroupActivity. This table connects records in the Activity table to records in the
GroupName table (a many-to-many relationship) to establish the activities a secu-
rity group can perform.

UserName. This table contains the actual records for each librarian or administra-
tor. Each record includes the user’s password and security group setting.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this group. Required.

Field Type Description

GroupID bigint Primary key. The associated security group. Foreign reference to
GroupName.ID. Required.

ActivityID bigint Primary key. The activity that members of the associated security
group can perform. Foreign reference to Activity.ID. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this user, administrator, or librarian. Required.

LoginID varchar(20) User ID that gives this user access to the system. It is entered into the
Library program’s “login” form, along with the password, to gain
access to enhanced features. Required.

Password varchar(20) The password for this user, in an encrypted format. Optional.

Active bit Is this user allowed to access the system? 0 for False, 1 for True.
Required.

GroupID bigint To which security group does this user belong? Foreign reference to
GroupName.ID. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

112 | Chapter 4: Designing the Database

Support code tables

Several tables exist simply to provide a list of values to other tables. In an application,
these list tables often appear as the choices in a drop-down (“combo box”) control.

CodeAuthorType. In the Library program, the word author is a generic term used
for authors, illustrators, editors, and any other similar contributor to an item in
the library’s inventory. This table lets you define those roles.

CodeCopyStatus. Copy status codes include things like “circulating,” “being
repaired,” and any other primary status the library wishes to set. The checked-in
or checked-out status is handled through other features, as is the flag that indi-
cates whether an item is a reference item.

CodeLocation. Physical locations where library items are stored. This could be
separate sites, or rooms or areas within a common location.

CodeMediaType. Types of media, such as books, magazines, videos, CDs, etc.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this type of author or contributor. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this status entry. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this location. Required.

LastProcessing datetime The date when daily processing was last done for this location. If
NULL, processing has not yet been done. Optional.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this media type. Required.

CheckoutDays smallint Number of days for which items in this type can be checked out,
before renewal. Required.

RenewDays smallint Number of days to add to the original checkout period for a renewal of
items within this type. Required.

RenewTimes smallint Maximum number of times the item can be renewed by a patron
before it must be returned. Required.

DailyFine money Amount charged per day for an overdue item of this type. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 113

CodePatronGroup. Categories of groups into which patrons are placed. These are
not security groups, but general groups for reporting purposes. This was added
to support grouping of patrons by units within a company, or by class/grade
within a school library setting.

CodeSeries. Some items appear as part of a larger series or collection. This table
defines the collection and series names.

Library items

The tables in this section manage the actual inventory of items. Since a library may
own more than one copy of a single item, these tables manage the “named item” and
its individual “copies” separately.

NamedItem. A library item, such as a book, CD, or magazine. This table repre-
sents a general item, and not the actual copy of the item.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this patron group. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this series or collection. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

Title varchar(150) Title of this item. Required.

Subtitle varchar(150) Subtitle of this item. Optional.

Description varchar(max) Full description of this item. Optional.

Edition varchar(10) Edition number for this item. Optional.

Publisher bigint This item’s publisher. Foreign reference to Publisher.ID.
Optional.

Dewey varchar(20) Dewey decimal number. Use / for line breaks. Optional.

LC varchar(25) Library of Congress number. Use / for line breaks. Optional.

ISxN varchar(20) ISBN, ISSN, or other standardized number of this item. Optional.

LCCN varchar(12) Library of Congress control number. Optional.

Copyright smallint Year of original copyright, or of believed original copyright. Optional.

Series bigint The series or collection in which this item appears. Foreign reference
to CodeSeries.ID. Optional.

MediaType bigint The media classification of this item. Foreign reference to
CodeMediaType.ID. Required.

OutOfPrint bit Is this title out of print? 0 for False, 1 for True. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

114 | Chapter 4: Designing the Database

ItemCopy. A single copy of a named item. Separate copies of the same item will
appear as separate records in this table.

Publisher. An organization that publishes books or some other type of media.

Author. Someone who writes, edits, illustrates, or in some other way contributes
to a book or media item. In all cases, when the term author appears in this table,
it refers to anyone who contributes to the item.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

ItemID bigint The related named item record. Foreign reference to NamedItem.ID.
Required.

CopyNumber smallint Numbered position of this item within the set of copies for a named
item. Required, and unique among items with the sameItemID field
value.

Description varchar(max) Comments specific to this copy of the item. Optional.

Available bit Is this copy available for checkout or circulation?0 for False,1 for True.
Required.

Missing bit Has this copy been reported missing? 0 for False, 1 for True. Required.

Reference bit Is this a reference copy? 0 for False, 1 for True. Required.

Condition varchar(30) Any comments relevant to the condition of this copy. Optional.

Acquired datetime Date this copy was acquired by the library. Optional.

Cost money Value of this item, either original or replacement value. Optional.

Status bigint The general status of this copy. Foreign reference to
CodeCopyStatus.ID. Required.

Barcode varchar(20) Bar code found on the copy. At this time, only numeric bar codes are
supported. Optional.

Location bigint The site or room location of this item. Foreign reference to
CodeLocation.ID. Optional.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(100) Name of the publisher. Required.

WebSite varchar(255) URL for this publisher’s web site. Optional.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

LastName varchar(50) Last name of this author. Required.

FirstName varchar(30) First name of this author. Optional.

MiddleName varchar(30) Middle name or initial of this author. Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 115

ItemAuthor. An author, editor, and so on, for a specific named item. This table
establishes a many-to-many relationship between the NamedItem and Author
tables.

Keyword. Custom words that can be applied to named items to make searching
easier.

ItemKeyword. Connects a keyword with a named item through a many-to-many
relationship between the NamedItem and Keyword tables.

Subject. Subject headings used to classify named items.

Suffix varchar(10) Name suffix, such as “Jr.” Optional.

BirthYear smallint Year of birth. Use negative numbers for BC. Optional.

DeathYear smallint Year of death. Use negative numbers for BC. Optional.

Comments varchar(250) Miscellaneous comments about this author. Optional.

Field Type Description

ItemID bigint Primary key. The associated named item. Foreign reference to
NamedItem.ID. Required.

AuthorID bigint Primary key. The author associated with the named item. Foreign ref-
erence to Author.ID. Required.

Sequence smallint Relative order of this author among the authors for this named item.
Authors with smaller numbers appear first. Required.

AuthorType bigint The specific type of contribution given by this author for this named
item. Foreign reference to CodeAuthorType.ID. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this keyword. Required.

Field Type Description

ItemID bigint Primary key. The associated named item. Foreign reference to
NamedItem.ID. Required.

KeywordID bigint Primary key. The keyword to associate with the named item. Foreign
reference to Keyword.ID. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(150) Name of this subject. Required.

Field Type Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

116 | Chapter 4: Designing the Database

ItemSubject. Connects a subject with a named item through a many-to-many
relationship between the NamedItem and Subject tables.

Patron-related tables

The tables in this section define the actual patron records and their relationship to
item copies (when such copies are checked out by the patron).

Patron. An identified library user. Patrons usually have checkout privileges.

PatronCopy. This table manages item copies currently checked out by a patron,
or item copies that were previously checked out and have since been returned.

Field Type Description

ItemID bigint Primary key. The associated named item. Foreign reference to
NamedItem.ID. Required.

SubjectID bigint Primary key. The subject to associate with the named item. Foreign
reference to Subject.ID. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

LastName varchar(30) Last name of this patron. Required.

FirstName varchar(30) First name of this patron. Required.

LastActivity datetime Date of last checkout, renewal, or return. Optional.

Active bit Is this an active patron? 0 for False, 1 for True. Required.

Comments varchar(max) Any comments associated with this patron. Optional.

AdminMessage varchar(500) Comments that are displayed to administrative users when the
patron’s record is accessed. Optional.

Barcode varchar(20) Bar code found on this patron’s library card. At this time, only numeric
bar codes are supported. Optional.

Password varchar(20) Patron’s password, in an encrypted format. Required.

Email varchar(100) Patron’s email address. Optional.

Phone varchar(20) Patron’s phone number. Optional.

Address varchar(50) Patron’s street address. Optional.

City varchar(20) Patron’s city. Optional.

State varchar(2) Patron’s state abbreviation. Optional.

Postal varchar(10) Patron’s postal code. Optional.

PatronGroup bigint The group in which this patron appears. Foreign reference to
CodePatronGroup.ID. Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 117

PatronPayment. Fines, payments, and dismissals on a patron copy record. Over-
due fines are not recorded in this table, but administrator-initiated fines due to
charges for missing items are recorded here.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

Patron bigint The associated patron. Foreign reference to Patron.ID. Required.

ItemCopy bigint The item copy currently or previously checked out by the patron. For-
eign reference to ItemCopy.ID. Required.

CheckOut datetime The date when this item copy was initially checked out. Required.

Renewal smallint The number of times this item copy has been renewed. Set to 0 when
the item copy is first checked out. Required.

DueDate datetime Current due date for this item copy. Required.

CheckIn datetime The date when this item copy was returned. Optional.

Returned bit Has the item copy been returned? 0 for False, 1 for True. Required.

Missing bit Is the item copy missing and considered lost? 0 for False, 1 for True.
Required.

Fine money Total fine accumulated for this item copy. Defaults to 0.00. An
administrator may reduce an accumulated fine. Required.

Paid money Total amount paid (in fees) for this item copy. Required.

ProcessDate datetime When an item copy is processed for overdue fines, this field contains
the last date for which processing was done. Optional.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

PatronCopy bigint The associated item checked out by the patron. Foreign reference to
PatronCopy.ID. Required.

EntryDate datetime Date and time when this entry was recorded. Required.

EntryType varchar(1) The type of payment entry. Required. The possible values are:

• P = The patron made a payment.
• F= A fine (other than a standard overdue fine) was imposed by an

administrator.
• D = A portion (or all) of the fine was dismissed.
• R = A refund was given to the patron due to overpayment.

Amount money The amount associated with this entry. The value is always positive.
Required.

Comment varchar(50) A short comment about this entry. Optional.

UserID bigint The user who added this payment event. Foreign reference to
UserName.ID. Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

118 | Chapter 4: Designing the Database

Bar code-related tables

There are three levels of definition to create a bar code: (1) the sheet on which a grid
of labels prints; (2) a single label on the sheet; and (3) the individual items that
appear on each label. The three tables in this section define those three levels.

BarcodeSheet. Describes the template for a single page of bar code labels.

BarcodeLabel. Describes the template for a single label on a bar code sheet. Any
number of labels may be on a single sheet, but they all have the same shape and
format.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this sheet template. Required.

UnitType varchar(1) Units used in the various measurements found in most fields in this
record. Required.

• I = Inches
• C = Centimeters
• P = Points
• T = Twips

PageWidth decimal(10,4) Width of the entire page. Required.

PageHeight decimal(10,4) Height of the entire page. Required.

MarginLeft decimal(10,4) Left border, up to the edge of the printable label area. Required.

MarginRight decimal(10,4) Right border, up to the edge of the printable label area. Required.

MarginTop decimal(10,4) Top border, up to the edge of the printable label area. Required.

MarginBottom decimal(10,4) Bottom border, up to the edge of the printable label area. Required.

IntraColumn decimal(10,4) The width of the blank area between label columns. Required.

IntraRow decimal(10,4) The height of the blank area between label rows. Required.

ColumnsCount smallint The number of label columns on this template. Required.

RowsCount smallint The number of label rows on this template. Required.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

FullName varchar(50) Name of this label template. Required.

BarcodeSheet bigint The sheet template on which this label template appears. Foreign ref-
erence to BarcodeSheet.ID. Required.

UnitType varchar(1) Units used in the various measurements found in most fields in this
record. Required.

• I = Inches
• C = Centimeters
• P = Points
• T = Twips

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 119

BarcodeLabelItem. Describes a single item as found on a bar code label. Items
include static and generated text, lines, rectangles, and generated bar codes.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

Priority smallint Identifies the order in which items on the label are printed. Lower
numbers are printed first. Required.

BarcodeLabel bigint The label template on which this item appears. Foreign reference to
BarcodeLabel.ID. Required.

ItemType varchar(1) What type of item does this record represent? Required.

• T = Static text
• B = Bar code
• N = Bar code number
• L = Line
• R = Rectangle

PosLeft decimal(10,4) Left edge of the item relative to the left edge of the label. Measured
according to the related BarcodeLabel.UnitType field.
Required.

PosTop decimal(10,4) Top edge of the item relative to the top edge of the label. Measured
according to the related BarcodeLabel.UnitType field.
Required.

PosWidth decimal(10,4) Width of the item, or of the box in which the item is drawn. For lines,
this is the x coordinate of the endpoint. Measured according to the
related BarcodeLabel.UnitType field. Required.

PosHeight decimal(10,4) Height of the item, or of the box in which the item is drawn. For lines,
this is the y coordinate of the endpoint. Measured according to the
related BarcodeLabel.UnitType field. Required.

Rotation smallint Rotation angle, in degrees, of the box in which the item is drawn. Zero
(0) equals no angle, and increasing angles proceed clockwise. Ranges
from 0 to 359. Only used when ItemType is T, B, N, or R. Optional.

FontName varchar(50) The name of the font used to write the text. Valid only when
ItemType is T or N. Optional.

FontSize decimal(10,4) The size of the font used to write the text. Valid only when
ItemType is T, B, or N. Optional.

StaticText varchar(100) The static text to display on the label. Valid only when ItemType is
T. Optional.

FontStyle varchar(4) The style of the font text. May be any combination of the following
four codes:

• B = Bold
• I = Italic
• U = Underline
• K = Strikeout

Leave this field NULL to use the normal style. Valid only when
ItemType is T or N. Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

120 | Chapter 4: Designing the Database

Other miscellaneous tables

Two additional tables provide support for features not handled through other tables.

Holiday. When checking out an item to a patron, the return date should not fall
on a holiday (or any day that the library is closed) since the patron might not
have a way to return the book on the day it’s due. This table defines one-time
and recurring holidays.

Color1 bigint The main color of the text, bar code, or line. When printing a rectan-
gle, this is the border color. If NULL, black is used. A standard Win-
dows 32-bit RGB color value. Optional.

Color2 bigint The fill color when printing a rectangle. If NULL, white is used. A stan-
dard Windows 32-bit RGB color value. Optional.

Alignment smallint The alignment of the text within the bounding box. Valid only when
ItemType is T, B, or N.

• 1 = Align in top-left corner of box
• 2 = Align in top-center area of box
• 4 = Align in top-right corner of box
• 16 = Align in middle-left area of box
• 32 = Align in middle-center area of box
• 64 = Align in middle-right area of box
• 256 = Align in bottom-left corner of box
• 512 = Align in bottom-center area of box
• 1024 = Align in bottom-right corner of box

PadDigits smallint The number of digits in which to pad the bar code number. Set to zero
(0) to ignore padding. Ranges from 0 to 20. If the bar code length is
less than the specified number of digits, it is padded on the left with
zeros. Applies only to ItemTypes of B and N.

Field Type Description

ID bigint Primary key, automatically assigned. Required.

FullName varchar(50) Name of this holiday. Not necessarily unique. Required.

EntryType varchar(1) The type of entry. Required. From the following list:

• A = Annual (as in “every December 25”)
• E = Weekly (as in “every Sunday”)
• O = One-time (as in “2/16/2004 is President’s Day”)

EntryDetail varchar(10) Entry-type-specific detail. Required. Differs for each entry type.

 Entry type Detail value

 A Month and day in “mm/dd” format

 E Single digit: 1 = Sunday through 7 = Saturday

 O Date in “yyyy/mm/dd” format

Field Type Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 121

SystemValue. This table stores miscellaneous enterprise-wide settings that apply
to every workstation. Local workstation-specific settings are stored on each
machine, not in the database.

The following system values are defined at this time. The name of the code
appears in the ValueName field. The corresponding value appears in the ValueData
field.

BarcodeCode39
Is the specified bar code in “code 39” or “code 3 of 9” format? If so, an
asterisk will be placed before and after the bar code number before it is
printed on a label. Use a value of 0 for False or any nonzero value for True
(–1 is preferred). If missing or NULL, False is assumed.

BarcodeFont
The name of the font used to print bar codes. This font must be installed on
any workstation that displays or prints bar codes. It is not needed to scan
bar codes.

DatabaseVersion
Which structural version of the database is currently in use? Right now, it is
set to “1,” and is reserved for future enhancement.

DefaultLocation
CodeLocation.ID value for the location that is set as the default.

FineGrace
Number of days that an item can be overdue without incurring a fine.

NextBarcodeItem
The next starting value to use when printing item bar codes.

NextBarcodeMisc
The next starting value to use when printing miscellaneous bar codes.

NextBarcodePatron
The next starting value to use when printing patron bar codes.

PatronCheckOut
Indicates whether patrons can check out items without being logged in as an
administrative user. Use a value of 0 (zero) to indicate no checkout privi-
leges, or any nonzero value to allow patron checkout (–1 is preferred). If this
value is missing or empty, patrons will not be allowed to check out items
without administrator assistance.

Field Type Description

ID bigint Primary key; automatically assigned. Required.

ValueName varchar(50) Name of this value. Required.

ValueData varchar(100) Information associated with this entry. Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

122 | Chapter 4: Designing the Database

SearchLimit
Indicates the maximum number of results returned in any search or lookup.
If this value is missing or invalid, a default of 250 is used. The allowed range
is between 25 and 5,000, inclusive.

TicketHeading
Display text to be printed at the top of checkout tickets. All lines are cen-
tered on the ticket. Include the vertical bar character (|) to break the text
into multiple lines.

TicketFooting
Display text to be printed at the bottom of checkout tickets. All lines are
centered on the ticket. Include the vertical bar character (|) to break the text
into multiple lines.

UseLC
Indicates whether books are categorized by Dewey or Library of Congress (LC)
call numbers. Use a value of 0 (zero) to indicate Dewey, or any nonzero value
for LC (–1 is preferred). If this value is missing or empty, Dewey is assumed.

Creating the Database
Adding the database to SQL Server is almost as easy as documenting it; in fact, it
requires less typing. The CREATE TABLE statements are straightforward, and they all pretty
much look the same. I’m going to show only a few of them here. The Database Creation
Script.sql file in this book’s installation directory includes the full script content.

The instructions listed here are for SQL Server 2005 Management Studio Express.
You can perform all of these tasks using SQL Server 2005 Management Studio, or
even the command-line tools supplied with SQL Server, but the details of each step
will vary. The same CREATE TABLE statements work with whichever tool you choose.

If you haven’t done so already, install SQL Server 2005 Express Edition (or whichever
version of the database you will be using). SQL Server 2005 Management Studio
Express is a separate product from SQL Server itself, so you must install that as well.

Most of the tables in the Library Project are simple data tables with a single primary
key. Their code is straightforward. The Author table is a good example.

CREATE TABLE Author
(
 ID bigint IDENTITY PRIMARY KEY,
 LastName varchar(50) NOT NULL,
 FirstName varchar(30) NULL,
 MiddleName varchar(30) NULL,
 Suffix varchar(10) NULL,
 BirthYear smallint NULL,
 DeathYear smallint NULL,
 Comments varchar(250) NULL
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 123

The fields included in each CREATE TABLE statement appear as a comma-delimited list,
all enclosed in parentheses. Each field includes either a NULL or a NOT NULL option that
indicates whether NULL values may be used in that field. The PRIMARY KEY option auto-
matically specifies NOT NULL.

Some statements create tables that link two other tables in a many-to-many relation-
ship. One example is the GroupActivity table, which connects the GroupName table
with the Activity table.

CREATE TABLE GroupActivity
(
 GroupID bigint NOT NULL,
 ActivityID bigint NOT NULL,
 PRIMARY KEY (GroupID, ActivityID)
);

The Author table had a single primary key, so the PRIMARY KEY option could be
attached directly to its ID field. Since the GroupActivity table has a two-field primary
key (which is common in relational databases), the PRIMARY KEY option is specified as
an entry all its own, with the key fields specified as a parentheses-enclosed comma-
delimited list.

Earlier in this chapter, I showed how you could establish a reference to a field in
another table by using the REFERENCES constraint as part of the CREATE TABLE state-
ment. You can also establish them after the tables are already in place, as I do in the
script. Here is the statement that establishes the link between the GroupActivity and
GroupName tables:

ALTER TABLE GroupActivity
 ADD FOREIGN KEY (GroupID)
 REFERENCES GroupName (ID);

Since I’ve already written the entire SQL script for you, I’ll just have you process it
directly using Microsoft SQL Server 2005 Management Studio Express. (If you will
be using the full version of SQL Server or some other management tool, the pro-
vided script will still work, although the step-by-step instructions will differ.) Before
adding the tables, we need to create a database specific to the Library Project. Start
up Microsoft SQL Server 2005 Management Studio Express (see Figure 4-4).

To add a new database for the Library Project, right-click on the Database folder in
the Object Explorer, and select New Database from the shortcut menu. On the New
Database form that appears, enter Library in the Database Name field, and then
click OK.

The Library database is a shell of a database; it doesn’t contain any tables or data yet.
Let’s use the Database Creation Script.sql file from the book’s installation directory to
generate the tables and initial data. In Management Studio Express, select the File ➝

Open ➝ File menu command, and locate the Database Creation Script.sql file. (You
may be prompted to log in to SQL Server again.) Opening this file places its content
in a new panel within Management Studio Express.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

124 | Chapter 4: Designing the Database

All that’s left to do is to process the script. In the toolbar area, make sure that
“Library” is the selected database (see Figure 4-5). Then click the Execute toolbar
button, or press the F5 key. It’s a small script with not a lot going on (at least from
SQL Server’s point of view), so it should finish in just a few seconds.

That’s it! Close the script panel. Then, back in the Object Explorer, right-click on the
Library database folder and select Refresh from the menu. If you then expand the
Library database branch and its Tables sub-branch, you will see all the tables created
by the script (see Figure 4-6).

With the database done, it’s time to start programming.

Figure 4-4. SQL Server 2005 Management Studio Express main form

Figure 4-5. If you don’t select “Library,” your tables will go somewhere else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 125

Figure 4-6. Partial list of database tables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

126

Chapter 5CHAPTER 5

.NET Assemblies 5

The mere mention of the word assembly takes me back to my days as a high school
freshman. The assembly was actually held in the school gym, with 2,000 screaming
adolescents filling the bleachers around the basketball court. Since this was a school
function, I naturally thought of an experience packed with fresh educational oppor-
tunities. School, education—the words just seem to go together. But then came the
marching band, and the football players, and the cheerleaders, and the school mas-
cot (a horse). For the next 30 minutes, the principal whipped the students into a con-
trolled frenzy, attempting to prove the institution’s place as the number-one school
in the city. I still don’t know what area we were supposed to be number one in, but it
was all very exciting.

.NET assemblies are not that exciting. In fact, they’re just files, EXE and DLL files,
and without you to activate them, they just sit there taking up disk space. And as
they are not doing anything else, let’s take a moment to examine what they are and
what they contain.

What Is an Assembly?
As I already mentioned in Chapter 1, an assembly is a “unit of deployment,” which
in most cases is just a file. An assembly is a repository for compiled .NET applica-
tion code; any code you write will eventually be stored in some EXE file (if it is an
application) or DLL file (for code libraries or extensions to an application). Every-
thing that .NET needs to know to load and run your application is stored in the
assembly.

Assemblies are either private or public. Private assemblies are designed for use in a
single application only. If there aren’t any DLLs, an EXE assembly is the application.
Private assemblies appear in their own directory, the installation directory of the
application or library. You can run two different private assemblies at the same time,
and they won’t bother each other. This is true even if each assembly uses the same
combination of namespace and class names for its coded elements. If two application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Is an Assembly? | 127

assemblies each implement a class named WindowsApplication1.Class1, they will not
interfere with each other when running; they are private, and private means private.

Public assemblies are designed for shared use among multiple .NET applications.
Public assemblies differ from private assemblies in two major ways:

• Public assemblies always have a strong name, an encrypted digital signature that
is attached to an assembly to guarantee that it came from its named vendor or
source. (Private assemblies can also include a strong name, but they don’t have
to.) The strong name is built from the assembly’s name, version number, culture
information, a “public key,” and a digital signature generated from the assembly
file that contains the manifest (described later). The .NET Framework includes a
Strong Name generation tool (sn.exe) that assists in this process, and Visual Stu-
dio includes options that let you add a digital signature during the compilation
process. (It’s on the Signing tab of the project’s properties.)

The strong name of an assembly should be (and better be) unique; if two assem-
blies share a common strong name, they are copies of the same assembly.

• Public assemblies are stored in the Global Assembly Cache (GAC). Although
you can put a copy of your shared component in your application’s install direc-
tory, it will only truly be shared once it reaches the GAC directory. The GAC
lives in a directory named assembly within the computer’s Windows directory.
(On my system, it’s in c:\windows\assembly.) Once a .NET assembly has a strong
name applied, you can add it to the GAC by either dragging the file into the
assembly directory or using the Global Assembly Cache Tool (gacutil.exe). Don’t
worry about your file being lonely if it’s not communing with your other
installed files. On my freshly installed copy of .NET, I found nearly 400 files
already in the GAC directory, including all the DLLs for the Framework Class
Libraries (FCLs).

.NET lets you install multiple versions of an assembly on a system and use them at
the same time (a process called versioning). This applies both to applications (EXE)
and libraries (DLL), and to private assemblies and shared assemblies in the GAC.
Don’t believe me? Open up the GAC’s assembly folder, set the Explorer folder to a
Details view, and then sort by Assembly Name. If you scroll down, you’ll see the
same file show up multiple times. Figure 5-1 shows a part of the cache. Two copies
of “Microsoft.VisualStudio.Windows.Forms” are listed (from the Microsoft.
VisualStudio.Windows.Forms.dll file), one with a version number of 2.0 and one list-
ing version 9.0.

Although there is usually a one-to-one relationship between files and assemblies,
there may be cases when an assembly is made up of multiple files. For instance, an
application might include an external graphics file in its assembly view. .NET keeps a
close watch on these files. If any of the files are modified, deleted, or otherwise
maimed, you will hear about it. For the purposes of discussion, the rest of this chap-
ter considers only single-file assemblies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

128 | Chapter 5: .NET Assemblies

What’s Inside an Assembly?
An assembly’s EXE or DLL file is a standard “Portable Execution” (PE) file, the same
file format used for non-.NET executables and code libraries (pretty much any Win-
dows EXE or DLL file). What makes .NET PE files different is all the extra stuff
found inside. As a general word, assembly indicates a gathering together of various
parts into a single unit. In a .NET assembly, these “various parts” are specifically
designed for use with .NET.

A .NET PE file contains three main parts:

A PE header
Required of all PE files, this section identifies the locations of the other sections
of the file.

The MSIL code section
The actual code associated with the assembly is stored as semicompiled
Microsoft Intermediate Language (MSIL) code. Unfortunately, the Intel or AMD
chip in your computer is apparently too brainless to process MSIL code directly
(what were they thinking?), so the .NET Framework includes a just-in-time (JIT)
compiler that can convert MSIL to native x86 code at a moment’s notice.

The Metadata section
All of the extra detail that .NET needs to rummage through to know about your
assembly appears in this essential section. Some of these items, when taken
together, make up the assembly’s manifest, a type of document that completely
describes the assembly to the world. In the following list of metadata elements,
I’ve noted which items appear in the manifest:

Figure 5-1. The GAC has this duplication under control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What’s Inside an Assembly? | 129

The name of the assembly
(Part of the manifest.) This is defined on the Application tab of the project’s
properties.

The version number of the assembly
(Part of the manifest.) That’s the four-part version number, as in 1.2.3.4.
You’ve probably been wondering all day how you could set this number in
your own projects. Your patience will be rewarded in this chapter’s
“Project” section, where I will demonstrate not just one, but two ways to set
the assembly version number.

Strong name content
(Part of the manifest.) This includes the publisher’s public key.

Culture and language settings
(Part of the manifest.) This is especially useful when you need to create
language-specific resource files.

Assembly file listing
(Part of the manifest.) Single-file assemblies will show only the EXE or DLL
filename, but some assemblies may include several files in this section. All
files in an assembly must appear within the same directory, or in a directory
subordinate to the assembly file that contains the manifest.

Exported type information
(Part of the manifest.) Some assemblies “export” some of their types for use
outside the application. The details of those types appear here.

References
(Part of the manifest, but in multifile assemblies, each file will contain its
own list of references.) The metadata includes a listing of all external assem-
blies referenced by your application, whether they are private or appear in
the GAC. This list indicates which specific version, culture, and platform-
target of the external assembly your assembly expects.

Internal type information
(Not part of the manifest.) All types crafted in your assembly are fully
described within the metadata. Also, any additional metadata you added to
your types through Visual Basic’s attribute feature appear here.

In multifile assemblies, the manifest-specific elements appear only in the “main”
file of the assembly.

The manifest is a subset of the metadata within your assembly. I hate to say that it’s
the most important part of the metadata—but it is. The manifest is the public
expression of your assembly, and the only way that .NET knows whether it is legit.
It’s sort of like the “Nutrition Facts” label put on American food packaging (see
Figure 5-2).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

130 | Chapter 5: .NET Assemblies

When you look at the food label, you know what the food package contains—
although no one really knows what riboflavin is. When you look at the manifest for
an assembly, you know at a glance what the assembly contains, and what require-
ments it has before it can be loaded and run.

Even before .NET burst onto the scene, executables and libraries already contained
some “metadata,” such as the version number of the file. But this data wasn’t used to
manage access between software components, nor was it organized in a generic and
extensible way. The metadata in .NET embodies all of these attributes.

The presence of both the MSIL and metadata in each assembly makes these files very
readable and understandable. With the right tools, even I seem to understand them.
And if I can, anyone can, which leads to a big problem. Companies invest a lot of
time and money in their software development efforts, and they don’t want any
rinky-dink two-bit startup reverse-engineering their code and getting all their algo-
rithmic secrets. To prevent this casual reading of any .NET application, Microsoft
and other third parties include obfuscators, software programs that scramble the con-
tents of an assembly just enough so that it’s hard for humans to understand, but not
for the .NET Framework. I’ll talk more about obfuscation in Chapter 22.

Figure 5-2. Is that really good for me?

Exported Types 12

Assembly Facts
Serving Size 1 assembly
Files Per Assembly 1

Amount Per Assembly

Vitamin VB
Vitamin C#

% Daily Value*

References 5

Cultures 3

Version 1.0.0.4

* Percent Daily Values are based on a
Pentium 4 with 1GB Memory. Your daily
needs may be lower, but I doubt it.

100%
0%

50%

300%

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assemblies and Applications | 131

Reflection
It may be a bad thing for people to access the content of an assembly, but it’s great
when the code in an assembly can access itself. .NET includes a feature called reflec-
tion that lets you examine the contents of an assembly. You generally use this fea-
ture to access metadata in your own assembly, but it also works with any available
assembly. Most reflection-related features appear in the System.Reflection
namespace.

Through reflection, you can extract pretty much anything stored in the metadata of
an assembly, including details on all types, their members, and even the parameters
included with function members. This is why obfuscation is so important to ven-
dors; between the compiled MSIL and the metadata, you can virtually regenerate the
entire source code for an application from just its executable. The source code would
be in MSIL, but it wouldn’t be that tough for someone to massage much of it back
into Visual Basic or C#.

Assemblies and Applications
.NET applications (EXE files) are an instance of an assembly. But a single applica-
tion can include multiple assemblies; it fact, it almost always does. I wrote a little
program that uses reflection to list all assemblies actively being used by the program
itself. I gave the program the default name of WindowsApplication1. When I ran the
program against itself, it generated the following list:

mscorlib
Microsoft.VisualStudio.HostingProcess.Utilities
System.Windows.Forms
System
System.Drawing
Microsoft.VisualStudio.HostingProcess.Utilities.Sync
Microsoft.VisualStudio.Debugger.Runtime
vshost
System.Data
System.Deployment
System.Xml
System.Core
System.Xml.Linq
System.Data.DataSetExtensions
Microsoft.VisualBasic
WindowsApplication1
System.Runtime.Remoting

Wow! Seventeen assemblies, including WindowsApplication1, the main program.
Most of the assemblies are framework-supplied DLLs. For Microsoft.VisualBasic,
it’s the Microsoft.VisualBasic.dll assembly; for System, it’s the System.dll assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

132 | Chapter 5: .NET Assemblies

All of the assemblies (except the main program assembly) are shared libraries from
the GAC. The application can also support private assemblies loaded from local DLL
files.

The .NET Framework automatically loaded these assemblies for me when
WindowsApplication1 started up; it figured out which ones needed to be loaded by
looking in the manifest for WindowsApplication1. When the framework loaded each
assembly, it checked to see whether those assemblies in turn needed additional
assemblies loaded, and so on. Pretty soon, your once-simple application becomes a
dumping ground for assemblies all over the GAC. But that’s OK, since the purpose
of .NET is to manage it all.

The My Namespace and Assemblies
The .NET Framework, with its thousands of classes, contains a lot of packaged logic
that I can use in my own programs. But I don’t have all of the many assemblies and
their classes memorized (yet), and it takes time to wander around the FCL documen-
tation. With so many classes available, I sometimes shudder when I think of the
effort it will take me to find just the right class or feature I need to accomplish some
development task.

Fortunately, I’m not the only one who thinks this way; Microsoft agrees with me.
Historically, Visual Basic programmers were sheltered from the complexities of Win-
dows application development. Not that they needed to be; we all know that Visual
Basic developers are generally a cut above the rest. But there was “the Visual Basic
motto” to contend with: Make Windows Development Fast and Easy. And calling
some esoteric method deep within the bowels of the System namespace just to get a
minor piece of data is neither easy nor fast.

To bring back some semblance of the pleasant experience previously available in
Visual Basic development, Microsoft introduced the My pretend namespace in its
2005 release of the language. The My pretend namespace collects a lot of useful fea-
tures from all around the FCL, and organizes them in a much smaller hierarchy for
simple and direct access. I briefly mentioned My in Chapter 1, but now is a good time
to take a closer look at what it does.

The My pretend namespace looks a lot like other namespaces, such as System, System.
Reflection, and System.Windows.Forms. But it’s not really a namespace—it’s pretend!
For one thing, you can’t use the Imports keyword to create a shortcut to branches
within its hierarchy. Also, some sections of the hierarchy are dynamic; they change
as your project changes. Table 5-1 lists the major nodes of the hierarchy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The My Namespace and Assemblies | 133

Table 5-1. Major nodes in the My namespace hierarchy

Branch Available features

My.Application Provides information about the current application, including culture settings and
the deployment method.

My.Application.Info Gives further details about the application and its assembly, including the name and
version.

My.Application.Log Allows you to generate trace and logging output to registered logging destinations.
Used only with client applications.

My.Computer Provides access to general resources located on the local computer.

My.Computer.Audio Plays named and system sounds through the computer’s speakers.

My.Computer.Clipboard Retrieves data from the system clipboard, and lets you add your own data to the
clipboard in a variety of predefined and custom formats.

My.Computer.Clock Gets the current system date and time dished up in a variety of ways.

My.Computer.FileSystem Provides tools to examine and manipulate files and directories on local or net-
worked filesystems.

My.Computer.FileSystem.
 SpecialDirectories

References special Windows folders such as Documents, Desktop, and Temp.

My.Computer.Info Provides information about the installed operating system and other local system
resources.

My.Computer.Keyboard Exposes the current state of the keyboard and its keys.

My.Computer.Mouse Makes available a few properties of the local computer’s mouse.

My.Computer.Network Reports on network availability, and provides features to interact with that network.

My.Computer.Ports Lets you interact with the system’s serial ports.

My.Computer.Registry Reads and writes keys and values in the registry.

My.Forms Presents a dynamic collection of all forms defined in the application. This node is
available only in Windows Forms applications.

My.Log Allows you to generate trace and logging output to registered logging destinations.
Used only with ASP.NET applications.

My.Request This object is similar to the older Active Server Pages Request object. It is avail-
able only in ASP.NET applications.

My.Resources Provides dynamic access to application-specific or locale-specific resources included
with the application.

My.Response This object is similar to the older Active Server Pages Response object. It is avail-
able only in ASP.NET applications.

My.Settings Provides dynamic access to the application settings system.

My.User Identifies the current Windows user, including authentication information.

My.WebServices Presents a collection of available web services for use in the application. This node
is not available in ASP.NET applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

134 | Chapter 5: .NET Assemblies

The My namespace includes a lot of features you will use regularly, including access
to the version number of the application. Instead of typing System.Reflection.what-
ever to get to the version number’s “major” component, you can now just type:

My.Application.Info.Version.Major

Need a list of assemblies, but you’re too lazy to type the word Reflection? Try:

My.Application.Info.LoadedAssemblies

Need to know the time right now in England?

My.Computer.Clock.GmtTime

Can you communicate over the local area network?

My.Computer.Network.IsAvailable

Who is running this computer anyway?

My.User.Name

There isn’t much in the My namespace that you can’t already do with standard FCLs.
There are even a few parts of My that are repeats of features already included in the
Visual Basic language, although with some enhancements. For instance, Visual Basic
includes a Kill command that lets you delete files. The My.Computer.FileSystem.
DeleteFile method also removes files, but it offers additional options, including one
that lets you send the file to the Recycle Bin instead of just losing it forever.

Directives and Assemblies
Directives are Visual Basic statements—but then again, they’re not. The two key
directives—#Const and #If—provide instructions to the compiler on how to handle a
block of Visual Basic source code. (A third directive, #Region, helps to visually
present source code within Visual Studio, but it has no impact on the compiler or the
final compiled application.) By using directives, you can tell the compiler to include
or exclude specific chunks of source code from the final project. So, they aren’t really
Visual Basic source code statements, but they are available only in Visual Basic.

Why would you want to include or exclude code in an application? Well, I can think
of several good reasons, some of which involve the CIA and former Federal Reserve
chairman Alan Greenspan. But the most common use is when you want to produce
two different versions of your application, based on some condition. For example,
you may sell an “express” version and a “professional” version of a product. Much of
the code is identical for the two versions, but the professional version would include
features not available in the express version. Also, the express version may include a
simplified presentation for a feature that has a more complex usage in the profes-
sional edition.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directives and Assemblies | 135

Some software products fulfill this need by using standard Visual Basic conditions.

If (professionalVersion = True) Then
 ShowWhizBangFeatures()
Else
 ShowLaughableFeatures()
End If

This, of course, works just fine. But the express application still contains all the
enhanced features. Since it can’t access any of that code, why even include it on the
installation CD? If you use directives, you can mark down that problem as solved.
Directives use conditional expressions, much like the professionalVersion = True
condition in the preceding block of code. But they are defined with the #Const state-
ment, and are called compiler constants.

#Const fullVersion = True

This statement defines a Boolean compiler constant. The constant can be used only
with directives; if you try to use fullVersion in a standard Visual Basic statement, the
compiler will complain. But it will work just fine in the #If directive.

#If (fullVersion = True) Then
 ShowWhizBangFeatures()
#Else
 ShowLaughableFeatures()
#End If

This code looks a lot like the previous code block, but with the added # signs. It
looks the same but it’s not. With the plain If statement, the following code gets
compiled into the final application:

If (professionalVersion = True) Then
 ShowWhizBangFeatures()
Else
 ShowLaughableFeatures()
End If

Yeah, the whole block of code. But with the directives, what gets included in the
compiled application depends on the value of fullVersion. If fullVersion is True,
this gets compiled into the compiled application:

ShowWhizBangFeatures()

The other four lines are gone; they’ve vanished...into thin air, as though they never
existed. But in this case, it’s a good thing. The goal was to have a version of the
assembly completely devoid of the undesired code, and that’s what happened.

To set the fullVersion compiler constant to generate the full version, you include
this line at the top of each source code file that includes conditional #If code blocks:

#Const fullVersion = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

136 | Chapter 5: .NET Assemblies

When you’re ready to generate the “express” version, just change each of these lines
to their False counterpart:

#Const fullVersion = False

Somehow, changing this line in every source code file that needs it seems like a lot of
work, and it is. And what happens if I forget to set one of them to the right version?
No good, I can tell you.

To keep Visual Basic developers from running down the halls screaming more than
they normally would, Visual Studio provides a few different ways to set compiler
constants once, and have them apply to every part of the application. The most com-
mon way to do this is through the project properties’ Compile panel (see Figure 5-3).
Click on the Advanced Compile Options button, and then add your global compiler
constants to the “Custom constants” field.

Now, by adding either fullVersion = True or fullVersion = False to this field, you
can build different versions of the application. The Visual Basic compiler also pro-
vides features that let you set up different compile scripts for your project. I won’t
talk about it in this book, but you can read up on the MSBuild tool in the Visual Stu-
dio documentation if you need this level of control.

Besides Booleans, compiler constants can be numbers and strings. The Visual Studio
environment also defines some compiler constants for you. The DEBUG and TRACE con-
stants are True or False based on the “Define DEBUG constant” and “Define TRACE
constant” checkboxes that appear in Figure 5-3. The VBC_VER constant identifies the
version of the Visual Basic compiler being used; it is set to 9.0 in Visual Basic 2008.

Summary
Assemblies aren’t just souped-up EXE or DLL files; they contain gobs of metadata,
including the manifest, that make .NET applications self-describing. The compiler
uses this information to correctly configure and process the managed MSIL code in
each assembly.

Figure 5-3. This is a whole lot easier than all that typing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 137

Although not actually parts of an assembly, this chapter also discussed the My
namespace and directives, two Visual Basic features that impact what gets included
in your assembly.

Project
This chapter’s project officially kicks off the coding of the Library Project (muted
applause). We’ll start off with something simple: building the About form that pro-
vides basic information about the application, including its version number.

PROJECT ACCESS

Load the Chapter 5 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 5 (After) Code instead.

Our goal is a pleasant form that conveys basic information about the program, a
form that looks something like Figure 5-4.

Like any Visual Basic application for Windows, the creation of this form involves
two steps: (1) adding controls to the form; and (2) writing the related code.

Figure 5-4. Everything you wanted to know about the program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

138 | Chapter 5: .NET Assemblies

Adding Controls
If there is one area where Visual Basic excels, it is form creation. Programs can be
created by the simple dragging and dropping of prebuilt controls onto the surface of
a prebuilt form. It’s all done from within the comfort and convenience of the Visual
Studio Integrated Development Environment (IDE), as shown in Figure 5-5.

The displayed environment includes four key areas, which I’ve labeled with letters in
Figure 5-5:

A. The toolbox
This listing of controls includes not only display controls, but also controls that
expose no specific user interface, such as the Timer. (If you don’t see the tool-
box, select the View ➝ Toolbox menu command.) To add a control to a form,
double-click the control in the toolbox, drag it from the toolbox to the form, or
draw the control on the form after first selecting it from the toolbox.

B. The form surface
Place any control that exposes a user interface here. The form is WYSIWYG, so
you can see the final result as you design the form.

Figure 5-5. The Visual Studio environment

A

B

C

D

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 139

C. The Solution Explorer
All files related to your project appear here. For the current project, you will see
only the My Project entry and an entry for the form, Form1.vb. There are actu-
ally more files. If you click the second button from the left at the top of the Solu-
tion Explorer, it will show you additional files, most of which are managed by
Visual Studio on your behalf.

D. The Properties panel
When you select a control on your form surface, or the form surface itself, or an
item in the Solution Explorer, the properties of the selected item appear in this
area. You can alter the settings of many properties by typing in the new setting.
Some properties include special tools to assist you in setting the property value.

If you haven’t done so already, open the form Form1.vb in design view by double-
clicking it in the Solution Explorer. We’ll add eight text labels, three shape and line
elements, two web-style hyperlinks, a command button, and a picture to the form’s
surface. I’ve already added the picture to the form for you, with an image of some
books, naming it SideImage.

Set up the form by adjusting the following properties from their defaults. Click on
the form surface, and then modify these property values using the Properties panel.

Next, add the eight basic text labels to the form’s surface using the Label control.
You’ll find this control in the toolbox. As you add each Label control, use the follow-
ing list of settings to set the properties for each label. The included text matches my
situation, but feel free to modify the content as needed.

Property Setting

(Name) AboutProgram

ControlBox False

FormBorderStyle FixedDialog

Size 440, 311

StartPosition CenterScreen

Text About the Library Project

Label name Property settings

ProgramName (Name): ProgramName
AutoSize: True
Font/Bold: True
Location: 136, 16
Text: The Library Project

ProgramVersion (Name): ProgramVersion
AutoSize: True
Location: 136, 32
Text: Version X.Y Revision Z

http://lib.ommolketab.ir
http://lib.ommolketab.ir

140 | Chapter 5: .NET Assemblies

Let’s add some lines and colored sections to the form. Visual Basic 6.0 included dis-
tinct shape controls for lines, rectangles, and ellipses that you could apply directly to
the form surface. .NET no longer includes these items; you have to add them by
hand using source-code-specified drawing commands.* But we can simulate lines and
rectangles using the standard Label control, sans the text.

LicenseInfo (Name): LicenseInfo
AutoSize: False
Location: 136, 48
Size: 280, 32
Text: Unlicensed

DevelopedBy (Name): DevelopedBy
AutoSize: True
Location: 136, 88
Text: Developed By

DeveloperName (Name): DeveloperName
AutoSize: True
Location: 160, 112
Text: Tim Patrick

DeveloperBook (Name): DeveloperBook
AutoSize: True
Location: 160, 128
Text: Programming Visual Basic 2008

DeveloperProject (Name): DeveloperProject
AutoSize: True
Location: 160, 144
Text: In-book Project

CompanyCopyright (Name): CompanyCopyright
AutoSize: True
Location: 136, 208
Text: Copyright (c) 2008 by Tim Patrick.

* Microsoft does offer line and shape controls as part of its “Power Packs” for Visual Basic 2005. You’ll find them
in the download area of Microsoft’s Visual Basic Development Center, located at http://msdn.microsoft.com/
vbasic. As of this writing, 2008 editions of the Power Packs are not yet available, but the 2005 versions will
probably work just fine with Visual Basic 2008.

Label name Property settings

VersionDivider (Name): VersionDivider
AutoSize: False
BackColor: Black
Location: 136, 80
Size: 280,1
Text: [Don't add any text]

BackgroundSide (Name): BackgroundSide
AutoSize: False
BackColor: White
Location: 0, 0
Size: 120, 296
Text: [Don't add any text]

Label name Property settings

http://msdn.microsoft.com/vbasic
http://msdn.microsoft.com/vbasic
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 141

If the BackgroundSide label obscures the graphic, right-click on the label and select
Send To Back from the shortcut menu that appears.

The LinkLabel control is similar to the more basic Label control, but you can include
“links” in the text, clickable sections that are similar to the links on a web page.
We’ll use these to display the web site and email address. Add two LinkLabel controls to
the form and use the following settings to configure each control’s properties.

The final control to add is a button that lets the user close the form. Add a Button
control to the form with the following properties.

Forms can be configured so that a press of the Esc key triggers a Button control on
the form, as though the user was clicking on the button instead of pressing the Esc
key. To do this, click on the form surface, and then set its CancelButton property to
ActClose. We had to delay this step until the button was actually added to the form;
the CancelButton property would not have allowed a setting for a nonexistent button.

Well, the form should look pretty good by now. The last thing I like to do is to set up
the tab order, the order in which the user accesses each field on the form when press-
ing the Tab key on the keyboard. To edit the tab order, select the form surface and
then select the View ➝ Tab Order menu command. Each control on the form that
can be given a tab order value will suddenly have a tab order number next to it.

BackgroundDivider (Name): BackgroundDivider
AutoSize: False
BackColor: Black
Location: 120, 0
Size: 1, 296
Text: [Don't add any text]

LinkLabel name Property settings

CompanyWeb (Name): CompanyWeb
AutoSize: True
LinkBehavior: HoverUnderline
Location: 160, 160
Text: http://www.timaki.com

CompanyEmail (Name): CompanyEmail
AutoSize: True
LinkBehavior: HoverUnderline
Location: 160, 176
Text: tim@timaki.com

Button name Property settings

ActClose (Name): ActClose
DialogResult: Cancel
Location: 344, 240
Size: 80, 24
Text: Close

Label name Property settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

142 | Chapter 5: .NET Assemblies

Click on each number or control in order until you get the arrangement you want.
(See Figure 5-6 to view how I ordered the controls.) Finally, select the View ➝ Tab
Order menu command again, or press the Esc key, to leave the tab ordering process.

You can also set the tab order for each control by modifying its TabIndex property
using a zero-based numbering system. However, it’s usually faster to set these values
by clicking on each control in order.

Adding the Code to the Form
Now it’s time to add some real Visual Basic code. Not that we haven’t added any
until now. Everything we did on the form, although we didn’t see it happen, was
converted into Visual Basic source code. Let’s take a quick look. In the Solution
Explorer, click on the Show All Files button, the second button from the left. When
all the files appear, click on the “plus sign” next to Form1.vb, and finally, double-
click Form1.Designer.vb (see Figure 5-7).

Since it’s more than 200 lines of source code bliss, I won’t be printing it here. But
look it over; it’s all pretty interesting. As you dragged-and-dropped controls on the
form and modified its properties, Visual Studio edited this file on your behalf. It’s
part of your form’s class (all forms are classes that derive from System.Windows.
Forms.Form). You can tell by the Partial keyword at the top.

Partial Public Class AboutProgram
 Inherits System.Windows.Forms.Form

Figure 5-6. Nice and orderly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 143

Most of the action happens in the InitializeComponent procedure. When you are fin-
ished looking it all over, close up the designer code and return to the form surface.
To make our form a real and interesting form, we need it to do three things:

• Show the actual version number of the application. This should be determined
and displayed right when the form first appears.

• Jump to the appropriate web site or email recipient when clicking on the link
labels. These events get processed in response to a user action.

• Close the form when the user clicks the Close button. This is also a user-driven
event.

Let’s start with the easy one, closing the form. I’m sure you remember about events
from Chapter 1. Events are blocks of code that are processed in response to some-
thing happening, most often a user action such as a mouse click. All of the actions
we want to perform on this form will be in response to a triggered event (lucky us).
The easiest way to get to the “default” event for a control is to double-click the con-
trol. Try it now; double-click the Close button. When you do, the IDE opens the
source code view associated with the form, and adds an empty event handler (the
ActClose_Click subroutine).

Public Class AboutProgram
 Private Sub ActClose_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActClose.Click

 End Sub
End Class

Every forms-based event (and in fact, most other types of events) in .NET has pretty
much the same arguments: (1) a sender argument that indicates which object trig-
gered this event; and (2) the e argument, which allows sender to supply any additional

Figure 5-7. Accessing the hidden, secret, forbidden code—yeah, it’s out there

Click here

Then here
Double-click here

http://lib.ommolketab.ir
http://lib.ommolketab.ir

144 | Chapter 5: .NET Assemblies

information that may be useful in the event. In this case, the sender argument will be
a reference to the ActClose button, since that’s the object that will generate the Click
event. A button’s Click event doesn’t have any more useful information available, so
e is the default object type, System.EventArgs, which is pretty much just a place-
holder, and the object from which all of the more interesting e argument types
derive.

The name of this event handler is ActClose_Click, but if you want to change it to
FredAndWilma, that’s fine; it won’t mess up anything. But you must keep the Handles
ActClose.Click clause intact. This is the part that links the event handler to the
actual event.

The code to close the form is extremely simple. Enter it now, either by using the first
code snippet for this chapter or by typing it directly.

INSERT SNIPPET

Insert Chapter 5, Snippet Item 1.

' ----- Close the form.
Me.Close()

This statement says, “I’m the AboutProgram form/object, and I command myself to
close.” If you run the program right now (press the F5 key), you close the form by
clicking on the Close button. Since the AboutProgram form was the only form in the
application, closing it automatically ended the entire application, no questions
asked.

OK, back up to the second item, the web-style links. You could go back to the form
surface and double-click on each link label to create an event handler for each label’s
default event (in this case, the LinkClicked event). But you can also add the event
handler subroutines right in the editor, either by typing the code yourself (which is
no fun) or by using the two drop-down lists just above the editor window (see
Figure 5-8).

The Class Name list appears on the left side. Selecting an entry from this list updates
the righthand list, the Method Name list. To add an event handler template for the
CompanyWeb’s LinkClicked event, first select CompanyWeb from the Class Name list,

Figure 5-8. The Class Name and Method Name fields

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 145

and then select LinkClicked from the Method Name list. The following code block
appears in the code window:

Private Sub CompanyWeb_LinkClicked(ByVal sender As Object, _
 ByVal e As System.Windows.Forms. _
 LinkLabelLinkClickedEventArgs) _
 Handles CompanyWeb.LinkClicked

End Sub

This template’s argument list is a little more interesting, since its e argument is an
object of type System.Windows.Forms.LinkLabelLinkClickedEventArgs. The LinkLabel
control allows you to have multiple web-style links in a single control, interspersed
among regular text. The e argument has a Link property that tells you which of the
links in the control was clicked by the user. Since our labels have only a single link,
we won’t bother to check it. We’ll just show the web page immediately anytime the
link is clicked.

INSERT SNIPPET

Insert Chapter 5, Snippet Item 2.

' ----- Show the company web page.
Process.Start("http://www.timaki.com")

The Process object is part of the System.Diagnostics namespace, and Start is one of
its shared members that lets you start up external applications and resources. You
pass it any valid URL and it will run using the user’s default browser or application
for that URL. Let’s try it again with the CompanyEmail’s LinkClicked event. Add in the
template any way you choose and then type or insert the code that starts a new mes-
sage to an email address.

INSERT SNIPPET

Insert Chapter 5, Snippet Item 3.

' ----- Send email to the company.
Process.Start("mailto:tim@timaki.com")

The last event to design is one of the first events called in the lifetime of the form: the
Load event. It’s called just before the form appears on the screen. Double-clicking on
the surface of the form creates an event handler template for the Load event. If you
prefer to use the Class Name and Method Name drop-down lists instead, select
(AboutProgram Events) from the Class Name list before using the Method Name list.

Private Sub AboutProgram_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

146 | Chapter 5: .NET Assemblies

Let’s add code to this event handler that displays the correct version number, using
the version information found in My.Application.Info.Version, an instance of the
System.Version class.

INSERT SNIPPET

Insert Chapter 5, Snippet Item 4.

' ----- Update the version number.
With My.Application.Info.Version
 ProgramVersion.Text = "Version " & .Major & "." & _
 .Minor & " Revision " & .Revision
End With

This code uses a With statement to reduce the amount of typing needed in the
main assignment statement. Inside the With...End With statement, you aren’t
required to retype the object name that appears just after the With keyword—in
this case, My.Application.Info.Version. You can just refer to that object’s members
by typing a dot (.) followed by the name of the member. You could forgo the With
statement and type the full object name each time you wanted to use one of the ver-
sion values, but this way keeps the code cleaner and less overwhelming.

Setting the Version Number
If you run the program, it will display the currently defined version number, “1.0
Revision 0,” as shown in Figure 5-9.

My question—and I hope I can answer it before the paragraph is finished—is,
“Where is that version number defined, and how can it be changed?” It turns out
that I do know the answer: the version values are stored as metadata within the
assembly. Visual Studio includes a form that lets you modify the basic informational
metadata stored in the assembly. To access the form, display the project’s properties
(double-click on My Project in the Solution Explorer), select the Application tab, and
then click on the Assembly Information button (see Figure 5-10).

Our AboutProgram form displays the assembly’s version number, which is set using
the four text fields next to the Assembly Version label. Those four fields represent
the Major, Minor, Build, and Revision numbers of the assembly. Go ahead, set them
to some other values, click OK, and run the program again.

Figure 5-9. The version number from the AboutProgram form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 147

Although this form is convenient, it’s just another example of Visual Studio writing
some of your project’s code on your behalf. Every field on this form gets saved in a
source code file included with your project. To view it, make sure you have the Show
All Files button still selected in the Solution Explorer. Expand the My Project item
using its “plus sign,” and then double-click on the AssemblyInfo.vb item. This file
defines several assembly-specific attributes (which we’ll explore in Chapter 18),
including the following informational entries:

<Assembly: AssemblyTitle("The Library Project")>
<Assembly: AssemblyDescription(_
 "ACME Library Database System")>
<Assembly: AssemblyCompany("ACME")>
<Assembly: AssemblyProduct("Library")>
<Assembly: AssemblyCopyright(_
 "Copyright © 2008 by Tim Patrick")>
<Assembly: AssemblyTrademark("")>
<Assembly: AssemblyVersion("1.0.0.0")>

As you can see, this file has been updated with the values I typed into the Assembly
Information form. Thank you Visual Studio! You see the AssemblyVersion attribute
defined here. If you modify these values, the changes will be reflected in the Assem-
bly Information form, and also in your running application and final compiled
assembly.

Figure 5-10. The Assembly Information form, filled out with some relevant values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

148 | Chapter 5: .NET Assemblies

The last thing we will do for now to the AboutProgram form is to give it a meaningful
filename. Currently, it is named Form1.vb, but AboutProgram.vb would be much
more descriptive. To change the name, select Form1.vb in the Solution Explorer, and
modify the File Name property to “AboutProgram.vb” in the Properties panel. If you
still have all the files showing, you will see Visual Studio also update the names of
the file’s two subordinate files, the designer file (AboutProgram.Designer.vb) and the
resource file (AboutProgram.resx).

Now would be a great time to save your work (File ➝ Save All).

Adding the Main Form
As useful and full featured as the AboutProgram form is, such forms are seldom the
core focus of an application. In the Library Project, this form will be displayed only
when triggered from the “Main” form, so let’s add a simple main form now. In
Visual Studio, select the Project ➝ Add Windows Form menu command. When the
Add New Item form appears, select Windows Form from the list of available items,
and give it a name of “MainForm.vb” before clicking the Add button.

When the new form appears, adjust the following properties as indicated.

From the toolbox, add a Button control to the form with the following properties.

If you’re familiar with Visual Basic development from its pre-.NET days, you will
recognize the “&” character in the button’s text. This special character sets the
“shortcut” for the button. When you press the Alt key and the letter that follows
“&” (in this case, A), the program acts as though you clicked on the button with the
mouse.

Property Setting

(Name) MainForm

FormBorderStyle FixedSingle

MaximizeBox False

Size 576, 459

Text The Library Project

Property Setting

(Name) ActHelpAbout

Size 80, 24

Text &About . . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 149

Double-click the button and add the following code to the click event procedure.

INSERT SNIPPET

Insert Chapter 5, Snippet Item 5.

' ----- Show the About form.
AboutProgram.ShowDialog()

Here we specify a direct reference to the AboutProgram form. Before the 2005 version
of Visual Basic, showing a new form required that you create an instance of the form
class before showing it.

(New AboutProgram).ShowDialog()

That syntax still works, and is the way to go if you need to display multiple copies of
the same form on-screen at the same time. However, the AboutProgram.ShowDialog()
syntax is much cleaner for single-use forms, and more closely reflects how form pre-
sentation was done in Visual Basic since its initial release. Actually, this statement is
using the My namespace. The full statement looks like this:

My.Forms.AboutProgram.ShowDialog()

The My.Forms collection allows you to reference any form within it without having to
say “My.Forms” first. The members of the My.Forms collection represent default
instances of each form in the project.

That’s all the code we need for now, but if you run the program, it will still show
only the AboutProgram form. That’s because the AboutProgram form is set as the
“startup” form. To alter this, open the project’s properties window, select the Appli-
cation tab, and set the “Startup form” field to “MainForm.”

Since the AboutProgram form is now being shown as a “dialog” form (through a call to
its ShowDialog method), its behavior is somewhat different. Each form includes a
DialogResult property whose value is returned by the ShowDialog method when the
form closes. Each button on your form can be configured to automatically set this
property and close the form. The Close button on the AboutProgram form does just
that; its own DialogResult property is set to Cancel, which is assigned to the form’s
DialogResult property when the user clicks the Close button. As a side effect, any-
time a value (other than None) gets assigned to the form’s DialogResult property, the
form closes.

The upshot of that drawn-out paragraph is that you can now delete the event hand-
ler for the Close button’s Click event, and the button will still close the form. Delete
the ActClose_Click procedure from the AboutProgram’s source code, run the pro-
gram, and see what happens. The Close button still closes the form, even without the
event handler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

150 | Chapter 5: .NET Assemblies

You could also have left the procedure there, cleared the Close button’s DialogResult
property, and added the following statement to that button’s event handler:

Me.DialogResult = Windows.Forms.DialogResult.Cancel

That brings to three the number of different ways we can close the AboutProgram
form. It’s the flexibility of .NET at work; there are many different ways to accom-
plish the same task. So, be creative!

Extra Credit: Adding an Icon
If you’ve still got a little energy left, we can make one more change before this chap-
ter runs out of paper: adding a custom icon to the main form. Just follow these step-
by-step instructions:

1. Display the main form by double-clicking on the MainForm.vb item in the Solu-
tion Explorer.

2. Select the form’s surface.

3. Select the form’s Icon property in the Properties panel.

4. Click the “...” button in this property, and search for the Book.ico file in the
Chapter 5 Before subdirectory of the book’s installation directory. You can also
use any other .ico file.

Save Your Work
Make sure you always save changes. By default, Visual Studio is configured to save
your changes every time you run your program, but I like to save often just in case.

This chapter included a lot of manual instruction because there were so many cool
Visual Studio features to play with; I just couldn’t help myself. We’ll probably keep
up this pace somewhat for a few chapters, but eventually there will be so much code
that a lot of it will come from the code snippets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

151

Chapter 6 CHAPTER 6

Data and Data Types6

Data is a funny word—although not as funny as datum. Our minds are filled with
data: the useful and useless trivia that clogs thought; the millions of memories that
keep superficial conversations going strong. But the word data rarely comes up in
conversation. Unless you are a computer junkie, or you hang around the office all
hours of the day or night waiting for reports of crunched numbers, you never have a
need to use the term. I have never been asked to lend someone a cup of data. My
friends never try to judge my health by asking, “How’s your data going?” And you
almost never hear it used as a character name in popular science fiction television
shows.

Despite its lack of usage in everyday communication, data is extremely important. In
the programming world, it is everything. In this chapter, we will discuss how Visual
Basic uses and manipulates data within your applications, and how you can master
the tools that make this manipulation possible.

The Nature of Computer Data
In Chapter 2, I mentioned how all data in a computer eventually breaks down to
individual bits, electrical impulses that represent either 1 or 0, on or off, true or false.
Since our decimal number system requires more than just those two values, computers
work in the world of binary—a number system limited to only the numbers 0 and 1.
Fortunately, it’s pretty easy to represent basic decimal integer numbers using binary
notation. You probably remember Mrs. Green back in second grade telling you
about the different place values of multidigit numbers, shown in Figure 6-1.

The same type of diagram can be used for binary numbers; only the position names
and values are changed. For convenience, we call these positions by their decimal
names, or use the related powers of two. All of this is shown in Figure 6-2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

152 | Chapter 6: Data and Data Types

To figure out what this number is in decimal, just add up the columns. Let’s see, there’s
one each of fours, eights, and sixty-fours, and none of the rest; 4 + 8 + 64, that’s 76.
Since any binary digit can never be more than 1, the counting is pretty simple. I showed
an 8-bit (8-digit) binary example here—which can handle the numbers 0 through 255—
but you can represent larger decimal numbers by adding more binary digits.

That’s just fine for integer values, but how do you represent decimal and fractional
numbers? What about negative numbers; where do they fit in this binary system?
And it’s not just numbers. My computer can process text data, arrays of numbers,
graphical images, and customer records. How are those stored in binary form?

To handle myriad data forms, every computer includes a small community of Lillipu-
tians who are good at math, language, and art. No wait, I think that’s from a story
I’m reading my son at bedtime. Oh yes, now I remember. Computers implement
data types to handle all the various forms of data to be managed. Each data type acts
as an interpreter between a collection of bits and a piece of information that a com-
puter user can better utilize and understand.

All data types ultimately store their content as individual bits of data, but they differ
in how those bits get interpreted. Imagine a data type named Vitamin that indicated
which vitamins were included in a food product. Figure 6-3 shows how the 8 bits
used earlier could be assigned and interpreted as vitamins.

With such a data type, you could assign vitamin values to food items tracked in your
application. (This is just a sampling of vitamins; you would require more bits to han-
dle all of the vitamins. This example should not be construed as an offer of medical
services. Consult your doctor.)

Figure 6-1. The fruits of Mrs. Green’s labors

Figure 6-2. The positions of an “8-bit” (8-digit) binary number

2,135

Thousands

Hundreds

Tens

Ones

01001100

Sixteens (16=24)

Thirty-twos (32=25)

Sixty-fours (64=26)

One-twenty-eights (128=27)

Eights (186=23)

Fours (4=22)

Twos (2=21)

Ones (1=20)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data in .NET | 153

For an example that is more in tune with Visual Basic, take that number 76 we were
discussing earlier. It’s easy enough to convert it to binary representation, as in
01001100. The .NET Framework includes a few data types that do this conversion
automatically, varying only by the number of binary digits (bits) they can handle. In
the computer world, 76 also represents a letter of the alphabet—the capital letter L.
That’s because there’s a data type that establishes a dictionary between binary val-
ues and alphabetic (and other) characters. Windows programs have long used ASCII
(American Standard Code for Information Interchange) as its number-to-character
dictionary. This 8-bit system documents how to convert the numbers 0 through 255
into all the various characters used in English, including punctuation and other mis-
cellaneous characters. Another dictionary, Unicode, uses 16 bits of data to handle
around 65,000 different characters. .NET uses Unicode for its character and “string”
data types.

Another rule-bearing data type is Boolean, which uses a single bit to represent either
True (a bit value of 1) or False (0). Negative integers, floating-point and fixed-point
decimal values, and dates and times round out the kinds of basic data most often
managed by computers and their applications. More complex data structures can be
built up from these basic types.

Data in .NET
All data types in .NET are implemented as classes within the System namespace. One
such data type is System.Byte, which implements an 8-bit integer value, just like we
discussed earlier. It holds integer values from 0 to 255. These values are always
stored using 8 bits of binary data, but they magically appear in decimal form when-
ever you ask them to be presented.

The .NET Framework includes 15 core interpretive data types: 8 for integers, 3 for
decimal numbers, 2 for character data, a combined data type for dates and times,
and a Boolean data type.

Figure 6-3. Loaded with vitamins B6, D, and E

01001100

Vitamin B1

Vitamin B2

Vitamin B6

Vitamin B12

Vitamin E

Vitamin D

Vitamin C

Vitamin A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

154 | Chapter 6: Data and Data Types

Integer Data Types
Based on the number of available data types (8 out of the 15 core types), you would
think that most programmers worked with integers all day long—and you’d be right.
Whether it’s actual user data or loop counters or status codes or the storage method
for enumerated data types, integers show up everywhere in .NET code.

The range of values for an integer data type depends directly on the number of
binary digits managed by that data type; the more digits, the bigger the range. Also,
half of the integer data types store both positive and negative values (called “signed”
integers), whereas the other half support only positive numbers (“unsigned”).
Table 6-1 lists the eight integer data types included with .NET, and their associated
ranges.

Looking at these types another way, Table 6-2 shows the relationship between the
types and their number of bits and range style.

Decimal Data Types
Once upon a time, life was happy. Strangers said hello when they met you on the
street. Succulent fruit burst forth from the trees. In short, God was in His heaven,
and everything was right with the world—and then along came fractions. At first, they

Table 6-1. Integer data types in .NET

.NET data type Bits Style Range of values

System.Byte 8 Unsigned 0 to 255

System.SByte 8 Signed –128 to 127

System.Int16 16 Signed –32,768 to 32,767

System.UInt16 16 Unsigned 0 to 65,535

System.Int32 32 Signed –2,147,483,648 to 2,147,483,647

System.UInt32 32 Unsigned 0 to 4,294,967,295

System.Int64 64 Signed –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

System.UInt64 64 Unsigned 0 to 18,446,744,073,709,551,615

Table 6-2. Bits and signed status for integer .NET data types

8-bits 16-bits 32-bits 64-bits

Signed SByte Int16 Int32 Int64

Unsigned Byte UInt16 UInt32 UInt64

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data in .NET | 155

didn’t seem that bad, since so many of them could be easily converted into a plain
numeric form by inserting a decimal point in the number: 1/2 became 0.5; 1/4 became
the longer yet smaller 0.25; 1/3 became 0.333333333333333333333333333333333333
333
333...
hey, what’s going on here? I can’t write all those 3s. The book would be 2,000 pages,
or more. Eventually people discovered that in many cases, it just wasn’t worth the
bother of writing out all the 3s, so they just stopped at some point, as in 0.33333333.
It wasn’t perfectly accurate, but it was good enough.

This is what life is like for computer-based decimal values. You can have perfect
accuracy—up to a point. After that, you have to settle for good enough. The .NET
Framework includes three decimal data types. Two of them accept limited accuracy
in exchange for a large range of values. The third has perfect accuracy, but its range
is more limited. Table 6-3 documents these three types.

Table 6-3. An accurate list of the inaccurate decimal data types

.NET data type Accuracy Range Description

System.Decimal Perfect Limited The Decimal data type provides around 28 combined digits on
both sides of the decimal point. And although it may truncate
after the last available digit position, it is accurate within those
digits. Because of this, it is perfect for working with money.

The more digits you have on the left of the decimal, the fewer
you have available for the right of the decimal, and vice versa.
For numbers with no decimal portion, the range is from
–79,228,162,514,264,337,593,543,950,335 to
79,228,162,514,264,337,593,543,950,335. (That’s 29 digits, but
who’s counting?) For numbers with only zero (0) to the left of the
decimal, the range is –0.0000000000000000000000000001 to
0.0000000000000000000000000001.

System.Single Imperfect Big TheSingle data type offers a much larger range thanDecimal
does, but it does have some accuracy problems. Sometimes when
you do a complex calculation that you know should result in zero,
the actual calculated result might be 0.0000000000023. It’s close
to zero, but not exactly zero. But you can use very large or very
small numbers. For negative values, the range is –3.402823E+38

to –1.401298E–45; for positive values, its range is 1.401298E–45

to 3.402823E+38.

System.Double Imperfect Huge The Double data type is just like the Single data type, but
with a bigger attitude—I mean a larger range. For negative
values, the range is –1.79769313486231E+308 to
–4.94065645841247E–324; for positive values, the range is
4.94065645841247E–324 to 1.79769313486232E+308.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

156 | Chapter 6: Data and Data Types

Character Data Types
Hey, check this out. ktuefghbiokh. Pretty cool, eh? That’s the power of a computer in
action managing text data. So efficient; so graceful; so lskjdfljsdfjl. Although comput-
ers are really number machines, they handle text just as well. Of course, it’s really
just you doing all the wordsmithing. In fact, the computer isn’t even smart enough to
tell the difference between numbers and letters; it’s all bits to the CPU. Pretty mind-
less, if you ask me. I mean, what’s the use of having all that computing power if you
can’t even think?

Despite all their speed and technology, computers are still just lumps of silicon
wrapped up in a nice package. The computer I’m typing on doesn’t even know that
I’m insulting it; I can type these things on and on, and there’s nutten that thiz kom-
putre cann due about itt.

The framework includes two text-related data types: System.Char and System.String.
The Char data type holds a single character, no more, no less. At 16 bits, it holds any
of the thousands of Unicode characters.

The String data type allows up to about two billion Unicode characters to be
“strung” together into one long text block. Strings in .NET are immutable; once you
create a string, it cannot be changed in any way. If you want to add text to an exist-
ing string, .NET will instead create a brand-new string built from the original two
immutable strings.

Although Char and String are different data types, you can easily move data back and
forth between them, since they are both based on basic Unicode characters.

Date and Time Data Type
The System.DateTime data type lets you store either date or time values (or both) as
data. Internally, DateTime is just a simple integer counter that displays a converted
date or time format when needed. As a number, it counts the number of “ticks” since
12:00 a.m. on January 1, 1 AD. Each “tick” is exactly 100 nanoseconds, so it’s pretty
precise. The maximum allowed date is December 31, 9999 in the Gregorian calendar.

Boolean Data Type
The System.Boolean data type represents the true essence of computer data: the bit. It
holds one of two possible values: True or False. Shockingly, the data type actually
requires between 2 and 4 bytes of data space to keep track of that single bit of data.

It turns out that Boolean values are very important in programs. As a developer, you
are always testing to see whether various conditions are met before you process a
block of code. All of these conditions eventually boil down to Boolean values and
operations. .NET even has ways to easily migrate data between integer values and
the Boolean data type. In such conversions, 0 becomes False, and the world of all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data in .NET | 157

other possible values becomes True. When moving from Boolean to an integer equiv-
alent, False becomes 0 and True becomes –1. (If you ever use the C# language, you’ll
find that it converts True to 1, not –1. Internally in .NET, True does convert to 1, but
for historical reasons, Visual Basic uses –1. This difference normally isn’t a problem
unless you store Boolean values as integers in a disk file and expect both Visual Basic
and C# programs to interpret the data correctly.)

The System.Object Class
You already knew that .NET is an object-oriented development environment. What
you probably didn’t know is that some pranksters at Microsoft placed a bet to see
whether they could make the entire .NET system one big derived class. Well, the
group that said it could be done won the bet. Everything in .NET—all code and all
data—is derived from a single base class: System.Object. By itself, this class doesn’t
have too many features. It can tell you its name, its type, and whether two instances
of an object are in fact one and the same object. Other than that, it isn’t useful for
much except to be used as a starting point for all other classes and types.

Because all classes in .NET—including all data types—derive from System.Object,
you can treat an instance of any class (or data type) as Object. The data will remem-
ber what type it really is, so if you have a System.Int32 posing as System.Object, you
can change it back to System.Int32 later.

Value Types and Reference Types
Back in Chapter 1, you read about the difference between value types and reference
types: value types are buckets that contain actual data, and reference types contain
instructions on where you can find the actual data. In general, value types contain
simple and small data values, whereas reference types point to large and complex
data blocks. This isn’t always true, but for most data you work with, it will be true.

System.Object is a reference type from which all other types and classes derive. This
includes all the core data types, so you would think that they would be reference
types as well. But there is another class stuck in between System.Object and most of
the Visual Basic data types. This class, System.ValueType, implements the basic defi-
nition and usage of a value type. Table 6-4 lists some of the differences between
value and reference types.

Table 6-4. Value type and reference type usage

Value types Reference types

Ultimately derive fromSystem.ValueType, which in turn
derives from System.Object.

Ultimately derive from System.Object.

Derived core data types: Boolean, Byte, Char,
DateTime, Decimal, Double, Int16, Int32, Int64,
SByte, Single, UInt16, UInt32, UInt64.

Derived core data type: String.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

158 | Chapter 6: Data and Data Types

(In addition to classes and structures, Visual Basic also defines “modules.” The .NET
documentation identifies modules as reference types, but you can’t create instances
of them.)

A value type can only contain data of its own type, but reference types can point to
derived instances. This is important in .NET, since it was designed to allow a System.
Object instance to refer to any data in an application. System.Object instances can
refer to either value type or reference type data. For reference types, this is easy to
understand since that instance will just point to some derived instance of itself. But if
you assign a value type to a System.Object reference, .NET has to mark that instance
in a special way to indicate that a reference type contains a value type. This process is
called boxing, and the reverse process is called unboxing. Although boxing is useful,
and sometimes essential, it comes with a substantial performance hit.

Visual Basic Data Types
All the data types implemented in the Visual Basic language are wrappers for the core
.NET data types. Only some of the names have been changed to protect the inno-
cent. Table 6-5 lists the Visual Basic data types and their .NET equivalents.

Provide support for Visual Basic “structures.” Provide support for Visual Basic “classes.”

Enumerations are derived as follows: System.
Object←System.ValueType←System.Enum.

Delegates, used as references to class methods, are derived
as follows: System.Object←System.Delegate. One
type of delegate, the “multicast delegate,” is further derived
through System.MulticastDelegate.

Value types cannot derive from other classes or structures,
nor can further structures derive from them.

Reference types can be derived from other classes, and can be
used as base classes.

Instances cannot be set to Nothing. (Using a nullable type
overcomes this limitation.)

Instances can be set to Nothing.

Instances can only contain data of the specified type. For
instance, System.Int32 instances can only contain 32-bit
signed integer data.

Instances usually refer to data of their defined type, but
an instance can also point to a derived type. For example, an
instance of System.String could refer to any data that
used System.String as a base class.

Do not go through the full .NET garbage collection process. Are destroyed through garbage collection.

Table 6-5. Visual Basic data types and related .NET types

Visual Basic type .NET type

Boolean System.Boolean

Byte System.Byte

Char System.Char

Date System.DateTime

Table 6-4. Value type and reference type usage (continued)

Value types Reference types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Literals | 159

All the Visual Basic data types are fully interchangeable with their .NET equivalents.
Any instance of System.Int32 can be treated as though it were an instance of Integer,
and vice versa.

Literals
The quickest way to include values of a particular data type in your Visual Basic code
is to use a literal. You’ve already seen literals in action in this book. Chapter 1
included a literal in its sample project.

MsgBox("Hello, World!")

This call to the MsgBox function includes a String literal. String literals always appear
within a set of double quotes. Most numeric literals appear with a data-type-defining
character on the end of the literal, but there are other variations. Table 6-6 lists the
different literal values you can include in your code.

Decimal System.Decimal

Double System.Double

Integer System.Int32

Long System.Int64

Object System.Object

SByte System.SByte

Short System.Int16

Single System.Single

String System.String

UInteger System.UInt32

ULong System.UInt64

UShort System.UInt16

Table 6-6. Literals supported by Visual Basic

Literal type Example Description

Boolean True The Boolean data type supports two literal values: True and False.

Char "Q"c Single-character literals appear in double quotes with a trailing character c.
A literal of type Char is not the same as a single-character literal of type
String.

Date #11/7/2005# Date or time literals appear between a set of number signs. You can
include dates, times, or a combination of both. The date or time values can
be in any format recognized by Windows, although Visual Studio may
reformat your date literal for conformity with its own standards.

Decimal 123.45D
123.45@

Floating-point values of type Decimal are followed by a capital D, or the
character @.

Table 6-5. Visual Basic data types and related .NET types (continued)

Visual Basic type .NET type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

160 | Chapter 6: Data and Data Types

Constants
Literals are nice, but it isn’t always clear what they mean. Encountering the number
12 in a formula, for instance, might cause the formula to generate correct results, but
it would still be helpful to know what 12 means. Is it the number of months in a
year, the number of hours in a day, the minimum number of teeth in a mouth to eat
steak, or something even more sinister?

Constants provide a way to assign meaningful names to literal values. They are
treated a lot like literal values, but once defined, they can be used over and over
again in your code. Each use of a literal value, even if it has the same value, repre-
sents a distinct definition and instance of that value.

In Visual Basic, constants are defined using the Const keyword.

Const MonthsInYear As Short = 12

This constant definition has the following parts:

A name
In this case, the name is MonthsInYear.

Double 123.45R
123.45#

Floating-point values of type Double are followed by a capital R, or the
character #. Also, if you use a numeric literal with a decimal portion, but
with no trailing data type character, that literal will be typed as a Double.

Hexadecimal &HABCD You can include hexadecimal literals in your code by starting the value
with the “&H” character sequence, followed by the hex digits.

Integer 123.45I
123.45%

Integral values of type Integer are followed by a capital I, or the charac-
ter %. Also, if you use a numeric literal that falls in the range of an
Integer, but with no trailing data type character, that literal will be
typed as an Integer.

Long 123.45L
123.45&

Integral values of typeLong are followed by a capital L, or the character &.
Also, if you use a numeric literal that falls in the range of a Long and out-
side the range of an Integer, but with no trailing data type character,
that literal will be typed as a Long.

Octal &O7654 You can include octal literals in your code by starting the value with the
“&O” character sequence, followed by the octal digits.

Short 123.45S Integral values of type Short are followed by a capital S.

Single 123.45F
123.45!

Floating-point values of type Single are followed by a capital F, or the
character !.

String "A ""B"" C" String literals appear within a set of double quotes, with no special charac-
ter following the closing quote. Use two quote characters within the string
literal to embed a single quotation mark.

Table 6-6. Literals supported by Visual Basic (continued)

Literal type Example Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enumerations | 161

A data type
This example defines a Short constant. The data type always follows the As key-
word. If you leave out this As clause, the constant’s data type will be whatever
the assigned literal would have been on its own. Only the following data types
can be used for constants: Boolean, Byte, Char, Date, Decimal, Double, Integer,
Long, Object, SByte, Short, Single, String, UInteger, ULong, UShort, or the name
of an enumeration (discussed in the next section).

An initializer
The initializer assigned here is 12. Once assigned, this value cannot be altered
while your code is running. Constants are always value types, not reference
types. Initializers are usually simple literals, but you can also include simple
calculations:

Const Seven As Integer = 3 + 4

An access level
The definition of MonthsInYear listed here represents the typical format of a con-
stant definition included within a code procedure. You can also define constants
outside procedures, but still within a class or other type. When you do this, you
generally add an access modifier keyword just before the Const keyword. This
keyword indicates how much code will be able to use the constant. I’ll describe
access modifiers a little later, in the section on variables. Constants defined
within a procedure can only be used within that procedure.

Once you define a constant, you can use it anywhere you would use an equivalent
literal.

Const GreatGreeting As String = "Hello, World!"
...Later...
MsgBox(GreatGreeting)

Enumerations
Enumerations, one of the core .NET types, allow you to group together named,
related integer values as a set. Once bound together, the enumeration can be used
like any other data type; you can create variables that are specific instances of an
enumeration.

Enumerations are a multiline construct; the first line defines the name and under-
lying data type of the enumeration. Each enumeration member appears on a sepa-
rate line, ending with a final closing End Enum line.

01 Enum CarType As Integer
02 Sedan = 1
03 StationWagon = 2
04 Truck = 3
05 SUV = 4
06 Other = 5
07 End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

162 | Chapter 6: Data and Data Types

The declaration line (line 01) includes the Enum keyword, the name of the enumera-
tion (CarType), and the underlying data type (Integer). The As data type clause is
optional; if you leave it off, the enumeration defaults to Integer. If you do supply a
data type, it must be one of the following: Byte, Integer, Long, SByte, Short, UInteger,
ULong, or UShort.

Each member of the enumeration (lines 02 to 06) must include at least a member
name (such as Sedan). You can optionally assign a numeric value to some or all of the
members, as I have done in the sample. If a member lacks an assignment, it is set to
one more than the previous member. If none of the members have an assigned value,
the first is assigned 0, the next 1, and so on.

Once defined, enumeration members act a lot like integer constants; you can use
them anywhere you would normally use a literal or constant. When referencing the
members of an enumeration in your code, include both the enumeration name and
the member name.

CarType.Sedan

The Enum statement cannot be used within a method or procedure. Instead, you
define an enumeration as a member of a type (class, structure, or module), or as its
own standalone type, just like a class. The .NET Framework includes many useful
predefined enumerations intended for use with framework features. For instance, the
System.DayOfWeek enumeration includes members for each day of the week.

Variables
Literals are nice, and constants and enumerations are nicer, but none of them can be
altered once your program starts. This tends to make your application rigid and
inflexible. If all your customers are named “Fred” and they only place orders for
$342.34, it probably won’t be much of a limitation. But most users want more vari-
ety in their software. Variables are named containers for data, just like constants, but
their contents can be modified throughout the run of an application. Also, they can
contain both value types and reference types. Here’s the basic syntax for defining a
new variable:

Dim customerName As String

The Dim keyword—originally from the word dimension—defines a new variable; in
this case, a variable named customerName with a data type of String. This named con-
tainer is ready to hold any String value; assign to it string literals, other string vari-
ables, or the return value from functions that generate strings. Since it is a reference
type, it can also be set to Nothing, a special Visual Basic value and keyword that
means “this reference type is empty, really empty.”

customerName = Nothing ' Nothing
customerName = "Fred" ' Literal
customerName = GetCustomerName(customerID) ' Function result

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variables | 163

All variables contain their default value until set to something else. For reference
types and nullable types, the default is Nothing; for numeric values, the default is 0.
Booleans default to False. You can include an initial assignment as part of the Dim
statement to override the default assignment.

Dim countdownSeconds As Short = 60
Dim processingDate As Date = Today
Dim customerName As String = GetCustomerName(customerID)

The last line in that code block shows a reference type—String—being assigned the
String result of a function. You can also assign a brand-new instance of a reference
instance to a reference type variable. And it’s new. That is, it uses the special New key-
word, which says, “I’m creating a new instance of the specific data type.” There are a
few different variations, but they all produce the same results.

' ----- One-line variation.
Dim someEmployee As New Employee

' ----- Another one-line variation.
Dim someEmployee As Employee = New Employee

' ----- Two-line variation.
Dim someEmployee As Employee
someEmployee = New Employee

Remember that reference types are buckets that contain directions for locating the
actual data. When a reference variable first springs into existence, it contains
Nothing. That is, the bucket contains no instructions at all since there is no related
data stored anywhere. When you assign a new instance to a reference type variable,
that instance gets stored somewhere in memory, and instructions for locating that
data are dumped into the bucket. In the previous code block, each use of the New key-
word creates a new data instance somewhere in memory. This data’s location is then
assigned to the someString variable.

Many classes include one or more constructors, initialization routines that set up the
initial values of the instance. You can call a specific constructor through the New
clause. The String data type includes constructors that let you build an initial string.
One of these special constructors lets you create a new string containing multiple
copies of a specific character. The following statement assigns a string of 25 asterisks
to the lotsOfStars variable:

Dim lotsOfStars As New String("*"c, 25)

Constructors are discussed in detail in Chapter 8.

Dim statements can appear anywhere in a procedure, but by tradition they appear
right at the start of a procedure, before any other logic statements.

Sub MyProcedure()
 Dim myVariable As Integer
 ' ----- Additional code goes here...
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

164 | Chapter 6: Data and Data Types

As with constants, variables can be defined either within a procedure, or outside a
procedure but within a type. (Variables and constants declared outside a procedure
are known as fields. Variables and constants declared inside a procedure are known
as local variables and local constants, respectively.) The Dim keyword is always used
with in-procedure variable declarations. At the type level, the Dim keyword is
replaced by one of the following access modifiers:

Private
Private variables can be used by any member or procedure within the type, but
nowhere else. If you derive a new class from a base class that includes a private
type variable, the code in that derived class will have no access at all to that
Private variable; it won’t even know it exists.

Friend
Friend variables are private to an assembly. They can be used by any code in
their related type, but also by any code anywhere in the same assembly. Now
that’s friendly.

Public
Public variables are available everywhere. It is possible to write an application or
component that exposes its types to code beyond itself. Anything marked Public
can be exposed in this way.

Protected
Protected variables are like Private type variables, but code in derived classes
can also access them. You can use the Protected keyword only in a class defini-
tion; it doesn’t work in a structure or module.

Protected Friend
Protected Friend variables combine all the features of Friend and Protected.
They can be used only in classes.

A single class or type may contain both fields and local variables and constants.

Class MyClass
 ' ----- Here's a field.
 Private InternalUseOnly As Boolean

 Sub MyProcedure()
 ' ----- Here's a local variable.
 Dim myVariable As Integer
 End Sub
End Class

There are other syntax variations to the Dim statement, some of which I will discuss
later in this chapter and in other chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variable and Constant Naming Conventions | 165

Scope and Lifetime
When you define a variable within a procedure, it has procedure-level scope. This
means you can use the variable anywhere within that procedure. Your procedure will
likely have “block statements,” those statements, such as For...Next and If...Then,
that require more than one line of source code to complete. If you add a Dim state-
ment between the starting and ending lines of one of these statements, that declared
variable will have only block-level scope. It will be available only within that block of
the procedure.

For counter = 1 To 10
 Dim processResult As Integer
 ' ----- More code here.
Next counter
MsgBox(processResult) ' This line will fail

This code declares processResult within the For...Next block. So, it’s available only
for use inside that block; any attempted use of processResult outside the For block
generates an immediate error.

The lifetime of a procedure-level variable begins when the code first enters that pro-
cedure, and ends when the code exits the procedure. This is true for both procedure-
level and block-level variables. This means that if you assign a block-level variable
some value before exiting the block, it will still have that value if you reenter that
block during the same procedure call.

For fields (class-level variables), the scope depends on the access level used when
declaring the variable. The lifetime of a field begins when the class instance is cre-
ated in code, and ends when the instance is destroyed or goes completely out of use.

Variable and Constant Naming Conventions
The names that you give to your variables will not have that much impact on how
your application runs on the user’s workstation, but they can affect the clarity of the
source code. In the days before .NET, many Windows programming languages used
a system called Hungarian Notation to craft variable names. Such names helped to
communicate information about the data type and usage of a variable to anyone
reading the source code. Unfortunately, the rules used to define Hungarian variable
names were somewhat complex, and varied not only among programming lan-
guages, but also among programmers using the same language.

When Microsoft released .NET back in 2002, its documentation included various pro-
gramming recommendations. One of those recommendations was “Stop using the Java
programming language.” Another recommendation encouraged programmers to cease

http://lib.ommolketab.ir
http://lib.ommolketab.ir

166 | Chapter 6: Data and Data Types

from using Hungarian Notation, and instead embrace a new system that used casing
rules to differentiate variables. The rules state that all variable names should employ
mixed-case names (where each logical word in the variable name starts with a capi-
tal letter and continues with lowercase letters). The only differentiation comes in the
capitalization of the initial letter:

• Set the first letter of all local variables and all method parameters to lowercase.
This is known as Camel Casing.

• Set the first letter of all fields, methods, type members (including controls), and
types to uppercase. This is known as Pascal Casing.

In the interest of full disclosure, I must tell you that I modified the original recom-
mendations slightly from the documentation supplied with Visual Studio. The origi-
nal rules were a little more complex when it came to field and method parameter
names. Personally, I find the two rules listed here to be adequate for my needs.

You might give a local variable a name like lookInThisVariable, which capitalizes the
first letter of each word, but not the initial letter. If you defined this variable as a field
instead, you would change its name to LookInThisVariable, capitalizing the first letter.

Local Type Inference
Visual Basic is a strongly typed language. This means that all data values are either
Integer, or Short, or String, or some other specific data type. Even the default Object
data type is considered strong. To create a variable without a data type would be
weak, and Visual Basic programmers are anything but weak.

Normally, you specifically tell Visual Basic what data type to use for a variable. But a
new Visual Basic 2008 feature called local type inference lets the Visual Basic com-
piler join in the fun of assigning data types to variables. And what fun it is!

In standard variable declaration, you include the data type with an As clause.

Dim whatAmI As String
whatAmI = "You're a string, and nothing but a string."

But with local type inference, Visual Basic will figure out the data type all on its own
when you leave off the As clause.

Dim thing1
Dim thing2
thing1 = "This is a string."
thing2 = 25
MsgBox(thing1.GetType.ToString)
MsgBox(thing2.GetType.ToString)

When you run this code, two messages appear to tell you the strong-type-name of
each thing: System.String and System.Int32, respectively. (Don’t worry about the
“GetType” stuff for now. It just identifies the true type of the things.) Visual Basic
acts as though the first two lines looked like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators | 167

Dim thing1 As String
Dim thing2 As Integer

Once Visual Basic identifies the data type for one of the as-of-yet-untyped variables,
that variable is glued to that type. The following code will fail:

Dim thing1
thing1 = "This is a string."
thing1 = 25 ' This fails, since thing1 is a string.

As the name implies, local type inference works only with local variables. Class fields
must be declared with a specific data type. Other restrictions apply. See dealer for
details.

You can turn the type inference system on and off using the Option Infer statement
at the top of each source code file.

Option Infer On

You can also set this on a project-wide basis through the Compile tab of the project
properties.

Type inference exists to support the new LINQ features discussed in Chapter 17.
Although you can let Visual Basic infer most or all of the variables in your applica-
tion, it is not a good thing to do in practice. As smart as the compiler is, it doesn’t
think deeply about the overall logic of your application, and it may make different
data typing choices than you would. For instance, Visual Basic may infer a variable
as Integer, even though you plan to stuff large Long values into it later. If you have
the opportunity to include meaningful and accurate As clauses with your Dim state-
ments, do it. Because I said so. Because it’s the right thing to do.

Operators
Visual Basic includes a variety of operators that let you manipulate the values of your
variables. You’ve already seen the assignment operator (=), which lets you assign a
value directly to a variable. Most of the other operators let you build up expressions
that combine multiple original values in formulaic ways for eventual assignment to a
variable. Consider the following statement:

squareArea = length * width

This statement includes two operators: assignment and multiplication. The multipli-
cation operator combines two values (length and width) using multiplication, and
the assignment operator stores the product in the squareArea variable. Without oper-
ators, you would be hard-pressed to calculate an area or any complex formula.

There are two types of non-assignment operators: unary and binary. Unary opera-
tors work with only a single value, or operand. Binary operators require two oper-
ands, but result in a single processed value. Operands include literals, constants,
variables, and function return values. Table 6-7 lists the different operators with
usage details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

168 | Chapter 6: Data and Data Types

Table 6-7. Visual Basic non-assignment operators

Operator Description

+ Addition. Adds two operands together, producing a sum. Some programmers also use this operator
to perform string concatenation, but it’s better to join strings using another operator (&) specifically
designed for that purpose.

Syntax: operand1 + operand2

Example: 2 + 3

+ Unary plus. Ensures that an operand retains its current sign, either positive or negative. Since all
operands automatically retain their sign, this operator is usually redundant. It may come in handy
when we discuss “operator overloading” in Chapter 12.

Syntax: +operand

Example: +5

- Subtraction. Subtracts one operand (the second) from another (the first), and returns the difference.

Syntax: operand1 – operand2

Example: 10 – 4

- Unary negation. Reverses the sign of its operand. When used with a literal number, it results in a
negative value. When used with a variable that contains a negative value, it produces a positive
result.

Syntax: –operand2

Example: –34

* Multiplication. Multiplies two operands together, and returns the product.

Syntax: operand1 * operand2

Example: 8 * 3

/ Division. Divides one operand (the first) by another (the second), and returns the quotient. If the sec-
ond operand contains zero, a divide-by-zero error occurs. (When working with Single and
Double values, divide-by-zero actually returns special “infinity” or “not a number” indicators.)

Syntax: operand1 / operand2

Example: 9 / 3

\ Integer division. Divides one operand (the first) by another (the second), and returns the quotient,
first truncating any decimal portion from that result. If the second operand contains zero, a divide-
by-zero error occurs. (See the caveat listed with the / operator.)

Syntax: operand1 \ operand2

Example: 9 \ 4

Mod Modulo. Divides one operand (the first) by another (the second), and returns the remainder as an
integer value. If the second operand contains zero, a divide-by-zero error occurs. (See the caveat
listed with the / operator.)

Syntax: operand1 Mod operand2

Example: 10 Mod 3

^ Exponentiation. Raises one operand (the first) to the power of another (the second).

Syntax: operand1 ^ operand2

Example: 2 ^ 8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators | 169

& String concatenation. Joins two operands together, and returns a combined string result. Both oper-
ands are converted to their String equivalent before being joined together.

Syntax: operand1 & operand2

Example: "O" & "K"

And Conjunction. Performs a logical or bitwise conjunction on two operands, and returns the result. For
logical (Boolean) operations, the result will be True only if both operands evaluate to True. For bit-
wise (integer) operations, each specific bit in the result will be set to 1 only if the corresponding bits
in both operands are 1.

Syntax: operand1 And operand2

Example: isOfficer And isGentleman

Or Disjunction. Performs a logical or bitwise disjunction on two operands, and returns the result. For
logical (Boolean) operations, the result will be True if either operand evaluates to True. For bitwise
(integer) operations, each specific bit in the result will be set to 1 if the corresponding bit in either
operand is 1.

Syntax: operand1 Or operand2

Example: enjoyMountains Or enjoySea

AndAlso Short-circuited conjunction. This operator is equivalent to the logical version of the And operator,
but if the first operand evaluates to False, the second operand will not be evaluated at all. This
operator does not support bitwise operations.

Syntax: operand1 AndAlso operand2

Example: isOfficer AndAlso isGentleman

OrElse Short-circuited disjunction. This operator is equivalent to the logical version of the Or operator, but if
the first operand evaluates to True, the second operand will not be evaluated at all. This operator
does not support bitwise operations.

Syntax: operand1 OrElse operand2

Example: enjoyMountains OrElse enjoySea

Not Negation. Performs a logical or bitwise negation on a single operand. For logical (Boolean) opera-
tions, the result will be True if the operand evaluates to False, and False if the operand evalu-
ates to True. For bitwise (integer) operations, each specific bit in the result will be set to 1 if the
corresponding operand bit is 0, and set to 0 if the operand bit is 1.

Syntax: Not operand1

Example: Not readyToSend

Xor Exclusion. Performs a logical or bitwise “exclusive or” on two operands, and returns the result. For
logical (Boolean) operations, the result will be True only if the operands have different logical val-
ues (True or False). For bitwise (integer) operations, each specific bit in the result will be set to 1
only if the corresponding bits in the operands are different.

Syntax: operand1 Xor operand2

Example: chickenDish Xor beefDish

Table 6-7. Visual Basic non-assignment operators (continued)

Operator Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

170 | Chapter 6: Data and Data Types

<< Shift left. The Shift Left operator shifts the bits of the first operand to the left by the number of
positions specified in the second operand, and returns the result. Bits pushed off the left end of the
result are lost; bits added to the right end are always 0. This operator works best if the first operand is
an unsigned integer value.

Syntax: operand1 << operand2

Example: &H25 << 3

>> Shift right. The Shift Right operator shifts the bits of the first operand to the right by the number
of positions specified in the second operand, and returns the result. Bits pushed off the right end of
the result are lost; bits added to the left end are always the same as the bit originally in the leftmost
position. This operator works best if the first operand is an unsigned integer value.

Syntax: operand1 >> operand2

Example: &H25 >> 2

= Equals (comparison). Compares two operands and returns True if they are equal in value.

Syntax: operand1 = operand2

Example: expectedAmount = actualAmount

<> Not equals. Compares two operands and returns True if they are not equal in value.

Syntax: operand1 <> operand2

Example: startValue <> endValue

< Less than. Compares two operands and returns True if the first is less in value than the second.
When comparing string values, the return is True if the first operand appears first when sorting the
two strings.

Syntax: operand1 < operand2

Example: raiseRate < inflationRate

> Greater than. Compares two operands and returns True if the first is greater in value than the sec-
ond. When comparing string values, the return is True if the first operand appears last when sorting
the two strings.

Syntax: operand1 > operand2

Example: raiseRate > inflationRate

<= Less than or equal to. Compares two operands and returns True if the first is less than or equal to the
value of the second.

Syntax: operand1 <= operand2

Example: raiseRate <= inflationRate

>= Greater than or equal to. Compares two operands and returns True if the first is greater than or
equal to the value of the second.

Syntax: operand1 >= operand2

Example: raiseRate >= inflationRate

Like Pattern comparison. Compares the first operand to the pattern specified in the second operand, and
returns True if there is a match. The pattern operand supports some basic wildcard and selection
options, and is fully described in the documentation supplied with Visual Studio. .NET also includes a fea-
ture called regular expressions that provides a much more comprehensive pattern matching solution.

Syntax: operand1 Like operand2

Example: governmentID Like ssnPattern

Table 6-7. Visual Basic non-assignment operators (continued)

Operator Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators | 171

Non-assignment operators use their operands to produce a result, but they do not
cause the operands themselves to be altered in any way. The assignment operator
does update the operand that appears on its left side. In addition to the standard
assignment operator, Visual Basic includes several operators that combine the assign-
ment operator with some of the binary operators. Table 6-8 lists these assignment
operators.

Is Type comparison. Compares the first operand to another object, a data type, or Nothing, and
returns True if there is a match. I will document this operator in more detail later in the text, and in
Chapter 8.

Syntax: operand1 Is operand2

Example: someVariable Is Nothing

IsNot Negated type comparison. This operator is a shortcut for using the Is and Not operators together.
The following two expressions are equivalent:

first IsNot second
Not (first Is second)

Syntax: operand1 IsNot operand2

Example: something IsNot somethingElse

TypeOf Instance comparison. Returns the data type of a value or variable. The type of every class or data type
in .NET is implemented as an object, based on System.Type. The TypeOf operator can be used
only with the Is operator:

Syntax: TypeOf operand1 Is typeOperand

Example: TypeOf someVariable Is Integer

AddressOf Delegate retrieval. Returns a delegate (described in Chapter 8) that represents a specific instance of a
procedure or method.

Syntax: AddressOf method1

Example: AddressOf one.SomeMethod

GetType Type retrieval. Returns the data type of a value or variable, just like the TypeOf operator. However,
GetType works like a function, and does not need to be used with the Is operator.

Syntax: GetType(operand1)

Example: GetType(one)

Table 6-8. Visual Basic assignment operators

Operator Based on

= Standard assignment operator

+= + (addition)

–= – (subtraction)

*= * (multiplication)

/= / (division)

\= \ (integer division)

^= ^ (exponentiation)

Table 6-7. Visual Basic non-assignment operators (continued)

Operator Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

172 | Chapter 6: Data and Data Types

These assignment operators are just shortcuts for the full-bodied operators. For
instance, to add 1 to a numeric variable, you can use either of these two statements:

' ----- Increment totalSoFar by 1.
totalSoFar = totalSoFar + 1

' ----- Another way to increment totalSoFar by 1.
totalSoFar += 1

Static Variables
Normally, the lifetime of a local procedure-level variable ends when the procedure
ends. But sometimes you might want a variable to retain its value between each call
into the procedure. Sometimes you might also want a million dollars, but you can’t
always have it. But you can have variables that keep their values if you want. They’re
called static variables. To declare a static variable, use the Static keyword in place of
the Dim keyword.

Static keepingTrack As Integer = 0

The assignment of 0 to keepingTrack is done only once, when creating the instance of
the type that contains this statement. Thereafter, it keeps whatever value is assigned to
it until the instance is destroyed. Static variables can only be created within procedures.

Arrays
Software applications often work with sets of related data, not just isolated data val-
ues. Visual Basic includes two primary ways of working with such sets of data: col-
lections (discussed in Chapter 16) and arrays. An array assigns a numeric position to
each item included in the set, starting with 0 and ending with one less than the num-
ber of items included. An array of five items has elements numbering from 0 to 4.

As an example, imagine that you were developing a zoo simulation application. You
might include an array named animals that includes each animal name in your zoo:

• Animal #0: Aardvark

• Animal #1: Baboon

• Animal #2: Chimpanzee

&= & (concatenation)

<<= << (shift left)

>>= >> (shift right)

Table 6-8. Visual Basic assignment operators (continued)

Operator Based on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Arrays | 173

• Animal #3: Donkey

• ...and so on...

Visual Basic identifies array elements by a parenthesized number after the array
name. For our animals, a simple assignment puts the String name of each animal in
an array element.

animal(0) = "Aardvark"
animal(1) = "Baboon"
animal(2) = "Chimpanzee"
animal(3) = "Donkey"

Using each array element is just as easy.

MsgBox("The first animal is: " & animal(0))

Each element of an array is not so different from a standalone variable. In fact, you
could just consider the set of animals in the example code to be distinct variables: a
variable named animal(0), another variable named animal(1), and so on. But they are
better than ordinary variables because you can process them as a set. For instance, you
can scan through each element using a For...Next loop. Consider an Integer array
named eachItem with elements numbered from 0 to 2. The following code block adds
up the individual items of the array as though they were distinct variables:

Dim totalAmount As Integer
totalAmount = eachItem(0) + eachItem(1) + eachItem(2)

But since the items are in a numbered array, you can use a For...Next loop to scan
through each element, one at a time.

Dim totalAmount As Integer = 0
For counter As Integer = 0 to 2
 ' ----- Keep a running total of the items.
 totalAmount += eachItem(counter)
Next counter

Before you assign values to array elements, or retrieve those elements, you must
declare and size the array for your needs. The Dim statement creates an array just as it
does ordinary variables; the ReDim statement resizes an array after it already exists.

Dim animal(0 To 25) As String ' 26-element array
Dim moreAnimals() As String ' An undefined String array
ReDim moreAnimals(0 To 25) ' Now it has elements

Normally, the ReDim statement would wipe out any existing data stored in each array
element. Adding the Preserve keyword retains all existing data.

ReDim Preserve moreAnimals(0 to 30) ' Keeps elements 0 to 25

Each element of the array is an independent object that can be assigned data as
needed. In this example, each element is a String, but you can use any value type or
reference type you wish in the array declaration. If you create an array of Object ele-
ments, you can mix and match the data in the array; element 0 need not contain the
same type of data as element 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

174 | Chapter 6: Data and Data Types

The array itself is also an independent object—a class instance that manages its set of
contained elements. If you need to specify the entire array, and not just one of its ele-
ments (and there are times when you need to do this), use its name without any
parentheses or positional values.

Multidimensional Arrays
Visual Basic arrays support more than one dimension (or “rank”). The dimensions indi-
cate the number of independent ranges supported by the array. A one-dimensional
array, like the animal array earlier, includes a single range. A two-dimensional array
includes two comma-delimited ranges, forming a grid arrangement of elements, with
separate ranges for rows and columns.

Dim ticTacToeBoard(0 To 2, 0 To 2) As Char ' 3 x 3 board

An array can have up to 60 different dimensions, although there are usually better
ways to organize data than breaking it out into that many dimensions.

Array Boundaries
The lower bound of any array dimension is normally 0, as indicated by the 0 To x
clause when defining or redimensioning the array. You can actually leave the “0 To”
part out of the statement, and just include the upper bound.

' ----- These two lines are equivalent.
Dim animal(0 To 25) As String
Dim animal(25) As String

These two statements both create an array with 26 elements, numbered 0 through 25.

There are a few special cases where nonzero lower bounds are allowed, such as when
working with older COM-generated arrays. But the standard Visual Basic declara-
tion syntax does not allow you to create arrays with nonzero lower bounds.

To determine the current lower or upper bound of an array dimension, use the
LBound and UBound functions.

MsgBox("The board is " & (UBound(ticTacToeBoard, 1) + 1) & _
 " by " & (UBound(ticTacToeBoard, 2) + 1))

If your array includes only a single dimension, you don’t have to tell LBound or UBound
which dimension you want to check.

MsgBox("The upper element is numbered " & UBound(animal))

Each array also includes GetLowerBound and GetUpperBound methods that return the
same results as LBound and UBound. (I discuss methods in detail in Chapter 8.) How-
ever, the dimension number you pass to the GetLowerBound and GetUpperBound meth-
ods starts from 0, whereas LBound and UBound dimension values start the counting at 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nullable Types | 175

MsgBox("The board is " & _
 (ticTacToeBoard.GetUpperBound(0) + 1) & _
 " by " & (ticTacToeBoard.GetUpperBound(1) + 1))

Initializing Arrays
Once you’ve declared your array elements, you can store and retrieve elements
whenever you need. It’s also possible to store elements in your array right at declara-
tion time. The list of new array elements appears in a set of curly braces.

Dim squares() As Integer = {0, 1, 4, 9, 16, 25}

You must leave out the lower and upper bound specifications when creating an array
in this way. The squares array shown here will have elements numbered 0 to 5.

Nullable Types
Value types are hard-working variables, maintaining their data values throughout
their lives. Reference types work hard, too, but they can be filled with Nothing and
get a little rest time. This difference has long been a thorn in the side of value types.
Is it too much to ask to give these working-class variables a little down time?

Well, Microsoft has heard this plea, and starting with Visual Basic 2008, value types
can now be assigned with Nothing. These new nullable types are essential when you
want to have an undefined state for a standard value type (especially useful when
working with database fields). Consider this class that manages employee information:

Public Class Employee
 Public Name As String
 Public HireDate As Date
 Public FireDate As Date

 Public Sub New(ByVal employeeName As String, _
 ByVal dateHired As Date)
 Me.Name = employeeName
 Me.HireDate = dateHired
 End Sub
End Class

This class works well, except that FireDate is not really correct. By default, FireDate
will be set to January 1, 1, at midnight, and you can use that date as your “never
fired” date. But what happens if your company really did fire someone just at that
moment, two thousand years ago?

To resolve this issue, nullable types let you assign and retrieve Nothing from value type
variables. These vitamin-enriched value types are declared using a special question-
mark syntax.

' ----- Either of these two statements will work.
Public FireDate As Date?
Public FireDate2? As Date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

176 | Chapter 6: Data and Data Types

I prefer the first syntax, with the question mark added to the data type. But either
statement will work. Once it’s declared, a value type can take either standard data or
Nothing.

FireDate = Nothing
FireDate = #7/18/2008#
If (FireDate Is Nothing) Then...

There is a special syntax when defining your own custom value types as nullable, but
since it uses the “generics” Visual Basic feature, I’ll wait to introduce it until
Chapter 16.

Common Visual Basic Functions
This final section includes a brief listing of the functions built into the Visual Basic
language, many of which you will use regularly in your applications. Also listed here
are some members of the Framework Class Library (FCL) that replicate features that
were part of the Visual Basic language before .NET, but were moved into the frame-
work for more general access. For the exact syntax required to use these functions,
access the Visual Studio online help.

Conversion Functions
The conversion functions allow you to convert data of one Visual Basic data type to
another. It’s not a free-for-all, so don’t go converting the string "hello" to an integer
and expect it to work. But converting numbers from one numeric type to another, or
converting numbers between string and numeric types, generally works just fine.

All of these statements (except CType) have the same basic syntax:

dest = CXxxx(source)

where source is the value to be converted by CXxxx. You don’t have to assign the
result to a variable; you can use the result anywhere you would use a similar literal or
variable value. Table 6-9 lists the built-in conversion functions.

Table 6-9. Visual Basic conversion functions

Function Description

CBool Converts a value to a Boolean.

CByte Converts a value to a Byte.

CChar Converts a value to a Char. If the source value is a string, only the first character is converted.

CDate Converts a value to a Date. If the source value is a string, it must be in a valid date or time format.

CDbl Converts a value to a Double.

CDec Converts a value to a Decimal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Common Visual Basic Functions | 177

Date-Related Functions
Visual Basic includes several functions designed to manage date and time values.
Table 6-10 lists these functions. Most of these functions accept one or more source
arguments, and return either Date, String, or a numeric result.

CInt Converts a value to an Integer.

CLng Converts a value to a Long.

CObj Converts a value to an Object. This is useful when you want to store a value type as an Object
instance.

CSByte Converts a value to an SByte.

CShort Converts a value to a Short.

CSng Converts a value to a Single.

CType Converts a value to any defined type, class, or interface, either in your application or in the FCL. The
syntax is:

CType(sourceData, newType)

where newType is a data type. For instance:

CType(5, String)

converts the Integer 5 to a String. As with other conversion functions, you can’t convert data
from one type to another if the types are incompatible, or if there is no conversion available that
knows how to generate the target type from the source type. Operator overloading, discussed in
Chapter 12, provides a way to let the CType function convert between types that would otherwise
be incompatible.

CUInt Converts a value to a UInteger.

CULng Converts a value to a ULong.

CUShort Converts a value to a UShort.

Table 6-10. Visual Basic date-related functions and properties

Function Description

DateAdd Adds or subtracts a time or date value to a starting date. For instance, you can add 12 minutes, or
subtract three years, from a given date.

DateDiff Returns the difference between two date or time values. You can specify the interval, such as months
or seconds.

DatePart Returns one component of a date or time, such as the hour or the year.

DateSerial Returns a Date built from specific month, day, and year values.

DateString Returns the current date as a string. You can also set the date on the local computer using this
keyword.

DateValue Returns the date portion of a combined date and time value; the time portion is discarded.

Table 6-9. Visual Basic conversion functions (continued)

Function Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

178 | Chapter 6: Data and Data Types

Variables created as System.DateTime (or Visual Basic Date) each include several prop-
erties and methods that provide features similar to the functions listed in Table 6-10.
For instance, the Second property returns the number of seconds.

Dim meetingTime As Date
meetingTime = #11/7/2005 8:00:03am#
MsgBox(meetingTime.Second) ' Displays '3'
MsgBox(Second(meetingTime)) ' Also displays '3'

You can use either the intrinsic Visual Basic functions or the equivalent System.
DateTime methods and properties in your code. Each technique provides the same
result.

Day Returns the day from a given date value.

FormatDateTime Formats a given date or time as a string, using a small set of predefined formats. This function is
included for backward compatibility with older VBScript code.

Hour Returns the hour from a given time value.

IsDate Indicates whether the data supplied to this function is a valid date.

Minute Returns the minute from a given time value.

Month Returns the month from a given date value.

MonthName Returns the name of a month for a numeric month value, 1 through 12.

Now Returns the current date and time. Equivalent to TimeOfDay.

Second Returns the seconds from a given time value.

TimeOfDay Returns the current date and time. Equivalent to Now.

Timer Returns the number of seconds that have elapsed since midnight of the current day. This function is
reset to 0 each midnight.

TimeSerial Returns a Date built from specific hour, minute, and second values.

TimeString Returns the current time as a string. You can also set the time on the local computer using this
keyword.

TimeValue Returns the time portion of a combined date and time value; the date portion is discarded.

Today Returns the current date.

Weekday Returns an integer that indicates the day of the week.

WeekdayName Returns the name of a weekday for an integer day of the week.

Year Returns the year from a given date value.

Table 6-10. Visual Basic date-related functions and properties (continued)

Function Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Common Visual Basic Functions | 179

Numeric Functions
Visual Basic programmers just love working with numbers; it’s in their blood. For-
tunately, Visual Basic includes lots of features for working wonders with numbers.
In addition to the standard data manipulation operators, Table 6-11 lists several
number-related functions.

The .NET Framework includes the System.Math class, which contains several math-
related function members. Some of these, such as Round, Sin, and Log, were imple-
mented as intrinsic functions in Visual Basic 6.0, but have been moved from the
language to the Math class in .NET.

Visual Basic also includes several functions used for financial and accounting calcula-
tions. These functions were also included in Visual Basic 6.0. As they are not rele-
vant to the project discussed in this book, I will only list their names here: DDB, FV,
IPmt, IRR, MIRR, NPer, NPV, Pmt, PPmt, PV, Rate, SLN, and SYD.

String Functions
String manipulation is a core part of Windows programming. The new XML fea-
tures included with .NET are really just fancy string-manipulation routines, although
with the complexities hidden from view. Visual Basic includes many functions
designed to manipulate strings and characters. They are listed in Table 6-12.

Table 6-11. Visual Basic number-related functions

Function Description

Fix Truncates the decimal portion of a number, returning only the whole portion. Similar to the Int
function.

FormatCurrency Formats a given number as a currency value, using a small set of predefined formats. This function is
included for backward compatibility with older VBScript code.

FormatNumber Formats a given number as a general number, using a small set of predefined formats. This function
is included for backward compatibility with older VBScript code.

FormatPercent Formats a given number as a percentage, using a small set of predefined formats. This function is
included for backward compatibility with older VBScript code.

Hex Formats a number as hexadecimal, and returns its string representation.

Int Returns the whole number that is less than or equal to the supplied value. Similar to the Fix function.

IsNumeric Indicates whether the data supplied to this function is a valid number.

Oct Formats a number as octal, and returns its string representation.

Val Extracts the first valid number from a string and returns it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

180 | Chapter 6: Data and Data Types

As with most functions, these functions return a new string or value, leaving the orig-
inal string or source values intact. The lone exception is the Mid statement, which
modifies the source variable’s value.

Table 6-12. Visual Basic string-related functions

Function Description

Asc, AscW Returns the numeric ASCII or Unicode value for a character.

Chr, ChrW Given a number, these functions return the matching ASCII or Unicode character.

Filter Returns an array that is a subset of a source array, but including only those elements that matched a
pattern.

Format Formats number, date, and time values using predefined or custom formatting codes.

GetChar Extracts a single character from a larger string.

InStr Returns the position of a substring within a larger string.

InStrRev Returns the position of a substring within a larger string, searching from the end of the string until
the beginning.

Join Returns a string built from a concatenation of an array of strings.

LCase Converts a string to its lowercase equivalent.

Left Returns the leftmost portion of a string.

Len Returns the length of a string.

LSet Left-aligns a string within a larger string of spaces.

LTrim Removes spaces from the start of a string.

Mid Extracts a substring from the middle of a larger string.

Mid statement Modifies a range of characters in an existing string with new content. This is not a function, but a special
Visual Basic statement. Its syntax varies considerably from that of most other Visual Basic features.

Replace Replaces occurrences of a substring with another substring, all within a larger string.

Right Returns the rightmost portion of a string.

RSet Right-aligns a string within a larger string of spaces.

RTrim Removes spaces from the end of a string.

Space Generates a string containing a specified number of space characters. Similar to the StrDup function.

Split Splits a string into an array of substrings based on a delimiter.

Str Converts a number to its string representation.

StrComp Compares two strings, and returns an integer indicating their sort order.

StrConv Converts a string to a new format based on a conversion code. Some of the conversions involve
changing the case of the content.

StrDup Generates a string containing a specified number of a given character. Similar to the Space func-
tion, but works with any character.

StrReverse Reverses the characters in a string.

Trim Removes spaces from the start and end of a string.

UCase Converts a string to its uppercase equivalent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Summary | 181

Variables created as System.String (or Visual Basic String) each include several prop-
erties and methods that provide features similar to the functions listed in Table 6-12.
For instance, the Length property returns the number of characters in the string.

Dim simpleString As String = "abcde"
MsgBox(simpleString.Length) ' Displays '5'
MsgBox(Len(simpleString)) ' Also displays '5'

You can use either the intrinsic Visual Basic functions or the equivalent System.
String methods and properties in your code. Each technique provides the same
result, although the syntax details and options may vary.

Other Functions
Visual Basic includes several functions that refuse to be squeezed into any of the
other categories. Table 6-13 documents these functions.

Summary
When you’re working with Visual Basic, you’re working with data. The data types
included with Visual Basic are simply wrappers for the core data types in .NET, but
Visual Basic also adds many functions and features that enhance your ability to man-
age and organize data.

Table 6-13. Visual Basic miscellaneous functions

Function Description

DirectCast Converts a value from one data type to another, although the starting and ending data types must be
related. Similar to the TryCast and CType functions.

ErrorToString Returns the string representation of an error code. This works only with the system error codes previ-
ously available in Visual Basic 6.0, although these codes are still available in .NET.

IsArray Indicates whether the data supplied to this function is a valid array.

IsDBNull Indicates whether the data supplied to this function is a NULL database value.

IsError Indicates whether the data supplied to this function is an error condition.

IsNothing Indicates whether the data supplied to this function is undefined, or set to Nothing.

IsReference Indicates whether the data supplied to this function is a reference type or a value type.

QBColor Returns a color code from a small set of predefined colors.

RGB Returns a color code built from the individual red, green, and blue components.

SystemTypeName Given a Visual Basic data type name, this function returns the equivalent .NET data type name.

TryCast Converts a value from one data type to another, although the starting and ending data types must be
related. Similar to the DirectCast and CType functions.

TypeName Returns a data type name that summarizes the data type of the supplied content. The returned string
is a generalized summary, and not necessarily the “true” data type name.

VarType Returns a code indicating the general data type of the supplied content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

182 | Chapter 6: Data and Data Types

Project
You look tired. Why don’t you take a five-minute break, and then we’ll dive into the
project code.

Welcome back! In this chapter, we’ll use the data type and function features we read
about to design some general support routines that will be used throughout the pro-
gram. All of this code will appear in a Visual Basic module named General, all stored
in a project file named General.vb.

PROJECT ACCESS

Load the Chapter 6 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 6 (After) Code instead.

I’ve already added the General.vb file with its module starting and ending blocks.

Friend Module General

End Module

All the code we add in this chapter will appear between these two lines. Remember,
modules are a lot like classes and structures, but you can’t create instances of them;
all their members are shared with all parts of your source code. This allows them to
be used anywhere in the application. We don’t need to do anything special to make
them available to the entire program, other than to set the access level of each mem-
ber as needed.

First, we’ll add some general constants used throughout the program. Back in Visual
Basic 6.0, I would have called these “global constants.” But now they are simply
shared members of the General module. Add the following code just below the
Module General statement.

INSERT SNIPPET

Insert Chapter 6, Snippet Item 1.

' ----- Public constants.
Public Const ProgramTitle As String = "The Library Project"
Public Const NotAuthorizedMessage As String = _
 "You are not authorized to perform this task."
Public Const UseDBVersion As Integer = 1

' ----- Constants for the MatchingImages image list.
Public Const MatchPresent As Integer = 0
Public Const MatchNone As Integer = 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 183

Public Enum LookupMethods As Integer
 ByTitle = 1
 ByAuthor = 2
 ...remaining items excluded for brevity...
End Enum

Public Enum LibrarySecurity As Integer
 ManageAuthors = 1
 ...remaining items excluded for brevity...
 ViewAdminPatronMessages = 23
End Enum
Public Const MaxLibrarySecurity As LibrarySecurity = _
 LibrarySecurity.ViewAdminPatronMessages

These constants and enumerations are pretty self-explanatory based on their Pascal-
cased names. UseDBVersion will be used to ensure that the application matches the
database being used when multiple versions of each are available. The MatchPresent
and MatchNone constants will be used for library item lookups.

The two enumerations define codes that specify the type of library item lookup to
perform (LookupMethods), and the security codes used to limit the features that a spe-
cific administrator will be able to perform in the application (LibrarySecurity).

It’s time to add some methods. The first method, CenterText, centers a line of text
within a specific width. For instance, if you had the string "Hello, World" (12 characters
in length) and you wanted to center it on a line that could be up to 40 characters long,
you would need to add 14 spaces to the start of the line (determined by subtracting 12
from 40, and then dividing the result by 2). The routine uses a couple of the string-
specific Visual Basic functions (such as Trim, Left, and Len) to manipulate and test the
data, and the integer division \ operator to help calculate the number of spaces to insert.

INSERT SNIPPET

Insert Chapter 6, Snippet Item 2.

Public Function CenterText(ByVal origText As String, _
 ByVal textWidth As Integer) As String
 ' ----- Center a piece of text in a field width. If the
 ' text is too wide, truncate it.
 Dim resultText As String

 resultText = Trim(origText)
 If (Len(resultText) >= textWidth) Then
 ' ----- Truncate as needed.
 Return Trim(Left(origText, textWidth))
 Else
 ' ----- Start with extra spaces.
 Return Space((textWidth - Len(origText)) \ 2) & _
 resultText
 End If
End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

184 | Chapter 6: Data and Data Types

The function starts by making a copy of the original string (origText), removing any
extra spaces with the Trim function. It then tests that result to see whether it will even
fit on the line. If not, it chops off the trailing characters that won’t fit, and returns
that result. For strings that do fit on a line textWidth characters wide, the function
adds the appropriate number of spaces to the start of the string, and returns the
result.

Code snippet #2 also added a function named LeftAndRightText. It works just like
CenterText, but it puts two distinct text strings at the extreme left and right ends of a
text line. Any questions? Great. Let’s move on.

Code snippet #3 adds a routine named DigitsOnly. It builds a new string made of
just the digits found in a source string, origText. It does this by calling the IsNumeric
function for each character in origText, one at a time. Each found digit is then con-
catenated to the end of destText.

INSERT SNIPPET

Insert Chapter 6, Snippet Item 3.

Public Function DigitsOnly(ByVal origText As String) As String
 ' ----- Return only the digits found in a string.
 Dim destText As String
 Dim counter As Integer

 ' ----- Examine each character.
 destText = ""
 For counter = 1 To Len(origText)
 If (IsNumeric(Mid(origText, counter, 1))) Then _
 destText &= Mid(origText, counter, 1)
 Next counter
 Return destText
End Function

The last two functions, CountSubStr and GetSubStr, count and extract substrings
from larger strings, based on a delimiter. Visual Basic includes two functions, Mid
and GetChar, that also extract substrings from larger strings, but these are based on
the position of the substring. The CountSubStr and GetSubStr functions examine sub-
strings by first using a delimiter to break the larger string into pieces.

INSERT SNIPPET

Insert Chapter 6, Snippet Item 4.

The CountSubStr function counts how many times a given substring appears in a
larger string. It uses Visual Basic’s InStr function to find the location of a substring
(subText) in a larger string (mainText). It keeps doing this until it reaches the end of
mainText, maintaining a running count (totalTimes) of the number of matches.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 185

Public Function CountSubStr(ByVal mainText As String, _
 ByVal subText As String) As Integer
 ' ----- Return a count of the number of times that
 ' a subText occurs in a string (mainText).
 Dim totalTimes As Integer
 Dim startPos As Integer
 Dim foundPos As Integer

 totalTimes = 0
 startPos = 1

 ' ----- Keep searching until we don't find it no more!
 Do
 ' ----- Search for the subText.
 foundPos = InStr(startPos, mainText, subText)
 If (foundPos = 0) Then Exit Do
 totalTimes += 1

 ' ----- Move to just after the occurrence.
 startPos = foundPos + Len(subText)
 Loop

 ' ----- Return the count.
 Return totalTimes
End Function

Just to be more interesting than I already am, I used a different approach to imple-
ment the GetSubStr function. This function returns a delimited section of a string.
For instance, the following statement gets the third comma-delimited portion of
bigString:

bigString = "abc,def,ghi,jkl,mno"
MsgBox(GetSubStr(bigString, ",", 3)) ' Displays: ghi

I used Visual Basic’s Split function to break the original string (origString) into an
array of smaller strings (stringParts), using delim as the breaking point. Then I
return element number whichField from the result. Since whichField starts with 1
and the array starts at 0, I must adjust the position to return the correct element.

Public Function GetSubStr(ByVal origString As String, _
 ByVal delim As String, ByVal whichField As Integer) _
 As String
 ' ----- Extracts a delimited string from another
 ' larger string.
 Dim stringParts() As String

 ' ----- Handle some errors.
 If (whichField < 0) Then Return ""
 If (Len(origString) < 1) Then Return ""
 If (Len(delim) = 0) Then Return ""

 ' ----- Break the string up into delimited parts.
 stringParts = Split(origString, delim)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

186 | Chapter 6: Data and Data Types

 ' ----- See whether the part we want exists and return it.
 If (whichField > UBound(stringParts) + 1) Then Return "" _
 Else Return stringParts(whichField - 1)
End Function

If these functions seem simple to you, great! Most Visual Basic code is no more diffi-
cult than these examples. Sure, you might use some unfamiliar parts of the FCL, or
interact with things more complicated than strings and numbers. But the overall
structure will be similar. Most source code is made up of assignment statements,
tests using the If statement, loops through data using a For...Next or similar state-
ment, and function calls. And that’s just what we did in these short methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

187

Chapter 7 CHAPTER 7

Windows Forms7

William Shakespeare wrote, “All the world’s a form, and all the controls and labels
merely players: they have their exit events and their entrance events; and one con-
trol in its time exposes many properties” (from “As You Code It,” Act 2.7.0).
Although .NET was still in beta when he penned these words, they apply perfectly to
any Windows Forms application you write, even today.

The .NET technology known as Windows Forms includes all the classes and features
needed to develop standard “desktop” applications for Microsoft Windows. In the
early days of Windows, this was pretty much the only type of program you could
write for the platform. But now it is just one of many application types, along with
console applications, web (“Web Forms”) applications, and services.

Inside a Windows Application
If you’re new to development on the Windows system, writing applications in the .NET
Framework may keep you from a full appreciation of what really happens inside a
Windows application, and from being involuntarily committed to an asylum. That’s
because the internals of Windows applications are no fun.

Windows was originally developed as an application running within MS-DOS, and
this had a major impact on the design of Windows and of any applications running
within its pseudo-operation-system environment. The latest releases of Windows are
true operating systems, no longer dependent on MS-DOS. But the programming
methodology was left unchanged for backward compatibility. Applications written in
Visual Basic for .NET still use this Windows 1.0 technology internally, but it is
mostly hidden by the many well-designed classes of the Windows Forms package.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

188 | Chapter 7: Windows Forms

Everything Is a Window
Rumors abound about why Microsoft attached the name “Windows” to its flagship
product. Some say it represented the “Windows of Usability and Opportunity” that
users would gain by using the enhanced graphical user interface. Some believe it rep-
resents the building cavity through which Microsoft executives promised to toss sev-
eral key developers and managers if the product bombed. But the name actually
refers to the different elements that appear on-screen when using Windows and its
included applications. In short, everything you see on the screen either is a window
or appears within a window: all forms, all controls, all scroll bars, and all display ele-
ments. Figure 7-1 points out some of the windows within a typical Microsoft Win-
dows 2.0 display.

Every main application window was clearly a “window,” as were all push buttons,
text entry fields, checkbox and radio selection buttons, listboxes, and “combo”
boxes (with a separate window for the “drop-down” portion). Static text and graphi-
cal images were drawn on a window’s surface, and did not embody windows by
themselves. But certainly hundreds of windows could be on display at any one time.

Figure 7-1. Some of the many windows of Windows 2.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inside a Windows Application | 189

Although the original developers on the Windows project team suffered from a
deplorable lack of originality in the area of feature naming, Microsoft compensated
for this somewhat with its release of Visual Basic. Though everything was still a win-
dow internally, Microsoft divided the public world of windows into two hemi-
spheres: forms and controls. There were always some internal differences between
these two types of windows, and the new names did a lot to bring normalcy to the
Windows application development situation. Microsoft elected to keep these useful
monikers when it implemented the .NET Windows Forms package.

Messages and the Message Pump
When you interact with Windows, it’s pretty easy for you (as a human) to detect the
different forms and controls on the screen. The image of Windows 2.0 I showed you
in Figure 7-1 looks like a typical Windows screen, with its ability to interact with the
keyboard and mouse, but it isn’t. Go ahead; try to tap Figure 7-1 with your finger.
You can tap all day long, but except for putting a hole in the page and not being able
to get your money back on the book, nothing else will happen. But while you’re tap-
ping, you could shout out, “I just tapped on the OK button” or “I just tapped on the
4 button of the Calculator window.”

This is what Microsoft Windows does for you. Windows keeps a list of all windows
displayed on the screen, how they overlap and obscure each other, and which appli-
cation each window belongs to. (Some applications are broken into multiple
“threads” that all run at the same time. In such programs, Windows keeps track of
all windows on a per-thread basis, not just on a per-application basis.) Each user
input action (such as mouse clicks and key presses) gets placed in the system mes-
sage queue by the related device driver. As you click on the screen with your mouse,
Windows extracts the system message from this queue, determines where you
clicked, tries to figure out which window the mouse-click occurred on, and then
informs that window’s application about the mouse click by adding a message to the
application’s message queue. It does the same thing for keyboard input and other
actions that a window might need to know about.

To function within the Windows environment, your application (or a specific thread
within your application) includes a message pump, a block of code that monitors the
message queue. Each incoming message includes the ID number of the intended win-
dow. The code extracts the message from the queue, and routes it to the window
procedure (also called a WndProc) of the appropriate window for final processing. In
the C language, this message pump looks somewhat like this:

while (!done)
{
 /* ----- Extract and examine the next message. */
 MSG msg;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

190 | Chapter 7: Windows Forms

 if (GetMessage(&msg, NULL, 0, 0))
 {
 /* ----- WM_QUIT means it's time to exit the program. */
 if (msg.message == WM_QUIT)
 done = true;

 /* ----- Send the message to the right window. */
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
}

I know, I know. It makes you glad that you write in Visual Basic.

So, each application (actually, each thread within an application) has one message
pump, but multiple window procedures. The message pump exists to route incom-
ing messages to the correct window procedure.

Window Procedures
Just as the message pump dispatches messages to distinct window procedures, the
WndProc routine directs processing to individual code blocks or procedures based
on the type of incoming message. Here’s a general logic outline (pseudocode) that
shows the structure of a typical window procedure:

If (message type is a mouse click)
 Do mouse-click related code
Else If (message type is a key press)
 Do key-press related code
Else If (message type is a window resize)
 Do window-resizing-related code
Else...

(The pseudocode uses successive If statements, but an actual window procedure
would more commonly use a Select Case type of statement to process the incoming
message.) So, the window procedure is like a vending machine. If the customer
pushes the cola button, do the processing that returns a can of cola. If the customer
presses the chewing gum button, do the processing that returns chewing gum. If the
customer presses the coin return button, keep the money.

For each type of message (at least those that the program wants to handle), some
related code gets processed when a message arrives. Boy, that really sounds familiar,
but I just can’t seem to recall what . . .events! This sounds just like events in Visual
Basic. And so it does. Even way back in Visual Basic 1.0, all generated applications
included a message pump and WndProc procedures for each window, all hidden
from view. The primary task of these WndProc procedures was to call the code in
your Visual Basic event handlers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 191

Windows in .NET
Take it from someone who used to write Windows applications in the C language:
writing message pumps and window procedures isn’t a lot of fun. Microsoft did try
to mask some of the tedium with a variety of technologies, including “Message
Crackers” and “MFC.” It was Visual Basic that finally succeeded in burying the com-
plexity under a programmer-friendly logical system.

The .NET Framework uses a system that is quite similar to that of older Visual Basic
implementations, having the WndProc call custom event handlers written by you. It
bundles up all this power and simplicity in a technology called Windows Forms. All
of its classes appear in the System.Windows.Forms namespace. Many of these classes
implement specific types of windows, such as ordinary main windows, buttons, text
boxes, drop-down combo box lists, and so on.

If you really want to, you can still access the message pump and the various Wnd-
Proc routines. Each window-specific class includes a WndProc method that you can
override and craft yourself. The message pump is found in the System.Windows.
Forms.Application.Run method. You could commandeer any of these components
and control the whole ball of wax yourself, but you’ll soon find out that the Win-
dows Forms development process is so pleasant, you will work hard to forget what
“message pump” even means.

Forms and Controls
In .NET, as in older versions of Visual Basic, windows are grouped into “forms”
and “controls.” But they are still all windows, built from the same core compo-
nents. If you don’t believe me, check out the classes for the various forms and con-
trols in .NET. Both forms and controls derive from the common System.Windows.
Forms.Control class, which abstracts the core Windows “window” functionality.

Some of the controls supplied with .NET (and also with the older Visual Basic) don’t
actually implement on-screen window elements. These controls—such as the
“Timer” control—include no user interface experience, but do provide a program-
ming experience that is similar to that of the visible controls. I’ll list the specific con-
trols a little later in this chapter, and indicate which ones are not user interface
controls.

Designing Windows Forms Applications
Creating a Windows Forms application in Visual Basic is easy. Let’s try it. Start
Visual Studio and select New Project from the File menu. The New Project form
appears, as shown in Figure 7-2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

192 | Chapter 7: Windows Forms

Select the Windows Project type, and then the Windows Forms Application Template.
Give the project any name you want in the Name field, and then click OK. The new
project has a single form (Form1) already for you to use. At this point, Visual Studio has
already added about 250 lines of source code to your application. If you click on the
Show All Files button in the Solution Explorer panel (described way back in Chapter 1,
Figure 1-13) and open the various files in the project, you can see the code for yourself.
Some of the most interesting code is in the Form1.Designer.vb file, slightly edited here:

Partial Class Form1
 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.
 <System.Diagnostics.DebuggerNonUserCode()> _
 Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 Try
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 Finally
 MyBase.Dispose(disposing)
 End Try
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by
 'the Windows Form Designer

Figure 7-2. Visual Studio’s New Project form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 193

 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 components = New System.ComponentModel.Container()
 Me.AutoScaleMode = _
 System.Windows.Forms.AutoScaleMode.Font
 Me.Text = "Form1"
 End Sub
End Class

All the code that implements a form’s behavior appears in the Form class in the
System.Windows.Forms namespace. This project’s initial form, Form1, inherits from
that base form, receiving all of Form’s functionality and default settings. Any custom
design-time changes made to Form1’s user interface, such as adding child controls, are
added to the InitializeComponent procedure automatically as you use Visual Studio.
Check out the routine periodically to see how it changes.

Most programs will have multiple forms. I suppose that .NET could select one of the
forms at random to display when a program first runs. That would be fun and unpre-
dictable. But it doesn’t work that way. Instead, you indicate the starting form through
the project’s properties, via the “Startup form” field on the Application tab (see
Figure 7-3). (The project properties window appears when you select the Project ➝

Properties menu command in Visual Studio, or when you double-click on the My
Project item in the Solution Explorer.)

When a .NET application begins, the framework calls a method named Main some-
where in your code. You indicate which form’s Main routine is used through the
“Startup form” field. It includes a list of all forms; just choose the one you want. But
wait, you haven’t added a Main method to any of your forms? No problem. Visual
Basic will write a simple Main routine on your behalf that will display the indicated
form. This ad hoc Main routine, added at compile time, performs just the minimum
processing needed to display the form.

If you want to add a custom Main routine to your form, or to some other non-Form
class in your application, that’s no problem. If you uncheck the “Enable application
framework” field on that same properties form, the “Startup form” list changes to

Figure 7-3. The startup options for a Windows Forms application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

194 | Chapter 7: Windows Forms

include any class in your application with a compatible Main routine. But the applica-
tion framework enables a lot of cool functionality, and all without any work on your
part. Disable it only when you need precise control over the application’s early lifetime.

If you need to add a new form to your application, use the Project ➝ Add Windows
Form menu command.

Using Custom Main Methods
If you do decide to write your own Main routine in a non-Form class, you’ll eventually
want to display your application’s main form. Back in Visual Basic 6.0, whenever you
wanted to display a form, you called its Show method:

Form1.Show

This simple syntax disappeared when the first .NET version of Visual Basic appeared in
2002, but it returned with the 2005 release. Say that you wanted to start your application
from a Sub Main procedure in a module separate from your main form. First, you need to
add a new module to the project. Select the Project ➝ Add Module menu command. Mod-
ify the new Module1 code module so that it looks like the following block of code:

Module Module1
 Public Sub Main()
 Form1.Show()
 End Sub
End Module

In the project’s properties, uncheck the “Enable application framework” field, and
select either Module1 or Sub Main from the “Startup form” list. That’s pretty simple:
call Module1’s Main method, show the Form1 form, and you’re done. And in truth, if you
run this program, you will be done pretty quickly. In fact, Form1 will appear for only
the briefest moment before exiting the program. Why didn’t Form1 stick around?

The program exited immediately because of that bothersome message pump, or more
correctly, the lack of a message pump. Each window (or form or control) has a distinct
WndProc procedure, but there is only one message pump for each application or
thread. In this simple program, Form1 has its own WndProc procedure, but it doesn’t
control the message pump by itself. You have to specifically tell the program to start
running the message pump. Since the standard message pump for Windows Forms
applications appears in the System.Windows.Forms.Application.Run method, altering
the Sub Main code to include it will enable the pump and keep Form1 displayed until the
user closes the form or accidentally kicks the power cord out of the outlet.

Module Module1
 Public Sub Main()
 System.Windows.Forms.Application.Run(Form1)
 End Sub
End Module

You can add all sorts of initialization code to your Sub Main procedure, and show the
main form only when your code is ready to interact with the user.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 195

Working with Forms
In .NET, all forms are simply classes, variations of the System.Windows.Forms.Form
class. Each time you create a new form, you are creating a derived class based on that
common Form class. And your new class is loaded with functionality; it includes all
the fields, methods, bugs, properties, and events that make up the Form class. Visual
Studio takes these elements and presents them in a way that makes it easy to pro-
gram a form, both through source code and through the drag-and-drop interface of
the Visual Studio Forms Designer.

When you first add a form to your application, it’s kind of plain and boring. Use the
Properties panel (see Figure 7-4) to adjust the form to your liking. This panel shows
the principle properties for the currently selected item within the Visual Studio envi-
ronment. It includes a separate entry for each property setting, most of which can be
updated through simple text entry. For instance, you can alter the caption displayed
at the top of the form by changing the content of the Text property from Form1 to
Cool Form.

Table 7-1 lists some of the more interesting form properties and their uses.

Figure 7-4. The properties of your form

Table 7-1. Form properties

Property Description

(Name) This is the name of the form, or more correctly, of the class that is the form. By default, it is named
Formx, where x is some number. It needs to be changed to something informative.

AcceptButton Indicates which Button control already placed on the form should be triggered when the user
presses the Enter key.

AutoScroll If you set this field to True, the form automatically adds scroll bars that move around the con-
tents of the form if the form is sized too small to show everything.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

196 | Chapter 7: Windows Forms

BackColor The background color. Uses a specific or general system color.

BackgroundImage Use this property, along with the BackgroundImageLayout property, to place a graphic on
the background of the form.

CancelButton This is just like the AcceptButton property, but the assigned button is triggered by the Esc key,
not the Enter key.

ContextMenuStrip This property lets you create a custom shortcut menu that appears when the user right-clicks on
the background of the form. ContextMenuStrip refers to a separate control that you add to
the form.

ControlBox You hide or show the control box in the upper-left corner of the form through this property setting.

Cursor Indicates the style of mouse cursor that appears when the mouse is over the form. This property
demonstrates one of the many editors that appear within the properties window. If you click the
“down arrow” at the right of the property setting, it displays a graphical list of all included mouse
cursors. Click an image to get the one you want. (Other properties include custom editors
designed for their type of content.) This list includes only the built-in cursors. You can also modify
this property in the form’s source code if you need to set the cursor to a custom graphic.

FormBorderStyle This property indicates the type of form to display. The default is Sizable, which lets the user
resize the form by dragging the bottom-right corner. If you set this property to None, the form’s
title bar and borders disappear. You could use this setting for an application’s “Splash” welcome
form, which normally has no form border.

Icon Sets the graphic displayed in the upper-left corner of the form’s border.

IsMdiContainer Enables “multiple document interface” support on this form. This allows a master form to “con-
tain” multiple child document forms. Visual Studio itself can display forms and source code win-
dows in the MDI style.

KeyPreview If you set this property to True, the form’s KeyDown and KeyPress events will get to process
any keys entered by the user, even if those keys were destined for a control contained on the
form. This is useful when you need to capture keys that apply to the entire form, such as using the
F1 key to trigger online help.

Location Sets the top and left positions of the form on the screen. The StartPosition property also
impacts the location of the form.

MainMenuStrip Identifies the MenuStrip control to use for the form’s main menu. The referenced MenuStrip
control is added separately to the form.

MaximizeBox Indicates whether the “maximum box” appears in the upper-right corner of the form. This button
lets the user show a form in “full-screen” mode.

MinimizeBox Indicates whether the “minimize box” appears in the upper-right corner of the form. This button
lets the user send the form to the system task bar.

MinimumSize On forms that can be resized, this property indicates the minimum allowed size of the form. The
user will not be able to size the form any smaller than this. This property, like some of the others,
is a composite property, built by merging two or more other properties. In this case, it is built from
distinct Width and Height subproperties.

Opacity Allows you to specify the level of transparency for a distinct color that appears on the form (set via
the TransparencyKey field). Setting this field to 100% means that that color is fully displayed
with no transparency; setting it to 0% makes that color fully transparent. You can set this prop-
erty anywhere from 0% to 100%. Anything that appears behind the form will be partially or com-
pletely visible through the transparent portions of this form.

Table 7-1. Form properties (continued)

Property Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 197

I listed only about half of the available properties; clearly you have a lot of control over
the form and how it is presented to the user. What’s really interesting is that many of
these properties are not limited to just forms. Some of these properties come from the
mutual System.Windows.Forms.Control class, and also appear in all other controls that
use that same base class. This includes properties such as Location, BackColor, and Text.
Although the text displayed in a form’s caption and the text displayed on a command
button differ significantly in their presentation, the usage through code is identical.

Form1.Text = "This is a form caption."
Button1.Text = "This is a button caption."

Although you can set all of the properties in Table 7-1 through the Properties panel,
you can also update and view them through code. In fact, if you’ve modified any of
the properties through the Properties panel, you’ve already updated them through
source code, since Visual Studio is just updating your code for you. Try it out! Set the
form’s TopMost property to True, and then view the InitializeComponent routine in
the Form1.Designer.vb file. You’ll find the following new statement near the bottom
of the method:

Me.TopMost = True

I know what you’re thinking: “I’m a programmer, but my text editor is having all the
programming fun. When do I get a chance to modify properties through code?”
That’s a fair question. Properties are pretty easy to modify. You just name the object
to be modified along with the property name and its new value, as Visual Studio did
with the TopMost property.

Me.Text = "The Library Project"

You can also retrieve the property values by naming them.

MsgBox("The form's caption is: " & Me.Text)

You access the form’s various methods in much the same way. For instance, the
Close method closes the form:

Me.Close()

ShowInTaskbar Specifies whether this form should appear as an item in the system task bar.

Size Indicates the current size of the form through distinct Width and Height subproperties.

StartPosition Specifies how the form should be placed on the screen when it first appears. It is set through a list
of predefined values, which actually link to an enumeration.

Tag You can put any type of data you want in this property; it’s there for your use.

Text The form’s display caption is set through this field.

TopMost If set to True, this form will appear on top of all others, even when it is not the active form.

TransparencyKey Indicates the color to use for transparency when the Opacity field is other than 100%.

WindowState Identifies the current state of the window: normal, maximized, or minimized.

Table 7-1. Form properties (continued)

Property Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

198 | Chapter 7: Windows Forms

Of course, these statements need to appear within some valid procedure, such as an
event handler. Let’s add some code to the form’s Click event so that when the user
clicks on the form, the new code will alter the form’s caption, remind us what that
caption is, and close the form, causing the program to exit. What a great program!
Access the form’s source code by selecting Form1.vb in the Solution Explorer, and
then clicking on the View Code button at the top of the Solution Explorer. The
form’s default code block appears.

Public Class Form1

End Class

As you remember from earlier in the chapter, this is the tourist portion of the Form1
class, the part that Visual Studio shows to the public (you), and not the more inter-
esting hidden parts (the part in Form1.Designer.vb). But we’ll be able to make this
section interesting in no time. Add a Click event to the form’s surface by selecting
(Form1 Events) from the Class Name list (above and to the left of the code text edi-
tor), and then selecting Click from the Method Name drop-down list to its right, as
shown in Figure 7-5.

Modify the event handler so that it displays the code listed here:

Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click
 Me.Text = "The Library Project"
 MsgBox("The form's caption is: " & Me.Text)
 Me.Close()
End Sub

If you run this code and click on the form’s surface, a message box appears with the
form’s caption just before the application exits (see Figure 7-6).

Adding Controls
New forms are like blank canvases, and like the great painters before us, we have avail-
able a large palette of colorful tools at our disposal. In Visual Studio, these tools are in
the form of controls, .NET classes designed specifically for use on form surfaces. Visual
Basic and .NET include dozens of Windows Forms controls, and even more are avail-
able from third parties. You can even build your own controls, either by deriving them
from existing control classes or by implementing them completely from scratch.

Figure 7-5. Adding a Click event to the form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 199

Visual Studio’s Toolbox includes all the basic controls you need to build high-quality,
or even pathetic low-quality, software applications. Access the Toolbox, part of
which appears in Figure 7-7, through the View ➝ Toolbox menu command.

There are five ways to add a control to a form:

• Double-click on a control in the Toolbox. An instance of the control appears on
the form in its default location with all of its default settings.

• Drag-and-drop a control from the Toolbox to the form.

Figure 7-6. A program that communicates when clicked

Figure 7-7. Visual Studio’s Toolbox with Windows Forms controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

200 | Chapter 7: Windows Forms

• Click on a control in the Toolbox, and then use the mouse to draw the rectangu-
lar area on the form where the control will appear. Some controls, such as the
ComboBox control, have limits on their width or height; they will not necessarily
size themselves as you intend.

• Ask someone else to add the control to the form. This option is for the faint of
heart. If you are reading this book, this option is not for you.

• Add the control to the form using Visual Basic source code. As you add controls
to the form in Visual Studio, it is writing source code for you on your behalf.
There is no reason why you can’t add such code yourself. Although there are
warnings in the Form1.Designer.vb file telling you not to edit the file, you can
hand-modify the InitializeComponents routine if you properly conform to the
code style generated by Visual Studio. You can also add controls in other areas
of your code, such as in the form’s Load event. Adding controls dynamically is
beyond the scope of this book, but go ahead, experiment.

Some controls have no true user-interface presence in a running application. These
controls, when added to your form, appear in a panel just below the form’s surface.
You can still interact with them just like form-based controls.

Once a control appears on the form, use the mouse to move the control, or resize it
using the resizing anchors that appear when the control is selected. A few of the con-
trols are limited in their resizing options. The ComboBox control, for instance, can only
be resized horizontally; its vertical size is determined by things such as the font used
in the control. Other controls let you resize them, but only sometimes. The Label
control can be manually resized only when its AutoSize property is set to False.

Some controls include a small arrow button, often near the upper-right corner of the
control. These are Smart Tags, similar to the Smart Tags feature included in
Microsoft Office. Clicking the Smart Tag provides access to useful features associ-
ated with the control, as shown in Figure 7-8.

Table 7-2 lists some of the more commonly used controls, all included in the Tool-
box by default with a new Windows Forms application. If you create a Web Forms
application in Visual Studio—used to design web-based applications with ASP.NET—
the available controls will differ from this list. See Chapter 23 for a discussion of
ASP.NET applications.

Figure 7-8. The Smart Tag for a ComboBox control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 201

Table 7-2. Windows Forms controls available in Visual Studio

Icon Control Description

BackgroundWorker .NET includes support for multithreaded applications. The
BackgroundWorker control lets you initiate a background task right
from the comfort of your own form. It’s especially useful when you wish to
update form-based display elements interactively with another “worker”
thread. You kick off the new work task through this control’s
RunWorkerAsync method, and perform the actual work in its DoWork
event.

Button A standard push button. A button’s Click event is its most common pro-
grammatic feature, although you can also use its DialogResult prop-
erty to trigger a dialog-specific action.

CheckBox This control implements a two-way (on, off) or three-way (on, off, other)
“checked” selection field. The ThreeState property indicates the total
number of choices. Use the Checked Boolean property for two-way
checkboxes, or the CheckState property for three-way checkboxes.

CheckedListBox The CheckedListBox control combines the best of the ListBox and
CheckBox worlds, giving you a list where each item can be checked in a
two-way or three-way manner. The GetItemChecked and
GetItemCheckState methods (and their “Set” counterparts) provide
one of the many ways to examine the status of items in the list. Be aware
of a similar control named CheckBoxList; it is for use in ASP.NET appli-
cations only.

ColorDialog Displays the standard Windows form used for color selection by the user.
Display the color dialog using this control’s ShowDialog method, get-
ting the result via the Color property.

ComboBox This control implements the standard Windows drop-down ComboBox
control, in all its various styles. The list of items can include any objects you
wish; it is not just limited to strings. You can also provide custom “owner-
draw” code that lets you draw each list item yourself.

ContextMenuStrip This control lets you design a shortcut or “context” menu, to be displayed
when the user right-clicks on the form or the control of your choice. It is
designed and used in much the same way as the standard MenuStrip
control.

DataGridView The DataGridView control implements a standard table-like grid used
to display or edit data in individual cells. It is loaded with more display
options than you can shake a stick at. The displayed data can be bound to
some external data source, or you can make it up on the fly. A “virtual
data” mode also lets you load data only as needed.

DateTimePicker The DateTimePicker control lets the user enter a date, a time, or both,
through either basic text entry or mouse-based controls. Although not as
free-form as a simple text field, it does enforce the selection of a date or
time. You can set minimum and maximum boundaries on the user’s selec-
tion. The MonthCalendar control provides an alternative interface for
date-specific selection.

DomainUpDown Through this control, the user selects one from among a list of choices that
you define, choices that have a specific inherent order. Use this control as
an alternative to a ComboBox or TrackBar control when warranted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

202 | Chapter 7: Windows Forms

FolderBrowserDialog Displays the standard Windows form used for directory or folder selection
by the user. Display the selection dialog using this control’s ShowDialog
method, getting the result via the SelectedPath property.

FontDialog Displays the standard Windows form used for font selection by the user.
Display the selection dialog using this control’s ShowDialog method,
getting the result via the Font property. Other properties provide access
to components of the selected font.

GroupBox The GroupBox control provides a simple way to visibly group controls on
a form. Subordinate controls are drawn or pasted directly onto the
GroupBox control. To access similar functionality without the visible bor-
der or caption, use the Panel control.

HelpProvider The HelpProvider control lets you indicate online help details for
other controls on the form. When used, it adds several extra “Help”
pseudoproperties to each of the other form controls through which you
can supply the help context details. When implemented properly, the indi-
cated online help content will display when the user presses the F1 key in
the context of the active control.

HScrollBar This control implements a horizontal scroll bar, allowing the user to scroll
among a display region or list of choices. For a vertical implementation of
this control, use the VScrollBar control. Several other controls include
their own copy of these scroll bars.

ImageList The ImageList control encapsulates a set of small graphics or icons for
use by other controls that support image lists. Image lists are commonly
used by ListView, Toolbar, and TreeView controls.

Label This control displays static text on a form. By using the various border and
background properties, you can display simple lines and rectangles on a
form. Visual Basic 6.0 included specific line and rectangle drawing con-
trols, but they are not available in .NET. You must either simulate them
using a Label control, or draw them yourself using the drawing com-
mands (which isn’t that difficult—see Chapter 18).

LinkLabel The LinkLabel control implements a static label that includes one or
more “links” within the text content. These links are similar to the stan-
dard text links that appear in web browser content. The control calls its
LinkClicked event handler when the user clicks on any of the embed-
ded links.

ListBox This control implements the standard Windows listbox control, displaying
a list of items from which the user can select zero or more. The list of items
can include any objects you wish; it is not just limited to strings. You can
also provide custom “ownerdraw” code that lets you draw each list item
yourself.

ListView The ListView control presents a set of items with optional display prop-
erties. It is quite similar to the (pre-Vista) Windows File Explorer with all its
various display modes. You can add column-specific data for the “details”
view. The items in the control appear as a set of ListViewItem class
objects.

Table 7-2. Windows Forms controls available in Visual Studio (continued)

Icon Control Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 203

MaskedTextBox This variation of the standard text field helps the user enter formatted
numeric or text data by displaying an entry template or mask. For
instance, you can force the user to enter a telephone number in “xxx-xxx-
xxxx” format by using a numeric mask with embedded hyphen characters.

MenuStrip This control lets you design standard form menus, which are displayed
along the top of the user area of the form. Menus within the menu strip
are implemented through ToolStripMenuItem class instances. The
menu strip is a toolbar-like implementation of a standard Windows menu.
You can add other types of controls to the menu, including toolbar-specific
ComboBox controls. Context-sensitive menus, displayed when the user
right-clicks on the form or a control, are implemented through the
ContextMenuStrip control.

MonthCalendar The MonthCalendar control displays a subset of a calendar, focusing on
a month-specific view. More than one month can be displayed at a time, in
vertical, horizontal, or grid configuration. The DateTimePicker control
provides an alternative interface for date-specific selection.

NotifyIcon The NotifyIcon control lets you place an icon in the “system tray” area
of the Windows task bar, and communicate important messages to the
user through this interface. Since this control has no form-specific user
interface, it is possible to use it without having a standard form displayed.

NumericUpDown Allows the user to select a numeric value using a scrollable up/down sec-
tion method. Use this control as an alternative to HScrollBar,
TextBox, TrackBar, or VScrollBar controls when warranted.

OpenFileDialog Displays the standard Windows form used for “open” file selection by the
user. The user can select one or more existing files from local or remote
filesystems. Display the selection dialog using this control’s ShowDialog
method, getting the result via the FileName or FileNames property.
The OpenFile method provides a quick way to open the selected file.

PageSetupDialog Displays the standard Windows form used for printed page configuration
by the user. Display the selection dialog using this control’s ShowDialog
method, getting the result via the PageSettings and
PrinterSettings properties.

Panel The Panel control logically groups controls on a form. Subordinate con-
trols are drawn or pasted directly onto the Panel control. To access simi-
lar functionality with a visible border and user-displayed caption, use the
GroupBox control.

PictureBox This control displays an image in a variety of formats. It should not be con-
fused with the Visual Basic 6.0 PictureBox control, which is more
closely related to the Windows Forms Panel control.

PrintDialog Displays the standard Windows form used for document printing and print
property selection by the user. Display the selection dialog using this con-
trol’s ShowDialog method. This control is used in conjunction with an
instance of the System.Drawing.Printing.PrintDocument
class, which is created through code or via the PrintDocument control.

Table 7-2. Windows Forms controls available in Visual Studio (continued)

Icon Control Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

204 | Chapter 7: Windows Forms

PrintDocument This control is used as part of the print and print preview process. It adds a
wrapper around your custom print implementation, providing a consistent
method of selecting and printing document pages.

PrintPreviewDialog This control provides a standardized interface for print preview, imple-
menting all elements of the entire print preview dialog. When used with a
PrintDocument class or control, it displays on-screen precisely what
will appear on the final printed page. In fact, your printing code doesn’t
necessarily know whether it is printing to the printer or to the print pre-
view display.

ProgressBar The ProgressBar provides graphical feedback to the user for a task
completion range. Normally, the range goes from 0% to 100%, but you
can supply a custom range. The Value property indicates the current set-
ting between the Minimum and Maximum range limits.

PropertyGrid The PropertyGrid control allows the user to graphically edit specific
members of an attached class instance. The Properties panel within the
Visual Studio environment is an instance of this control. This control makes
heavy use of class-based attributes to control the display and edit features
of properties. Chapter 18 uses this control to support bar code label man-
agement in the Library Project.

RadioButton This control implements the standard Windows radio selection button.
Although the circular “point” display is most common, the control can also
appear as a toggle button by setting the Appearance property appropri-
ately. The Checked property indicates the current value of a control. All
RadioButton controls that appear within the same “group context” act
in a mutually exclusive manner. Use the Panel and GroupBox controls
to create specific group contexts.

ReportViewer The ReportViewer control allows you to design and display custom
banded reports tied to collections or ADO.NET data sources. It also works
with SQL Server Reporting Services generated reports. Using this control to
design a report will add an .rdlc file to your project that contains the actual
report design.

SaveFileDialog Displays the standard Windows form used for “save” file selection by the user.
The user can select a new or existing file from local or remote filesystems. The
control optionally prompts the user to overwrite existing files. Display the
selection dialog using this control’s ShowDialog method, getting the
result via the FileName property. The OpenFile method provides a
quick way to open the selected file.

SplitContainer This control adds a “split bar” by which you can divide your form into mul-
tiple sizable regions, each of which contains a Panel control. Use the
Orientation property to alter the direction of the split. The order in
which you add SplitContainer controls to a form will impact the
usability of the splits; experimentation is recommended.

StatusStrip This control displays a “status bar,” usually along the bottom edge of a
form, through which you can display status and other context-sensitive
information to the user. The strip can contain multiple ProgressBar,
StatusStripPanel, and ToolStripLabel controls.

Table 7-2. Windows Forms controls available in Visual Studio (continued)

Icon Control Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 205

Although there is no reasonable limit on the number of controls you can add to a
form, there is a limit on how much information the user can experience on a single
form without a direct wired connection to the brain. Don’t go too wild.

TabControl The TabControl control lets you divide the controls of your form into
multiple “tabbed” regions. Each named tab has an associated TabPage
control, which works a lot like the Panel control. Add or paste subordi-
nate controls directly to each TabPage control.

TextBox This control implements the standard Windows text box, in both its single-
line and multiline styles. The main body content is set through the Text
property. The PasswordChar and UseSystemPasswordChar proper-
ties allow you to mask the input when accepting a user-supplied password.

Timer This control triggers a timed event at an interval you specify. The size of
the interval, in milliseconds, is set through the Interval property. If the
Enabled property is set to True, the Tick event handler will be called
at each met interval. Although you can set the interval as small as one milli-
second, it is unlikely that you will achieve this frequency with today’s
hardware.

ToolStrip The ToolStrip control implements a toolbar on which other controls
appear. It comes with a set of associated controls and classes that provide
advanced rendering and user interaction features.

ToolStripContainer The ToolStripContainer control provides a convenient way to add
MenuStrip, StatusStrip, and ToolStrip controls to the edges of
a form.

ToolTip The ToolTip control lets you indicate a “tool tip” for other controls on
the form. When used, it adds a “ToolTip” pseudoproperty to each of the
other form controls, through which you can supply the associated tool tip
text. When the mouse hovers over a control with an assigned tool tip text,
a small text window appears temporarily over the control to provide useful
information to the user.

TrackBar TheTrackBar control allows the user to make a selection among a small
number of related and ordered values. Its real-world counterpart is the vol-
ume control on a radio. Use this control as an alternative to anHScrollBar,
NumericUpDown, orVScrollBar control when warranted.

TreeView The TreeView control presents a set of items in a hierarchical arrange-
ment. It is quite similar to the “directory tree” portion of the (pre-Vista)
Windows File Explorer. Each item in the tree is a “node” that can have zero
or more child nodes.

VScrollBar This control implements a vertical scroll bar, allowing the user to scroll
among a display region or list of choices. For a horizontal implementation
of this control, use the HScrollBar control. Several other controls
include their own copy of these scroll bars.

WebBrowser Implements a web browser within your application. You can use the stan-
dard web-based navigation features available within Internet Explorer for
URL-based access, or provide your own custom HTML content through the
DocumentText property or related properties.

Table 7-2. Windows Forms controls available in Visual Studio (continued)

Icon Control Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

206 | Chapter 7: Windows Forms

Events and Delegates
Each form and control in a .NET application contains its own WndProc window
procedure, and as it processes each incoming message from the message pump, it
translates those messages into events. Events are the standard .NET technique that
controls—and all other classes—use to say, “Hey, something is happening, and you
might want to do something about it.” When you include a form or control in your
application, you can monitor one, some, or all of these events, and write custom
code that responds appropriately. All the custom code you write for each event
appears in an event handler. But what actually happens between the finger of the user
on the mouse and the logic in your custom event handler? Figure 7-9 shows you
graphically what actually happens between action and custom logic.

Clearly, there is still some mystery surrounding event processing.

Controls—and all classes—determine which events they will make available. For
controls, many of the events parallel user-initiated actions: Click, MouseDown,
KeyPress, and SizeChanged. But there are also many events that could be triggered
only by modifications to the control through your source code: TabIndexChanged
(when the tab-key order of the controls changes), BackgroundImageChanged, and
CursorChanged are just three of the many events that the user cannot affect directly. A
few final events tie to system-level changes, such as the SystemColorsChanged event,
which fires when the user modifies the system-wide color scheme through the con-
trol panel.

Each event has not only a name (such as Click), but also a set of parameters that the
event handler will receive when called. Here’s a typical event handler for a Button
control:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

End Sub

This event handler receives two arguments from the triggering event: a System.Object
instance (sender) and a System.EventArgs instance (e). Other event handlers may use
a slightly different set of arguments, so how do you know what to use? Any events
defined within a control class must also indicate the number and type of arguments

Figure 7-9. What really happens when the user clicks a button

Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 ' ---- Code here.
End Sub

1. The user clicks
on a button

3. The event handler runs2. Magic happens

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 207

it will send to the event handler. Visual Basic includes an Event statement that
defines events. Although the Button control was likely written in C#, here is a possi-
ble look at what the event definition for the Button’s Click event might look like in
Visual Basic:

Public Event Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)

This definition sure looks a lot like the event handler, and it should. The Event state-
ment establishes a parameter-passing contract between the control and any code that
wants to receive event notifications. In this case, the Click event promises to send
two arguments to the event handler. The first, sender, is a reference to the object that
the event refers to. For Button controls, this parameter receives a reference to the
Button instance itself. The second argument, e, provides a method for passing an
entire object of additional information. The System.EventArgs class doesn’t have
much information, but some events use a variation of the second argument that uses
System.EventArgs as its base class.

It turns out that the arguments used for the Click event are pretty common among
the different controls and events. Instead of retyping the argument list in each Event
statement, the designer of a control can define a delegate, a .NET type that defines an
argument list and, for functions, a return value.

Public Delegate Sub StandardEventDelegate(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs)

Event statements can then use the defined delegate as a shortcut for typing out the
entire parameter list.

Public Event Click As StandardEventDelegate

Whether the Event statement uses a delegate or a full argument list, it has a firm
grasp on what data it needs to send to any listening event handlers. And it sends
those arguments using the Visual Basic RaiseEvent statement. Let’s trace this process
down for the Button control. When the user clicks on the button, the message pump
finds a way to get a message to the WndProc procedure for the Button control. That
control examines the message, sees it is a mouse click, and decides to tell event hand-
lers about it. Then, from within the WndProc code, it raises the event.

RaiseEvent Click(Me, New System.EventArgs)

The Visual Basic Me keyword refers to the Button control instance itself. The e argu-
ment for a Button control contains no information beyond the default fields included
in a System.EventArgs instance, so WndProc just sends a new empty instance. Con-
trols with other event arguments would have created an instance first, filled it in with
the relevant data, and passed that instance to the event handler.

If an event fires in an application, and there is no event handler to hear it, does it
make a sound? Perhaps not. There is no requirement that an event have any active

http://lib.ommolketab.ir
http://lib.ommolketab.ir

208 | Chapter 7: Windows Forms

handlers listening. But when we do want to listen for an event, how do we do it? The
standard way to do this in a Windows Forms application is a two-step process. First,
the user of the control (your form class) needs to announce to the control, “I want to
monitor your events.” Then it attaches event handlers to specific events.

Earlier in the chapter, we saw that adding a control to the Form1’s user interface actu-
ally triggers Visual Studio to write source code in the Form1.designer.vb file. Here’s
the code added for a Button control named Button1 (with line numbers):

01 Partial Class Form1
02 Inherits System.Windows.Forms.Form
03
04 Friend WithEvents Button1 As System.Windows.Forms.Button
05
06 Private Sub InitializeComponent()
07 Me.Button1 = New System.Windows.Forms.Button
08
09 Me.Button1.Location = New System.Drawing.Point(48, 16)
10 Me.Button1.Name = "Button1"
11 Me.Button1.Size = New System.Drawing.Size(75, 23)
12 Me.Button1.TabIndex = 0
13 Me.Button1.Text = "Button1"
14 Me.Button1.UseVisualStyleBackColor = True
15
16 Me.Controls.Add(Me.Button1)
17 End Sub
18 End Class

The code in the InitializeComponent method creates the Button control instance (line
07), modifies its properties to get just the look we want (lines 09 to 14), and attaches
it to the form (line 16). But there is one additional line that defines the actual Button1
reference type variable (line 04):

Friend WithEvents Button1 As System.Windows.Forms.Button

I talked about class-level fields in Chapter 6, and Button1 is just a typical class-level field.
But the WithEvents keyword included in the statement is what lets the control know that
someone wants to monitor event notifications. Now, whenever a Button1 event fires, it
knows that Form1 may contain event handlers that are watching and listening.

The second part of our two-step event-to-handler connection process involves the
actual connection of the handler. Let’s look at the Click event handler definition
again for the Button1 instance:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

End Sub

It’s just an ordinary class method, but with a Handles clause hanging off the end of
the definition. This clause is what links the event handler with the Button1.Click
event itself. You can follow the Handles keyword with multiple event names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows in .NET | 209

Private Sub ManyButtons_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click, _

Button2.Click, Button3.Click

End Sub

Now the single ManyButtons_Click event handler will listen for Click events from
three different controls. You can even mix up the monitored events; one event hand-
ler can listen for different named events.

Private Sub ManyEvents(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.MouseDown, _
 Button2.MouseUp

End Sub

Another variation is to have multiple event handlers monitor a single event, although
Visual Basic gets to decide which handler to call first.

Private Sub FirstHandler(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

End Sub

Private Sub SecondHandler(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

End Sub

There is another way to connect events to event handlers that does not involve either
the WithEvents keyword or the Handles keyword, and that lets you control the process-
ing order for multiple handlers. Once you have an instance of an event-exposing class,
you attach a handler to one of its events using the AddHandler statement. The following
statement links Button1’s Click event to an event handler named MyHandler. The
MyHandler method must have the correct argument list for the defined event.

AddHandler Button1.Click, AddressOf MyHandler

A related RemoveHandler statement detaches a handler from an event.

A lot of complicated steps take you from an initial user or system action to the code
in an event handler. I’ve spent a lot of chapter space discussing exactly how events
work, but with good reason. Events and event processing are core features of .NET
application development. Eventually, you will spend so much time writing event
handlers that it will all become second nature to you. But I also went into all of this
detail so that you could take full advantage of this technology. Not only does Visual
Basic let you monitor controls for events, it also lets you design new events into your
own classes. You can use the Delegate, Event, RaiseEvent, WithEvents, Handles,
AddHandler, and RemoveHandler keywords for your own custom events, triggered by
whatever conditions you choose. If you have a class that represents an employee, you
can have it trigger a Fired event whenever the employee loses his job. By adding cus-
tom events, you make it possible for custom code to be attached to your class logic,
even if a programmer doesn’t have access to your class’s source code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

210 | Chapter 7: Windows Forms

Making Forms Useful
Any form identified as your project’s startup object appears automatically when the
program begins. All other forms need to be displayed manually, using either the Show
or the ShowDialog method of that form. For instance, if you have a form called Form2,
you can display it using its Show method:

Form2.Show()

The Show method displays a modeless form. Modeless forms can be accessed indepen-
dently from all other forms in the running application. All modeless forms can be
activated at any time just by clicking on them; the form you click on will come to the
front of the others and receive the input focus. A program might have one, two, or
dozens of modeless forms open at once, and the user can move between them freely.

Modal forms take control of all input in the application for as long as they appear on-
screen. Modal forms are commonly called “dialogs”; the user must complete a modal
form and close it before any other open forms in the application can be accessed.
The message box window that appears when you use the MsgBox function is a com-
mon modal dialog window. The ShowDialog method displays forms modally, and lets
you return a value from that form. The values returned are the members of the
System.Windows.Forms.DialogResult enumeration.

If you think of forms as works of literature by Alexandre Dumas, modeless forms
would be a lot like The Three Musketeers: “All for one and one for all.” They work
with one another in support of the entire application. Modal forms are akin to The
Count of Monte Cristo. Yes, there are other forms/characters in the application/story,
but they are nothing when the Count is in view.

To display the Count—that is, a modal form—use the form’s ShowDialog method,
and optionally capture its return value.

Dim theResult As DialogResult
theResult = Form2.ShowDialog()

Modal dialogs are useful for editing some record that requires a click on the OK but-
ton when changes are complete. Let’s say you were writing an application that dis-
played a list of books by Alexandre Dumas. It might include two forms: (1) a
“parent” form that displays the list of books; and (2) a “child” form that lets you
type the name of a single book. Wouldn’t it be great if you could return the name of
the book (or, perhaps, an ID number of a record for the book as stored in a data-
base) instead of a DialogResult value?

If the ShowDialog method, a public method of the underlying Form class, can return a
result code, perhaps we can add another public method to a form that will return a
result code that has actual meaning. Indeed, we can. Consider the child form (named
BookEntry) with a data entry field (BookTitle), and OK (ActOK) and Cancel
(ActCancel) buttons, as shown in Figure 7-10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Making Forms Useful | 211

When empowered with the following code, this simple form returns whatever is
typed in the field when the user clicks OK (first rejecting blank values), or returns a
blank string on Cancel:

Public Class BookEntry
 Public Function EditTitle() As String
 ' ----- Show the form, and return what the user enters.
 If (Me.ShowDialog() = DialogResult.OK) Then
 Return BookTitle.Text.Trim
 Else
 Return ""
 End If
 End Function

 Private Sub ActCancel_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActCancel.Click
 ' ----- Return a blank title for "Cancel."
 Me.DialogResult = DialogResult.Cancel
 ' ----- Continue with EditTitle()
 End Sub

 Private Sub ActOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActOK.Click
 ' ----- Only accept valid titles.
 If (Len(BookTitle.Text.Trim) = 0) Then
 MsgBox("Please supply a valid title.")
 Else
 Me.DialogResult = DialogResult.OK
 ' ----- Continue with EditTitle()
 End If
 End Sub
End Class

To use this form, the parent form calls the EditTitle method, which returns the
book title entered by the user.

Dim newTitle As String = BookEntry.EditTitle()

The EditTitle routine shows the form modally with the ShowDialog method, and just
sits there until the user closes the form. Closing the form is done through the OK or
Cancel button event; setting the form’s DialogResult property has the side effect of
closing the form. Great!

Figure 7-10. Book title entry form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

212 | Chapter 7: Windows Forms

Once the form closes, execution returns to EditTitle, which does a quick status-
check before returning the final value. And there we have it: a new public interface
for a form’s most important return value. We’ll use this method a lot in the Library
Project application.

Summary
Windows programming really hasn’t changed much since Windows 1.0. It still does
everything through messages, message queues, and window procedures. What has
changed is the way the code is abstracted for the benefit of the programmer. The .NET
Framework’s package for Windows development, Windows Forms, makes Win-
dows desktop development easy and—dare I say it—fun!

Project
This chapter’s project code implements the Library Project’s basic “Main” form, as
well as the “Splash” form that appears when the project first starts up. Microsoft,
knowing that this was a common need, included support for both main and splash
forms in Visual Basic’s Application Framework system. By default, this system is
enabled through the project properties’ Application panel (see Figure 7-11).

Figure 7-11. Main and splash fields identified through the project properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 213

The “Startup form” and “Splash screen” fields indicate the main and splash forms,
respectively. It’s quick, it’s easy, and it’s just the thing for us. So, let’s get to work.
Now would be a great time to load the starter project for Chapter 7.

PROJECT ACCESS

Load the Chapter 7 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 7 (After) Code instead.

Configuring the Splash Screen
I’ve already added a new form file to the project, named Splash.vb (the form itself is
named Splash), including some simple display elements to gussy it up somewhat.
Check out the graphic on the form. It’s presented through a PictureBox control, but
it’s stored in the application as a resource, a collection of strings and images attached
to your source code. The Resources folder in the Solution Explorer includes this
graphics file. It’s linked into the picture box through that control’s Image property.
And it sure makes the form look pretty. Your job will be to attach this form into the
startup sequence of the application.

Access the project properties’ Application panel (which you just saw in
Figure 7-11), and set the “Splash screen” field to Splash. This has the side effect of
setting My.Application.SplashScreen to the Splash form. Now run the program. You
should see the splash screen appear for about 1/100 of a second, quickly replaced by
the main form. Hey, what was that?

Altering the “Splash screen” field does cause the splash screen to briefly appear, but
the application will keep it up only until it thinks the program has done enough
preparation for the main form. Since we aren’t doing any preparation, it shows the
main form right away.

Eventually, we will add a bunch of database-related startup code that will consume a
little more time. But for now we’ll have to fake it. In the Application Framework
model, any code you want to process when the program first begins appears in the
application’s Startup event. This event is one of a small collection of events included
with the My hierarchy. The source code for these events appears in the
ApplicationEvents.vb file, a file that Visual Studio automatically adds to your project
when needed. Use the View Application Events button on the project properties’
Application panel to open that file’s source code.

Namespace My
 Class MyApplication

 End Class
End Namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

214 | Chapter 7: Windows Forms

Let’s pretend that the initialization required for the Library Project takes about three
seconds. .NET includes a Sleep method that delays the code for a specific number of
milliseconds. Code snippet 1 adds the Startup event handler for the application. Add
it between MyApplication’s Class and End Class keywords.

INSERT SNIPPET

Insert Chapter 7, Snippet Item 1.

Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices. _
 StartupEventArgs) Handles Me.Startup
 ' ----- Take a three-second nap.
 System.Threading.Thread.Sleep(3000)
End Sub

Now run the program, and you will see the splash screen stick around for about
three seconds (3,000 milliseconds). As gratifying as it is to see the splash screen for
that long, there’s a good chance that the actual database and application initializa-
tion code will take much less than three seconds. I mean, we’re talking about SQL
Server here. It’s supposed to be blazing fast.

So, it’s clear that we still need to delay the removal of the splash screen. The My.
Application object just happens to include the very property we need to enforce a delay.
The MinimumSplashScreenDisplayTime property indicates the minimum number of
milliseconds that the splash screen must be displayed. The bad part is that you have
to assign it in a really strange place, at least when compared to how much Visual
Basic programming we’ve learned so far.

Delete all the code that you added from snippet 1, which would be the entire
MyApplication_Startup method. Then fill in that empty space with the following
code.

INSERT SNIPPET

Insert Chapter 7, Snippet Item 2.

Protected Overrides Function OnInitialize _
 (ByVal commandLineArgs As System.Collections. _
 ObjectModel.ReadOnlyCollection(Of String)) As Boolean
 ' ----- Display the splash form for at least 3 seconds.
 My.Application.MinimumSplashScreenDisplayTime = 3000
 Return MyBase.OnInitialize(commandLineArgs)
End Function

That code block contains a lot of things we just haven’t talked about yet, and won’t
talk about for a few more chapters. Suffice it to say that the OnInitialize method is
one of the first things that happens in the lifetime of the program, and that is the
place where MinimumSplashScreenDisplayTime must be assigned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 215

The last thing to do for the splash screen is to include some code that displays the
version number. We already did this for the About form back in Chapter 5, so we’ll
just add similar code to the Splash form’s Load event. We’ll update the copyright
message, too. Open the source code for the Splash form and add the following code.

INSERT SNIPPET

Insert Chapter 7, Snippet Item 3.

Private Sub Splash_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Update the version number.
 With My.Application.Info.Version
 ProgramVersion.Text = "Version " & .Major & "." & _
 .Minor & " Revision " & .Revision
 End With
 ProgramCopyright.Text = My.Application.Info.Copyright
End Sub

Run the program again and sit in awe as you witness a fully functional splash screen.

Configuring the Main Form
Although we designed a main form in an earlier chapter, it was pretty sparse, includ-
ing only an About button. This chapter’s project adds all the user interface elements
to the form. In fact, I’ve already added that form’s controls to its surface for you (see
Figure 7-12). But you can add some of the event handlers that will give some of its
display pizzazz.

All the general event code for the form appears as code snippet 4.

INSERT SNIPPET

Insert Chapter 7, Snippet Item 4.

Most of this code exists to move things around on the display. For example, the user
can access different features of the form by clicking on the icons or related text labels
along the left side of the form. Each icon and label triggers one of seven common
routines that exist to rearrange the furniture. The upper-left icon, PicLibraryItem,
calls the common TaskLibraryItem routine when clicked.

Private Sub PicLibraryItem_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles PicLibraryItem.Click
 ' ----- Library Item mode.
 TaskLibraryItem()
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

216 | Chapter 7: Windows Forms

The TaskLibraryItem procedure adjusts the various panels and fields on the display
so that the user sees those fields needed to look up library items.

Private Sub TaskLibraryItem()
 ' ----- Update the display.
 AllPanelsInvisible()
 PanelLibraryItem.Visible = True
 ActLibraryItem.BackColor = SystemColors.Control
 LabelSelected.Location = New System.Drawing.Point(_
 LabelSelected.Left, PicLibraryItem.Top)
 Me.AcceptButton = ActSearch
End Sub

The AllPanelsInvisible routine also does some on-screen adjustment.

I like to have the existing text in a TextBox field selected when it becomes the active
control. Each text control includes a SelectAll method that accomplishes this feat.
We’ll call that method during each TextBox control’s Enter event, an event that
occurs when a control receives the keyboard input focus.

Private Sub SearchText_Enter(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles SearchText.Enter
 ' ----- Highlight the entire text.
 SearchText.SelectAll()
End Sub

Figure 7-12. The basic look of the main form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 217

Using the mouse to access the different features of the form is good, but I’m a key-
board person. To deal with keyboard users like me, the code adds support for fea-
ture access using the F2 through F9 keys.

Private Sub MainForm_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles MyBase.KeyDown
 ' ----- The keys F2 through F9 access the different
 ' sections of the form.
 Select Case (e.KeyCode)
 Case Keys.F2
 TaskLibraryItem()
 e.Handled = True
 Case Keys.F3
 TaskPatronRecord()
 e.Handled = True
 Case Keys.F4
 ' ----- Allow form to handle Alt+F4.
 If (e.Alt = True) Then
 Me.Close()
 Else
 TaskHelp()
 End If
 e.Handled = True
 Case Keys.F5
 TaskCheckOut()
 e.Handled = True
 Case Keys.F6
 TaskCheckIn()
 e.Handled = True
 Case Keys.F7
 TaskAdmin()
 e.Handled = True
 Case Keys.F8
 TaskProcess()
 e.Handled = True
 Case Keys.F9
 TaskReports()
 e.Handled = True
 End Select
End Sub

As each keystroke comes into the KeyDown event handler, the Select Case statement
examines it. When a matching Case entry is found, the code within the Case block
executes. Pressing the F2 key triggers the code in the Case Keys.F2 block. Keys is one
of the many built-in enumerations that you can use in your .NET applications.
Notice the special code for the F4 key. It allows the Alt-F4 key combination to exit the
application, which is the standard key combination for exiting Windows programs.

Normally, all keystrokes go to the active control, not to the form. To enable the
MainForm.KeyDown event handler, the form’s KeyPreview property must be set to True.
Set this property back in the form designer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

218 | Chapter 7: Windows Forms

Making the Program Single-Instance
The Library Project is designed for use only within a small library; it will run on only
a few workstations at a time, perhaps up to 10 at most. And there’s no need to run
more than one copy on a single workstation, since each copy includes all the avail-
able application features. One of the cool features included with Visual Basic is the
ability to create a “single-instance application,” one that enforces the one-at-a-time
run policy on each workstation. Although you could create such applications before,
it is now enabled with a single mouse click.

To make the Library Project a single-instance application, display the project proper-
ties’ Application panel, and then select the “Make single instance application” field.
When the user tries to start up a second instance, .NET will refuse to carry out the
request. Instead, it will trigger the application’s StartupNextInstance event. Any spe-
cial handling you wish to perform on a second instance startup will be done in this
handler. Like the Startup event handler, the StartupNextInstance handler appears in
the ApplicationEvents.vb file.

For the Library Project, the only thing we really need to do when the user tries to
start a second instance is to make sure the application is displayed front and center,
where the user can readily view it. Open the ApplicationEvents.vb file, and add the
StartupNextInstance event handler.

INSERT SNIPPET

Insert Chapter 7, Snippet Item 5.

Private Sub MyApplication_StartupNextInstance(_
 ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices. _
 StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance
 ' ----- Force the main form to the front.
 My.Application.MainForm.Activate()
End Sub

That’s all the changes for this chapter. See you on the next page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

219

Chapter 8 CHAPTER 8

Classes and Inheritance8

How many .NET programmers does it take to change a light bulb? None—they call a
method on the light bulb object, and it changes itself. Ha, ha, ha! That’s funny, but
only if you understand the object-oriented programming (OOP) concepts that are the
basic foundation of the .NET system. (Actually, it’s not even that funny if you do under-
stand OOP.) Without OOP, it would be difficult to support core features of .NET, such
as the central System.Object object, which is the basic foundation of the .NET system.
Also, productivity would go way down among Windows developers, who are the
basic foundation of the .NET system.

Although I briefly mentioned OOP development concepts in Chapter 1 and
Chapter 2, it was only to provide some context for other topics of discussion. But in
this chapter, I hold back no longer. After a vigorous discussion of general OOP con-
cepts, I’ll discuss how you can use these concepts in your .NET code.

Object-Oriented Programming Concepts
If you’ve read this far into the book, it’s probably OK to let you in on the secret of
object-oriented computing. The secret is: it’s all a sham, a hoax, a coverup. That’s
right, your computer does not really perform any processing with objects, no matter
what their orientation. The CPU in your computer processes data and logic state-
ments the old-fashioned way: one step at a time, moving through specific areas in
memory as directed by the logic, manipulating individual values and bits according
to those same logic statements. It doesn’t see data as collective objects; it sees only
bits and bytes.

One moment, I’ve just been handed this important news bulletin. It reads, “Don’t be
such a geek, Tim. It’s not the computer doing the object-oriented stuff, it’s the pro-
grammer.” Oh, sorry about that. But what I said before still stands: the final code as
executed by your CPU isn’t any more object-oriented than old MS-DOS code. But
object-oriented language compilers provide the illusion that OOP is built into the
computer. You design your code and data in the form of objects, and the compiler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

220 | Chapter 8: Classes and Inheritance

takes it from there. It reorganizes your code and data, adds some extra code to do the
simulated-OOP magic, and bundles it all up in an EXE file. You could write any
OOP program using ordinary procedural languages, or even assembly language. But
applications that focus on data can often be written much more efficiently using
OOP development practices.

The Object
The core of object-oriented programming is, of course, the object. An object is a per-
son, place, or thing. Wait a minute, that’s a noun. An object is like a noun. Objects
are computer data-and-logic constructs that symbolize real-world entities, such as
people, places, or things. You can have objects that represent people, employees,
dogs, sea otters, houses, file cabinets, computers, strands of DNA, galaxies, pictures,
word processing documents, calculators, office supplies, books, soap opera charac-
ters, space invaders, pizza slices, majestic self-amortizing canals, plantations of ripen-
ing tea, a few of my favorite things, and sand.

Objects provide a convenient software means to describe and manage the data asso-
ciated with one of these real-world objects. For instance, if you had a set of objects
representing DVDs in your home video collection, the object could manage features
of the DVD, such as its title, the actors performing in the content, the length of the
video in minutes, whether the DVD was damaged or scratched, its cost, and so on. If
you connected your application to the DVD-ROM player in your system, your object
could even include a “play” feature that (assuming the DVD was in the drive) would
begin to play the movie, possibly from a timed starting position or DVD “chapter.”

Objects work well because of their ability to simulate the features of real-world counter-
parts through software development means. They do this through the four key
attributes of objects: abstraction, encapsulation, inheritance, and polymorphism.

Throughout this chapter, the term object usually refers to an instance of something, a
specific in-memory use of the defined element, an instance with its own set of data,
not just its definition or design. Class refers to the design and source code of the
object, comprising the implementation.

Abstraction
An abstraction indicates an object’s limited view of a real-world object. Like an
abstract painting, an abstracted object shows just the basic essentials of the real-
world equivalent (see Figure 8-1).

Objects can’t perfectly represent real-world counterparts. Instead, they implement
data storage and processes on just those elements of the real-world counterpart that
are important for the application. Software isn’t the only thing that requires abstrac-
tion. Your medical chart at your doctor’s office is an abstraction of your total physi-
cal health. When you buy a new house, the house inspector’s report is an abstraction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object-Oriented Programming Concepts | 221

of the actual condition of the building. Even the thermometer in your back yard is an
abstraction; it cannot accurately communicate all of the minor temperature varia-
tions that exist just around the flask of mercury. Instead, it gathers all the information
it can, and communicates a single numeric result.

All of these abstract tools record, act on, or communicate just the essential informa-
tion they were designed to manage. A software object, in a similar way, only stores,
acts on, or communicates essential information about its real-world counterpart. For
instance, if you were designing an object that monitored the condition of a building,
you might record the following:

• Building location and address

• Primary construction material (wood, concrete, steel-beam, etc.)

• Age (in years)

• General condition (from a list of choices)

• Inspector notes

Although a building would also have color, a number of doors and windows, and a
height, these elements may not be important for the application, and therefore would
not be part of the abstraction. Those values that are contained within the object are
called properties. Any processing rules or calculations contained within the object
that act on the properties (or other supplied internal or external data) are known as
methods. Taken together, methods and properties make up the members of the
object.

Figure 8-1. Actually, the one on the left is kind of abstract, too

Original Abstract

http://lib.ommolketab.ir
http://lib.ommolketab.ir

222 | Chapter 8: Classes and Inheritance

Encapsulation
The great advantage of software is that a user can perform a lot of complex and time-
consuming work quickly and easily. Actually, the software takes care of the speed
and the complexity on behalf of the user, and in many cases, the user doesn’t even
care how the work is being done. “Those computers are just so baffling; I don’t
know and I don’t care how they work as long as they give me the results I need” is a
common statement heard in management meetings. And it’s a realistic statement
too, since the computer has encapsulated the necessary data and processing logic to
accomplish the desired tasks.

Encapsulation carries with it the idea of interfaces. Although a computer may con-
tain a lot of useful logic and data, if there was no way to interact with that logic or
data, the computer would basically be a useless lump of plastic and silicon. Inter-
faces provide the means to interact with the internals of an object. An interface pro-
vides highly controlled entries and exits into the data and processing routines
contained within the object. As a consumer of the object, it’s really irrelevant how
the object does its work internally, as long as it produces the results you expect
through its publicly exposed interfaces.

Using the computer as an example, the various interfaces include (among other
things) the keyboard, display, mouse, power connector, USB and 1394 ports, speak-
ers, microphone jack, and power button. Often, the things I connect to these inter-
faces are also black boxes, encapsulations with well-defined public interfaces. A
printer is a mystery to me. How the printer driver can send commands down the
USB cable and eventually squirt ink onto 24-pound paper is just inexplicable, but I
don’t know and I don’t care how it really works, as long as it does work.

Inheritance
Inheritance in .NET isn’t like inheritance in real life; no one has to die before it
works. But as in real life, inheritance defines a relationship between two different
objects. Specifically, it defines how one object is descended from another.

The original class in the object relationship is called the base class. It includes vari-
ous and sundry interface members, as well as internal implementation details. A
derived class is defined using the base class as the starting point. Derived classes
inherit the features of the base class. By default, any publicly exposed members of the
base class automatically become publicly exposed members of the derived class,
including the implementation. A derived class may choose to override one, some, or all
of these members, providing its own distinct or supplementary implementation details.

Derived classes often provide additional details specific to a subset of the base class.
For instance, a base class that defines animals would include interfaces for the com-
mon name, Latin species name, number of legs, and other typical properties belonging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object-Oriented Programming Concepts | 223

to all animals. Derived classes would then enhance the features of the base class, but
only for a subset of animals. A mammal class might define gestation time for birth-
ing young, whereas a parallel avian-derived class could define the diameter of an egg.
Both mammal and avian would still retain the name, species name, and leg count
properties from the base animal class. An instance of avian would be an animal; an
instance of mammal would be an animal. However, an instance of avian would not
be a mammal. Also, a generic instance of animal could be considered as an avian
only if it was originally defined as an avian.

Even though a base and derived class have a relationship, implementation details
that are private to the base class are not made available to the derived class. The
derived class doesn’t even know that those private members exist. A base class may
include protected members that, although hidden from users of the class, are visible
to the derived class. Any member defined as public in the base class is available to the
derived class, and also to all users of the base class. (Visual Basic defines another
level named friend. Members marked as friend are available to all code in the same
assembly, but not to code outside the assembly. Public members can be used by code
outside the defining assembly.)

Examples of inheritance do exist in the real world. A clock is a base object from
which an alarm clock derives. The alarm clock exposes the public interfaces of a
clock, and adds its own implementation-specific properties and methods. Other
examples include a knife and its derived Swiss Army knife, a chair and its derived
recliner, and a table and its derived Periodic Table of the Chemical Elements.

Polymorphism
The concepts introduced so far could be implemented using standard procedural
programming languages. Although you can’t do true inheritance in a non-OOP lan-
guage such as C, you can simulate it using flag fields: if a flag field named “type” in a
non-OOP class-like structure was set to “mammal,” you could enable use of certain
mammal-specific fields. There are other ways to simulate these features, and it
wouldn’t be too difficult.

Polymorphism is a different avian altogether. Polymorphism means “many forms.”
Because a derived class can have its own (overridden) version of a base class’s mem-
ber, if you treat a mammal object like a generic animal, there could be some confu-
sion as to which version of the members should be used, the animal version or the
mammal version. Polymorphism takes care of figuring all this out, on an ad hoc
basis, while your program is running. Polymorphism makes it possible for any code
in your program to treat a derived instance as though it were its base instance. This
makes for great coding. If you have a routine that deals with animal objects, you can
pass it objects of type animal, mammal, or avian, and it will still work. This type of
polymorphism is known as subtyping polymorphism, but who cares what its name is.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

224 | Chapter 8: Classes and Inheritance

Another variation of polymorphism is overloading. Overloading allows a single class
method (forget about derived classes for now) to have multiple forms, but still be
considered as a single method. For instance, if you had a house object with a paint
method (that would change the color of the house), you could have one paint method
that accepted a single color (paint the house all one color) and another paint method
that accepted two colors (the main color plus a trim color). When these methods are
overloaded in a single class, the compiler determines which version to call based on
the data you include in the call to the method.

Interfaces and Implementation
OOP development differentiates between the public definition of a class, the code
written to implement that class, and the resultant in-memory use of that class as an
object. It’s similar to how, at a restaurant, you differentiate between a menu, the
cooking of your selection, and the actual food that appears at your table:

• The description of an item on the menu is (to some extent) its interface; it describes
what the real object will expose publicly in terms of taste, smell, and so on.

• The method used by the kitchen staff to make the food is the implementation; it’s
how the meal is prepared. There may be different implementations by different
restaurants for the same menu item. In objects, the implementation is hidden
from public view; in a restaurant, food preparation is thankfully hidden from
view or no one would ever eat there.

• The food you receive from the kitchen is—ta-da!—the object, the actual instance
of what the menu described. Many hungry customers may each order the same
menu item, and each would receive a distinct instance of the food.

OOP in Visual Basic and .NET
Conceptually, OOP really isn’t that complex. Since both humans and programmers
interact with real-world objects and instances every day, it’s pretty easy to wrap their
minds around the idea of programming with objects. But how easy is it to communi-
cate these object concepts to the computer through the Visual Basic compiler and the
.NET Framework? Can it be done without weekly sessions on a shrink’s comfy sofa?
Duh! It’s Visual Basic; of course it’s easy.

One reason objects are so easy in .NET is that they have to be. Everything in your
.NET program is part of an object, and if everything about .NET was hard, you’d be
reading a book on Macintosh development right about now. But it’s not too hard
because the Visual Basic implementation of objects parallels the conceptual ideas of
objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 225

Classes
Visual Basic uses classes and structures to define objects. I’ll talk about structures a
little later in the chapter. The Class keyword starts the definition of a class.

Class Superhero
 ' ----- Class-related code goes here.
End Class

That’s most of it: the Class keyword, and a name for the class (“Superhero,” in this
case). All classes reside in a namespace (discussed way back in Chapter 1). By
default, your classes appear in a namespace that is named after your project. You can
alter this in the project properties (to set the top-level namespace for your assembly)
and with the Namespace statement (to indicate relative namespaces from your assem-
bly’s top-level namespace).

Namespace GoodGuys
 Class Superhero
 End Class
End Namespace

If your application’s default namespace is WindowsApplication1, the class in this sam-
ple code would be identified as WindowsApplication1.GoodGuys.Superhero. You can
add any number of classes to a namespace. Classes that use the same name, but that
appear in different namespaces, are unrelated.

The members of a class appear between the Class and End Class clauses. You can
also split a class’s definition into multiple source code files. If you do split up a class
like this, at least one of the parts must include the keyword Partial in the definition.

Partial Class Superhero

As with variable definitions, classes are defined using one of the access modifier key-
words: Public, Private, Protected, Friend, or Protected Friend. Flip back to
Chapter 6, in the “Variables” section, if you need a refresher course.

The .NET Framework Class Libraries (FCLs) are simply loaded with classes and
objects, and they are all pretty much defined with this simple keyword: Class.

Class Members
Calling your class Superhero won’t endow it with any special powers if you don’t add
any members to the class. All class members must appear between the Class and End
Class boundaries, although if you use the Partial feature to break up your class, you
can sprinkle the members among the different class parts in any way you wish.

You can include 11 different kinds of members in your Visual Basic classes. Other
books or documents may give you a different number, but they’re wrong, at least if
they organize things the way I do here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

226 | Chapter 8: Classes and Inheritance

Variable fields
Value type and reference type variables can be added directly to your class as
top-level members. As full class members, they are accessible by any code
defined in the same class, and possibly by code that uses your class. Variables are
defined using one of the access modifiers.

Class Superhero
 Public Name As String
 Protected TrueIdentity As String
End Class

Variable fields are quick and convenient to add to classes, but sometimes they
are a little too freewheeling. Public fields can be modified at will, without any
limitations, even if you desire to limit the allowed range of a field. Also, fields
don’t work directly with all Visual Basic features, including some LINQ-specific
features. When problems such as these arise, you can use property members
instead of variable field members. I’ll introduce properties in just a few paragraphs.

Constant fields
You define constants just like variable fields, but include the Const keyword. As
with local procedure-level constants, you must assign a value to the constant
immediately in source code, using literals or simple nonvariable calculations.

Private Const BaseStrengthFactor As Integer = 1

Enumerations
Enumerations define related integral values. Once defined, you can use them in
your code just like other integer values.

Private Enum GeneralSuperPower
 Flight
 Strength
 Speed
 VisionRelated
 HearingRelated
 WaterRelated
 TemperatureRelated
 ToolsAndGadgets
 GreatCostume
End Enum

Enumerations can also be defined at the namespace level, outside any specific
class.

Sub methods
Classes include two types of methods: subs and functions. All logic code in your
application appears in one of these method types or in properties, so don’t
bother looking for such code in an enumeration. Sub methods perform some
defined logic, optionally working on data passed in as arguments.

Public Sub DemonstrateMainPower(_
 ByVal strengthFactor As Integer)
 ' ----- Logic code appears here.
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 227

The DemonstrateMainPower method, as a public member of your class, can be
called either by code within the class, or by any code referencing an instance of
your class. This method includes a single parameter, strengthFactor, through
which calls to the method send in data arguments.

You can jump out of a sub method at any time using the Return statement, or the
older pre-.NET Exit Sub statement.

Function methods
Function methods are just like sub methods, but they support a return value.
You define the data type of the return value with an As clause at the end of the
function definition. You can assign the return value using the Return statement,
or by assigning the function name directly within the code.

Public Function GetSecretIdentity(_
 ByVal secretPassword As String) As String
 If (secretPassword = "Krypton") Then
 ' ----- I created a class field named
 ' TrueIdentity earlier.
 Return TrueIdentity
 Else
 GetSecretIdentity = "FORGET IT BAD GUY"
 End If
End Function

If you use the assignment-to-function-name style of return value assignment, use
the Exit Function statement to return to the calling code at any time.

Properties
Properties combine the ideas of fields and methods. You can create read-write,
read-only, or write-only properties through the Get and Set accessors. The fol-
lowing code defines a write-only property:

Public WriteOnly Property SecretIdentity() As String
 Set(ByVal value As String)
 TrueIdentity = value
 End Set
End Property

Delegates
Delegates define arguments and return values for a method, and encase them in
a single object all their own. They are generally used to support the event pro-
cess, callback procedures, and indirect calls to class methods.

Public Delegate Sub GenericPowerCall(_
 ByVal strengthFactor As Integer)

Since delegates are pretty generic, they are often defined at the namespace level,
outside any class definition.

Events
Adding events to your class allows consumers of your class to react to changes
and actions occurring within a class instance. The syntax used to define events
looks a lot like a method definition, but an alternative syntax uses previously
defined delegates to indicate the signature of the event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

228 | Chapter 8: Classes and Inheritance

' ----- Non-delegate definition.
Public Event PerformPower(_
 ByVal strengthFactor) As Integer

' ----- Delegate definition.
Public Event PerformPower As GenericPowerCall

Declares
The Declare statement lets you call code defined in external DLL files, although
it works only with pre-.NET Windows DLL calls. The syntax for declares closely
resembles the syntax used to define methods.

Public Declare Function TalkToBadGuy Lib "evil.dll" (_
 ByVal message As String) As String

Once defined, an externally declared sub or function can be used in your code as
though it were a built-in .NET sub or function definition. The .NET Framework
does a lot of work behind the scenes to shuttle data between your program and
the DLL. Still, care must be taken when interacting with such external “unman-
aged” code, especially if the DLL is named evil.dll.

Interfaces
Interfaces allow you to define abstract classes and, in a way, class templates. A
section near the end of this chapter discusses interfaces. Interfaces can also be
defined at the namespace level, and usually are.

Nested types
Classes can include other subordinate classes (or structures) for their own inter-
nal or public use. If you make such a “child” class public, you can return
instances of these classes to code that uses the larger “parent” class.

Class Superhero
 Class Superpower
 End Class
End Class

You can nest classes to any depth, but don’t go overboard. Creating multiple
classes within the same namespace will likely meet your needs without making
the code overly complex. But that’s just my idea; do what you want. It’s your
code after all. If you want to throw your life away on a career in the movies,
that’s fine with me.

Adding a nice variety of members to a class is a lot of fun. You can add class mem-
bers in any variety, in any order, and in any quantity. If you add a lot of members,
you might even get a quantity discount on Visual Studio from Microsoft, but don’t
hold your breath.

Shared Class Members
Normally, objects (class instances) are greedy and selfish; they want to keep every-
thing to themselves and not share with others. That’s why each instance of a class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 229

you create has its own version of the data elements defined as class members. Even
class methods and properties give the appearance of being distinct for each class
instance. It’s as though each object was saying, “I’ve got mine; get your own.” It’s
this attitude that has led to what is now commonly called “class warfare.”

In an attempt to promote affability among software components and push for
“kinder and gentler” classes, Microsoft included the Shared keyword in its class
design. The Shared keyword can be applied to variable field, sub method, function
method, and property members of your class. When defined, a shared member can
be used without the need to create an instance of that class. You reference these shared
members using just the class name and the member name.

Class ClassWithSharedValue
 Public Shared TheSharedValue As Integer
End Class
...later, in some other code...
ClassWithSharedValue.TheSharedValue = 10

Shared members are literally “shared” by all instances of your class, and if public, by
code outside the class as well. Since they don’t require an object instance, they are
also limited to just those resources that don’t require an object instance. This means
that a shared method cannot access a nonshared variable field of the same class. Any
class members that are not marked Shared are known as instance members.

Overloaded Members and Optional Arguments
Overloading of a method occurs by attaching the Overloads keyword to each over-
loaded member.

Class House
 Public Overloads Sub PaintHouse()
 ' ----- Use the same color(s) as before.
 End Sub

 Public Overloads Sub PaintHouse(ByVal baseColor As Color)
 ' ----- Paint the house a solid color.
 End Sub

 Public Overloads Sub PaintHouse(ByVal baseColor As Color, _
 ByVal trimColor As Color)
 ' ----- Paint using a main and a trim color.
 End Sub

 Public Overloads Sub PaintHouse(ByVal baseColor As Color, _
 ByVal coats As Integer)
 ' ----- Possibly paint with many coats, of paint
 ' that is, not of fabric.
 End Sub
End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

230 | Chapter 8: Classes and Inheritance

When you call the PaintHouse method, you must pass arguments that match one of
the overloaded versions. Visual Basic determines which version to use based on the
argument signature. If you pass the wrong type or number of arguments, the pro-
gram will refuse to compile.

Two of the overloaded members in this class look alike, except for the second coats
argument.

Public Overloads Sub PaintHouse(ByVal whichColor As Color)

Public Overloads Sub PaintHouse(ByVal baseColor As Color, _
 ByVal coats As Integer)

Instead of defining two distinct methods, I could have combined them into a single
method, and defined an optional argument for the coats parameter.

Public Overloads Sub PaintHouse(ByVal baseColor As Color, _
 Optional ByVal coats As Integer = 1)

The Optional keyword can be used on any number of parameters, but no nonoptional
parameters can appear after them; the optional arguments must always be last in the
list. Although the calling code might not pass a value for coats, .NET still requires
that every parameter receive an argument. Therefore, each optional argument
includes a default value using a simple assignment within the parameter definition.
The optional argument coats uses a default value of 1 through the = 1 clause.

Inheritance
Visual Basic supports inheritance, the joining of two classes in an ancestor-descendant
relationship. To implement inheritance, define the base class, and then add the
derived class using the keyword Inherits. What a surprise!

Class Animal
 ' ----- Animal class members go here.
End Class

Class Mammal
Inherits Animal

 ' ----- All members of Animal are automatically
 ' part of Mammal. Add additional Mammal
 ' features here.
End Class

The Inherits statement must appear at the start of the class definition, before the
definition for any class members. It must include the name of exactly one other class,
the base class. If you split up your derived class using the Partial keyword, you need
to use the Inherits statement in only one of the parts. And since a derived class can
use only a single base class, you’re pretty much limited to using the Inherits statement
only once per class. (The base class can be used in several different derived classes, and
the derived class can further be used as a base class for other derived classes.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 231

Derived classes automatically inherit all defined members of the base class. If a
derived class needs to provide special functionality for a member defined in the base
class, it overrides that member. This is a two-step process: (1) the base class must
allow its member to be overridden with the Overridable keyword; and (2) the
derived class must supply the overriding code using the Overrides keyword.

Class Animal
 Public Overridable Sub Speak()
 MsgBox("Grrrr.")
 End Sub
End Class

Class Canine
 Inherits Animal
 Public Overrides Sub Speak()
 MsgBox("Bark.")
 End Sub
End Class

Any class that derives from Animal can now supply its own custom code for the Speak
method. But the same is true for classes derived from Canine; the Overridable key-
word is passed down to each generation. If you need to stop this attribute at a spe-
cific generation, use the NotOverridable keyword. This keyword is valid only when
used in a derived class since base class members are nonoverridable by default.

Class Canine
 Inherits Animal
 Public NotOverridable Overrides Sub Speak()
 MsgBox("Bark.")
 End Sub
End Class

There are times when it is not possible to write a truly general method in the base
class, and you want to require that every derived class define its own version of the
method. Using the MustOverride keyword in the base member definition enables this
requirement.

Class Animal
 Public MustOverride Sub DefenseTactic()
End Class

Members marked as MustOverride include no implementation code of their own,
since it would go unused. (Also notice that DefenseTactic has no closing End Sub
statement.) Because there is no code associated with this member, the entire Animal
class has a deficiency. If you created an instance of Animal and called its
DefenseTactic method, panic would ensue within the application. Therefore, it is not
possible to create instances of classes that contain MustOverride members. To note
this limitation, the class is also decorated with the MustInherit keyword.

MustInherit Class Animal
 Public MustOverride Sub DefenseTactic()
End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

232 | Chapter 8: Classes and Inheritance

It won’t be possible to create an instance of Animal directly, although you can derive
classes from it, and create instances of those classes. Also, you can create an Animal
variable (a reference type) and assign an instance of an Animal-derived class to it.

Dim zooMember As Animal
Dim monkey As New Simian ' Simian is derived from Animal
zooMember = monkey

Such code doesn’t really seem fair to the base class. I mean, it defined all the core
requirements for derived classes, but it doesn’t get any of the credit since it can’t be
directly instantiated. But there is a way for a base class to control its own destiny, to
take all the glory for itself. It does this with the NotInheritable keyword.

NotInheritable Class Animal
End Class

The only way to use a NotInheritable class is to create an instance of it; you cannot
use it as the base class of another derived class. (If your noninheritable class contains
shared members, they can be accessed without the need to create an instance.)

Inherits, MustInherit, NotInheritable, Overrides, Overridable, NotOverridable—
this certainly isn’t your grandmother’s Visual Basic anymore. And there’s still one
more of these inimitable keywords: Shadows. When you override a base class mem-
ber, the new code must use a definition that is identical to the one provided in the
base class. That is, if you override a function method with two String arguments and
an Integer return code, the overriding code must use that same signature. Shadowed
members have no such requirements. A shadowed member matches an item in the
base class “in name only”; everything else is up for grabs. You can even change the
member type. If you have a sub method named PeanutButter in a base class, you can
shadow it in the derived class with a variable field (or constant, or enumeration, or
nested class) also named PeanutButter.

Class Food
 Public Sub PeanutButter()
 End Sub
End Class
Class Snack
 Inherits Food
 Public Shadows PeanutButter As String
 ' Hey, it's not even a "Sub"
End Class

Without the Shadows keyword in the Snack class, a compile-time error would occur.

Creating Instances of Classes
Step one: designing classes. Step two: deriving classes. Step three: creating class
instances. Step four: cha-cha-cha. Visual Basic uses the New keyword to create
instances of your custom classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 233

Dim myPet As Animal = New Animal
' ----- Or...
Dim myPet As New Animal
' ----- Or...
Dim myPet As Animal
myPet = New Animal

The instance can then be used like any other .NET instance variable. Member access
occurs using “dot” notation.

myPet.Name = "Fido"

You can also (within reason) pass instance variables between their base and derived
variations.

Dim myPet As Animal
Dim myDog As Canine
myDog = New Canine
myDog.Name = "Fido"
myPet = myDog ' Since Canine derives from Animal
MsgBox(myPet.Name) ' Displays "Fido"

If you have Option Strict set to On, there will be limits on your ability to convert
between types, especially narrowing conversions (where the source data type will not
always “fit” in the target variable). In such cases, you must use the CType function (or
one of a few similar .NET and Visual Basic supplied functions) to enable the conversion.

myDog = CType(myPet, Canine)

Referring to class instances is simply a matter of referring to the variable or object
that contains the instance. That is true for code that uses an instance from outside
the class itself. For the code within your class (such as in one of its methods), you
refer to members of your instance as though they were local variables (with no quali-
fication), or use the special Me keyword.

Class Animal
 Public Name As String
 Public Sub DisplayName()
 ' ----- Either of these lines will work.
 MsgBox(Name)
 MsgBox(Me.Name)
 End Sub
End Class

A similar keyword, MyClass, usually acts like the Me keyword, but it has some differ-
ent functionality when a class instance is stored in a variable from a different (base or
derived) class type. If you create an instance of Canine, but store it in an Animal vari-
able, references using Me will focus on the Canine code, whereas references to MyClass
will focus on the Animal code. I won’t be using MyClass in the Library Project, and for
most simple uses of class instances, you will never use it either. But there are times
when it is important to differentiate between base and derived code, and this is the
way to do it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

234 | Chapter 8: Classes and Inheritance

The MyBase keyword references elements of the base class from which the current
class derives. It references only the closest base class; if you have a class named
Class5 that derives from Class4, which in turn derives from Class3, which derives from
Class2, which derives from Class1, which eventually derives from System.Object, refer-
ences to MyBase in the code of Class5 refer to Class4. Well, that’s almost true. If you try
to use MyBase.MemberName, and MemberName doesn’t exist in Class4, MyBase will search
back through the stack of classes until it finds the closest definition of MemberName.

Class Animal
 Public Overridable Sub ObtainLicense()
 ' ----- Perform Animal-specific licensing code.
 End Sub
End Class

Class Canine
 Inherits Animal
 Public Overrides Sub ObtainLicense()
 ' ----- Perform Canine-specific licensing code, then...

MyBase.ObtainLicense() ' Calls code from Animal class
 End Sub
End Class

Constructors and Destructors
Class instances have a lifetime: a beginning, a time of activity, and finally, thank-
fully, an end. The beginning of an object’s lifetime occurs through a constructor;
its final moments are dictated by a destructor before passing into the infinity of
the .NET garbage collection process.

Each class includes at least one constructor, whether explicit or implicit. If you don’t
supply one, .NET will at least perform minimal constructor-level activities, such as
reserving memory space for each instance variable field of your class. If you want a
class to have any other startup-time logic, you must supply it through an explicit
constructor.

Constructors in Visual Basic are sub methods with the name New. A New constructor
with no arguments acts as the default constructor, called by default whenever a new
instance of a class is needed.

Class Animal
 Public Name As String
 Public Sub New()
 ' ----- Every animal must have some name.
 Name = "John Doe of the Jungle"
 End Sub
End Class

Without this constructor, new instances of Animal wouldn’t have any name assigned
to the Name field. And since String variables are reference types, Name would have an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 235

initial value of Nothing. Not very user-friendly. A default constructor gives you a
chance to provide at least the minimum needed data and logic for a new instance.

You can provide additional custom constructors by adding more New methods, each
with a different argument signature.

Class Animal
 Public Name As String
 Public Sub New()
 ' ----- Every animal must have some name.
 Name = "John Doe of the Jungle"
 End Sub
 Public Sub New(ByVal startingName As String)
 ' ----- Use the caller-supplied name.
 Name = startingName
 End Sub
 Public Sub New(ByVal startingCode As Integer)
 ' ----- Build a name from a numeric code.
 Name = "Animal Number " & CStr(startingCode)
 End Sub
End Class

The following code demonstrates each constructor:

MsgBox((New Animal).Name)
 ' Displays "John Doe of the Jungle"

MsgBox((New Animal("Fido")).Name)
 ' Displays "Fido"

MsgBox((New Animal(5)).Name)
 ' Displays "Animal Number 5"

You can force the consumer of your class to use a custom constructor by excluding a
default constructor from the class definition. Also, if you’re deriving your class from
anything other than System.Object, it’s usually a good idea to call the base class’s
constructor as the first line of your derived constructor, although the default con-
structor in the base class will be called...by default.

Class Canine
 Inherits Animal
 Public Sub New()
 MyBase.New() ' Calls Animal.New()
 ' ----- Now add other code.
 End Sub
End Class

Killing a class instance is not as easy as it might seem. When you create local class
instances in your methods, they are automatically destroyed when that method exits
if you haven’t assigned the instance to a variable outside the method. If you create an
instance in a method and assign it to a class member, it will live on in the class mem-
ber for the lifetime of the class, even though the method that created it has exited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

236 | Chapter 8: Classes and Inheritance

But let’s think only about local instances for now. An instance is destroyed when the
routine exits. You can also destroy an instance immediately by setting its variable to
Nothing.

myDog = Nothing

Setting the variable to a new instance will destroy any previous instance stored in
that variable.

myDog = New Canine
myDog.Name = "Fido"
myDog = New Canine ' Sorry Fido, you're gone

When an object is destroyed, .NET calls a special method named Finalize, if
present, to perform any final cleanup before removing the instance from memory.
Finalize is implemented as a Protected method of the base System.Object class; you
must override this method in your class to use it.

Class Animal
 Protected Overrides Sub Finalize()
 ' ----- Cleanup code goes here. Be sure to call the
 ' base class's Finalize method.
 MyBase.Finalize()
 End Sub
End Class

So, what’s with that crack about killing instances being so hard? The problem is that
.NET controls the calling of the Finalize method; it’s part of the garbage collection
process. The framework doesn’t continually clean up its garbage. It’s like the service
at your house; it gets picked up by the garbage truck only once in a while. Until then,
it just sits there, rotting, decaying, decomposing, and not having its Finalize method
called. For most objects, this isn’t much of a problem; who cares if the memory for a
string gets released now or 30 seconds from now. But there are times when it is
important to release acquired resources as quickly as possible. For instance, if you
acquire a lock on an external hardware resource and release it only in the destructor,
you could be holding that lock long after the application has exited. Talk about a
slow death.

There are two ways around this problem. One way is to add a separate cleanup
method to your class that you expect any code using your class to call. This will
work—until some code forgets to call the method. (You should therefore also call
this routine from the Finalize destructor.) The second method is similar, but it uses
a framework-supplied interface called IDisposable. (I’ll talk about interfaces in a
minute, so don’t get too worried about all the code shown here.)

Class Animal
 Implements IDisposable

 Protected Overrides Sub Finalize()
 ' ----- Cleanup code goes here. Be sure to call the
 ' base class's Finalize method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 237

 MyBase.Finalize()
 End Sub

 Public Overloads Sub Dispose() _
 Implements IDisposable.Dispose
 ' ----- Put cleanup code here. Also make these calls.
 MyBase.Dispose() ' Only if base class is disposable.
 System.GC.SuppressFinalize(Me)
 End Sub
End Class

The SuppressFinalize method tells the garbage collector, “Don’t call Finalize; I’ve
already cleaned up everything.” Any code that uses your class will need to call its
Dispose method to perform the immediate cleanup of resources. So, it’s not too dif-
ferent from the first way I talked about, but it does standardize things a bit. Also, it
enables the use of the Visual Basic Using statement. This block statement provides a
structured method of cleaning up resources:

Using myPet As New Animal
 ' ----- Code here uses myPet.
End Using
' ----- At this point, myPet is destroyed, and Dispose is
' called automatically by the End Using statement.

Interfaces
The MustOverride and MustInherit keywords force derived classes to implement spe-
cific members of the base class. But what if you want the derived class to implement
all members of the base class? You could use MustOverride next to each method and
property, but a better way is to use an interface. Interfaces define abstract classes,
classes consisting only of definitions, no implementation. (OOP purists will point
out that a class with even just one MustOverride flag is also an abstract class. Fine.)
Interfaces create a contract, an agreement that the implementing class or structure
agrees to carry out.

The Interface statement begins the interface definition process. By convention, all
interface names begin with the capital letter I.

Interface IBuilding
 Function FloorArea() As Double
 Sub AlterExterior()
End Interface

As you see here, the syntax is a somewhat simplified version of the class definition
syntax. All interface members are automatically public, so access modifiers aren’t
included. Only the definition line of each member is needed since there is no imple-
mentation. In addition to function and sub methods, interface members also include
properties, events, other interfaces, classes, and structures. Interfaces can also derive
from other interfaces (using the Inherits keyword), and automatically include all the
members of the base interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

238 | Chapter 8: Classes and Inheritance

You attach interfaces to a class using the Implements keyword. This same keyword is
used later to indicate which class member defines which interface member.

Class House
Implements IBuilding

 Public Function FloorArea() As Double _
Implements IBuilding.FloorArea

 ' ----- Add implementation here.
 End Function

 Public Sub PaintHouse() Implements IBuilding.AlterExterior
 ' ----- Add implementation here.
 End Sub
End Class

Class implementations of interface members are not required to maintain the origi-
nal interface member name (although the argument signature must match the one in
the interface). In the sample code, FloorArea kept the name of the equivalent inter-
face member, but the AlterExterior member was implemented using the PaintHouse
method. This makes possible some interesting code.

Dim someHouse As New House
Dim someBuilding As IBuilding
someBuilding = someHouse
someBuilding.AlterExterior() ' Calls someHouse.PaintHouse()

Classes can only inherit from a single base class, but there is no limit on the number
of interfaces that a class can implement.

Class House
 Implements IBuilding, IDisposable

Also, a single class member can implement multiple interface members.

Public Sub PaintHouse() Implements _
 IBuilding.AlterExterior, IContractor.DoWork

So, why use interfaces? Interfaces provide a generic way to access common function-
ality, even among objects that have nothing in common. Classes named Animal,
House, and Superhero probably have nothing in common in terms of logic, but they
may all need a consistent way to clean up their resources. If they each implement the
IDisposable interface, they gain that ability without the need to derive from some
common base class.

Modules and Structures
In addition to classes, Visual Basic provides two related object definition features:
structures and modules. Although they have different names than “class,” they still
act a lot like classes, but with different features enabled or disabled.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OOP in Visual Basic and .NET | 239

Modules provide a place to include general global code and data values in your appli-
cation or assembly. All members of a module are Shared. In fact, a module acts just
like a class with the Shared keyword added to each member, yet with one major dif-
ference: no inheritance relationship is allowed with modules. You cannot create a
derived module from a base class or module, nor can you use a module as a base for
any other type. Modules are a carryover from pre-.NET versions of Visual Basic,
which included “Modules” for all non-Form code.

Friend Module GenericDataAndCode
 ' ----- Application-global constant.
 Public Const AllDigits As String = "0123456789"

 ' ----- Application-global function.
 Public Function GetEmbeddedDigits(_
 ByVal sourceString As String) As String
 End Sub
End Module

You cannot create an instance of a module. As with classes, modules appear in the
context of a namespace. Unlike a class with shared members, you do not need to
specify the module name to use the module member. All module members act as glo-
bal variables and methods, and can be used immediately in any other code in your
application without further qualification. (You can restrict a module member’s use
to just the module by declaring the member as Private.)

Structures are much more like classes than are modules. Classes implement reference
types, but structures implement value types. All structures derive from System.
ValueType (which in turn derives from System.Object). As such, they act like the core
Visual Basic data types, such as Integer. You can create instances of a structure using
the same syntax used to create class instances. However, you cannot use a structure
as the base for another derived structure. And although you can include a construc-
tor in your structure, destructors are not supported.

Because of the way that structures are stored and used in a .NET application, they
are well suited to simple data types. You can include any number of members in your
structure, but it is best to keep things simple.

Partial Methods
Earlier in the chapter I wrote about partial classes, the ability to divide a class into
multiple files. Partial classes are especially common in code created by code genera-
tors. Visual Studio is, in part, a code generator; as you drag-and-drop controls on
your form, it generates code for you in a partial Form class. In such cases, partial
classes have two authors: the automated generator and you.

Partial methods, new in Visual Basic 2008, are also used by code generators,
although you are free to employ them yourself. They are particularly useful when
some automatically generated class wants to give its second author (you) the ability

http://lib.ommolketab.ir
http://lib.ommolketab.ir

240 | Chapter 8: Classes and Inheritance

to supply some optional logic that will enhance the automatically generated logic.
Partial methods might be more accurately called “optional methods,” since you have
the option to implement them or not.

Partial methods have two parts: (1) an unimplemented half; and (2) an optional
implemented half. The two halves appear in different parts of a partial class. A par-
tial method is never split between a base and derived class; they have nothing to do
with inheritance.

The unimplemented half of a partial method looks like an empty sub method defini-
tion, but with the Partial keyword added.

Partial Private Sub ImplementIfYouDare()
End Sub

Partial methods must always be sub methods, never functions, and they must always
be declared as Private. If you supply any parameters, they must always be decorated
with the ByVal keyword, not ByRef. Boy, that’s a lot of restrictions.

The implemented half looks really familiar, except for the lack of a “Partial” prefix.
But it sure looks good with real code between its jaws.

Private Sub ImplementIfYouDare()
 MsgBox("I did it, so there.")
End Sub

So, what’s the big deal with these partial methods? Perhaps not much, but looking at
an example might help. Let’s return to our living, breathing Animal class, this time
with a partial method included. Let’s start with the auto-generated side of the world.

Partial Class Animal
 Public Sub Move()
 ' ----- Interesting movement code, then...
 MoveSideEffects()
 End Sub

 Partial Private Sub MoveSideEffects()
 End Sub
End Class

Sometimes when an animal moves, it has side effects, such as scaring other animals.
As the second half of the implementation team, you could program these side effects
by completing the other half of the partial method. But if there were no side effects
for this particular implementation, you could just leave the partial method unfin-
ished. It’s optional.

Yawn, yawn, snore, snore. “Get to the point, Tim,” you say. The point is that if you
never write the second half of a partial method, the Visual Basic compiler will leave
out both halves, generating code as though the unimplemented half was never auto-
generated in the first place. So, that earlier Animal class becomes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Issues | 241

Partial Class Animal
 Public Sub Move()
 ' ----- Interesting movement code, then...
 End Sub
End Class

Not only did the partial method definition disappear, but the call to that method
inside the Move routine disappeared as well.

As a lone programmer writing lonely code, you will probably never craft a partial
method; the event system is a much better way to generically respond to actions
within a class. But you might have a chance to write the implementation side of a
partial method. Partial methods will be used in some LINQ-specific code, especially
when designing LINQ code that communicates with SQL Server. But more on that in
Chapter 17.

Related Issues
Let me take a few moments here before getting into the project code to discuss some
issues that don’t really fit into any particular chapter discussion, but that you might
end up using a lot in your own applications.

The MsgBox Method
Although I’ve used it on practically every page of this book so far, I have never for-
mally introduced you to the MsgBox method. Part of the Microsoft.VisualBasic
namespace, MsgBox is a carryover from the MsgBox function in the original release of
Visual Basic. It displays a simple message window, including a selection of response
buttons and an optional icon. As a function, it returns a code indicating which but-
ton the user clicked to close the form, one of the MsgBoxResult enumeration values.
The syntax is:

Public Function MsgBox(ByVal Prompt As Object, _
 Optional ByVal Buttons As MsgBoxStyle = MsgBoxStyle.OKOnly, _
 Optional ByVal Title As Object = Nothing) As MsgBoxResult

The Prompt parameter accepts a string for display in the main body of the dialog;
Buttons indicates which buttons, icons, and other settings to use when displaying the
dialog; and Title accepts a custom window title if you want something other than
the application title to appear. The following statement displays the window in
Figure 8-2:

Dim result As MsgBoxResult = MsgBox(_
 "It's safe to click; the computer won't explode.", _
 MsgBoxStyle.YesNoCancel Or MsgBoxStyle.Question, _
 "Click Something")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

242 | Chapter 8: Classes and Inheritance

The MsgBox function is considered to be an intrinsic part of the language. But as a
member of the Microsoft.VisualBasic namespace, it’s generally used only within the
Visual Basic language. If you were to do some .NET coding in C#, you would nor-
mally opt instead for the MessageBox.Show method. It works pretty much like the
MsgBox function, but its second and third arguments are reversed. Some .NET con-
formists insist that MsgBox—and anything that appears in the Microsoft.VisualBasic
namespace—must be spurned in favor of class library alternatives. I find it to be a
preference choice, but you may encounter just such a person insisting that your code
is substandard. You can read my views about such tactics in Chapter 26.

If you plan to develop Visual Basic code that targets Microsoft’s Silverlight platform,
avoiding Microsoft.VisualBasic can bring about improved performance when down-
loading your assembly to the client workstation. Silverlight applications benefit
greatly from reductions in compiled code size, at least for download purposes. Any-
thing you can do to eliminate dependencies on external assemblies such as
Microsoft.VisualBasic will help speed your program along.

Using DoEvents
Programs are designed to do a lot of thinking, and sometimes they think so much,
they pretty much lock up the computer. This is especially true of Visual Basic meth-
ods that perform a lot of database-heavy transactions, one right after another. The
system defers less important screen updates so that more important data processing
code can occur first. That’s great, but sometimes the user thinks, “This stupid com-
puter’s dead again,” and pulls the plug. If the screen would simply provide better
updates, the user might be more patient.

Each control on your form (and the form itself) includes a Refresh method, but it can
be a bother to constantly refresh everything. And refreshing the display wouldn’t do
much to enable the “Cancel” button that you want your user to click to abort all that
lovely data processing. To make life easier, Visual Basic includes a DoEvents method.

Figure 8-2. Communicating an important message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Issues | 243

When this method is called, the current method’s code pauses temporarily, and mes-
sages in the thread’s incoming message queue are processed, including “paint”
(screen update) messages. DoEvents is part of the My namespace, and is used as a
standalone statement:

My.Application.DoEvents()

Be warned that overuse of DoEvents can slow down your application, and can lead to
problems related to an event being called too many times. In general, it should be
used only in a processing-intensive block of code, and then it should be spread out
so that it is called only a few times per second at the most.

ParamArray Arguments
Any method can enable optional arguments, and the calling code can choose to
include or exclude those arguments. But what if you wanted to add an unlimited
number of optional arguments to a method? How could you write, for instance, a
function that would return the average of all supplied arguments, with no limits on
the number of arguments? Although you could accept an array variable with the
source data values, you could also use a parameter array argument, also called a
ParamArray argument.

As with optional arguments, ParamArray arguments must appear at the end of a
method’s argument list, and there can be only one, because one is more than enough
for any method. Parameter array arguments use the ParamArray keyword just before
the argument name.

Public Function CalculateAverage(_
ParamArray sourceData() As Decimal) As Decimal

 ' ----- Calculate the average for a set of numbers.
 Dim singleValue As Decimal
 Dim runningTotal As Decimal = 0@

 If (sourceData.GetLength(0) = 0) Then
 Return 0@
 Else
 For Each singleValue In sourceData
 runningTotal += singleValue
 Next singleValue
 Return runningTotal / sourceData.GetLength(0)
 End If
End Function

Calls to the CalculateAverage function now accept any number of decimal values.

MsgBox(CalculateAverage(1, 2, 3, 4, 5)) ' Displays: 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

244 | Chapter 8: Classes and Inheritance

Summary
The ability to extend classes through inheritance is truly the foundation on which
complex yet manageable programs are built in .NET. And they are not overly com-
plex, either. Classes are simple containers for their members, and the variety and
complexity of the available members are not that great. So, it’s really amazing that
you can write almost any type of program, and implement any number of features,
using these simple foundational tools. Oh yeah, the Visual Basic language helps, too.

As we add code to the Library Project throughout this book, you will become more
and more familiar with classes, structures, modules, and their members. And
although you’ll never remember whether ByRef or ByVal is the default parameter-
passing mechanism for methods, you will add properties, methods, events, fields,
and other types to classes like you were born with the ability.

Project
This chapter’s code implements two features of the Library Project: (1) a simple
helper class used with ListBox and ComboBox controls to manage text and data; and
(2) a set of generic forms used to edit lookup tables in the Library, such as tables of
status codes.

Supporting List and Combo Boxes
In Visual Basic 6.0 and earlier, ListBox and ComboBox controls included two primary
array-like collections: List (used to store the display text for each item) and ItemData
(used to store a 32-bit numeric value for each item). The List array was important to
the user since it presented the text for each item. But many programmers depended
more on the ItemData array, which allowed a unique identifier to be attached to each
list item.

cboMonth.AddItem "January"
cboMonth.ItemData(cboMonth.NewIndex) = 1
cboMonth.AddItem "February"
cboMonth.ItemData(cboMonth.NewIndex) = 2
...
cboMonth.AddItem "December"
cboMonth.ItemData(cboMonth.NewIndex) = 12

Later, after the user selected a value from the list, the numeric ID could be used for
database lookup or any other designated purpose.

nMonth = cboMonth.ItemData(cboMonth.ListIndex)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 245

The bad news is that neither List nor ItemData exists in the .NET variation of
ListBox or ComboBox controls. The good news is that both are replaced with a much
more flexible collection: Items. The Items collection stores any type of object you
want: instances of Integer, String, Date, Animal, or even Superhero, and you can mix
them within a single ListBox. Since Items is just a collection of System.Object
instances, you can put any type of object you wish in the collection. The ListBox (or
ComboBox) uses this collection to display items in the list.

So, how does a ListBox control know how to display text for any mixture of objects?
By default, the control calls the ToString method of the object. ToString is defined in
System.Object, and you can override it in your own class. The ListBox control also
includes a DisplayMember property that you can set to the field or property of your
class that generates the proper text.

Let’s see a ListBox in action. Add a new ListBox to a form, and then add the follow-
ing code to the form’s Load event handler.

Public Class Form1
 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ListBox1.Items.Add(1)
 ListBox1.Items.Add("Easy")
 ListBox1.Items.Add(#5/3/2006#)
 End Sub
End Class

Running this code displays the form in Figure 8-3.

For the old ItemData value, the ListBox control includes a ValueMember property that
identifies the identifier field or property for the objects in the Items collection. But
you don’t have to use ValueMember. Instead, you can simply extract the object in
question from the Items collection, and examine its members with your own custom
code to determine its identity. In reality, it’s a little more work than the old Visual
Basic 6.0 method. But then again, since you can store objects of any size in the Items
collection, you could opt to store entire database records, something you could never
do before .NET.

Figure 8-3. A simple ListBox with three different items

http://lib.ommolketab.ir
http://lib.ommolketab.ir

246 | Chapter 8: Classes and Inheritance

Still, storing entire records in a ListBox or ComboBox control is pretty wasteful. It’s
usually much better to store just an ID number, and use it as a lookup into a data-
base. That’s what we’ll do in the Library Project. To support this, we’ll need to cre-
ate a simple class that will expose a text and data value. First, let’s go back into the
Library code.

PROJECT ACCESS

Load the Chapter 8 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 8 (After) Code instead.

Let’s put the class in a source code file all its own. Add a new class file through the
Project ➝ Add Class menu command. Name the file ListItemData.vb and click the
Add button. The following code appears automatically:

Public Class ListItemData

End Class

This class will be pretty simple. It will include only members for text and item dis-
play. In case we forget to connect the text field to the ListBox or ComboBox’s
DisplayMember property, we’ll also include an override to the ToString function, plus
a custom constructor that makes initialization of the members easier. Add the fol-
lowing code to the body of the class.

INSERT SNIPPET

Insert Chapter 8, Snippet Item 1.

Public ItemText As String
Public ItemData As Integer

Public Sub New(ByVal displayText As String, _
 itemID As Integer)
 ' ----- Initialize the record.
 ItemText = displayText
 ItemData = itemID
End Sub

Public Overrides Function ToString() As String
 ' ----- Display the basic item text.
 Return ItemText
End Function

Public Overrides Function Equals(ByVal obj As Object) _
 As Boolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 247

 ' ----- Allow IndexOf() and Contains() searches by ItemData.
 If (TypeOf obj Is Integer) Then
 Return CBool(CInt(obj) = ItemData)
 Else
 Return MyBase.Equals(obj)
 End If
End Function

Later, when it’s time to populate a ListBox, we can use this object to add the display
and identification values.

ListBox1.Items.Add(New ListItemData("Item Text", 25))

The override of the Equals method allows us to quickly look up items already added
to a ListBox (or similar) control using features already included in the control. The
ListBox control’s Items collection includes an IndexOf method that returns the posi-
tion of a matching item. Normally, this method will match only the object itself; if
you pass it a ListItemData instance, it will report whether that item is already in the
ListBox. The updated Equals code will also return True if we pass an Integer value
that matches a ListItemData.ItemData member for an item already in the list.

Dim itemPosition As Integer = SomeListBox.Items.IndexOf(5)

Editing Code Tables
Back in Chapter 4, when we crafted the database for the Library Project, several of
the tables were created to fill simple ComboBox lists in the application. All of these
tables begin with the prefix “Code,” and contain records that rarely, if ever, change
in the lifetime of the application. One such table is CodeCopyStatus, which identifies
the current general condition of an item in the library’s collections.

Since all of these tables have basically the same format—an ID field and one or more
content fields—it should be possible to design a generic template to use for editing
these tables. A base (class) form would provide the basic editing features, to be devel-
oped in full through derived versions of the base form.

For the project, we will add two forms: a “summary” form (that displays a list of all
currently defined codes) and a “detail” form (that allows editing of a single new or
existing code). To make things even simpler, we will include only the most basic
record-management functionality in the summary form. Most of the code needed to
edit, display, and remove codes will appear in the detail forms.

Field Type Description

ID Long - Auto Primary key; automatically assigned. Required.

FullName Text(50) Name of this status entry. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

248 | Chapter 8: Classes and Inheritance

The Generic Detail Form
Add a new form to the project (Project ➝ New Windows Form), naming it
BaseCodeForm.vb. Alter the following properties as indicated.

Now access the source code for this class (View ➝ Code). The code will never create
instances of this generic form directly, so let’s disallow all direct instantiation by
including the MustInherit keyword.

Public MustInherit Class BaseCodeForm

End Class

The main features of the form will be the adding of new code records, the editing of
existing code records, and the removal of existing records. Add three function skele-
tons that support these features. We could have made them MustOverride, but as
you’ll see later, we will want the option to keep the default functionality from the
base generic form.

INSERT SNIPPET

Insert Chapter 8, Snippet Item 2.

Public Overridable Function AddRecord() As Integer
 ' ----- Prompt to add a new record. Return the ID
 ' when added, or -1 if cancelled.
 Return -1
End Function

Public Overridable Function DeleteRecord(_
 ByVal recordID As Integer) As Boolean
 ' ----- Prompt the user to delete a record.
 ' Return True on delete.
 Return False
End Function

Public Overridable Function EditRecord(_
 ByVal recordID As Integer) As Integer

Property Setting

(Name) BaseCodeForm

ControlBox False

FormBorderStyle FixedDialog

ShowInTaskbar False

Size 406, 173

StartPosition CenterScreen

Text Code Form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 249

 ' ----- Prompt the user to edit the record. Return the
 ' record's ID if saved, or -1 on cancel.
 Return -1
End Function

The detail form will take responsibility for filling the ListBox control on the summary
form with its items. Two methods will handle this: one that adds all items, and one that
updates a single item. The derived class will be required to supply these features.

INSERT SNIPPET

Insert Chapter 8, Snippet Item 3.

' ----- Fill a ListBox control with existing records.
Public MustOverride Sub FillListWithRecords(_
 ByRef destList As ListBox, ByRef exceededMatches As Boolean)

' ----- Return the formatted name of a single record.
Public MustOverride Function FormatRecordName(_
 ByVal recordID As Integer) As String

The detail form must also display the proper titles and usage information on the
summary form.

INSERT SNIPPET

Insert Chapter 8, Snippet Item 4.

' ----- Return a description of this editor.
Public MustOverride Function GetEditDescription() As String

' ----- Return the title-bar text for this editor.
Public MustOverride Function GetEditTitle() As String

Although most of the tables will supply a short list of alphabetized codes, some
tables will include a large number (possibly thousands) of codes. The summary form
will support a search method, to locate an existing code quickly. Since only certain
derived forms will use this feature, we won’t include MustOverride.

INSERT SNIPPET

Insert Chapter 8, Snippet Item 5.

Public Overridable Sub SearchForRecord(_
 ByRef destList As ListBox, _
 ByRef exceededMatches As Boolean)
 ' ----- Prompt the user to search for a record.
 Return
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

250 | Chapter 8: Classes and Inheritance

Finally, the detail form will indicate which of the available features can be used from
the summary form. The summary form will call each of the following functions, and
then enable or disable features as requested.

INSERT SNIPPET

Insert Chapter 8, Snippet Item 6.

Public Overridable Function CanUserAdd() As Boolean
 ' ----- Check the security of current user to see
 ' if adding is allowed.
 Return False
End Function

Public Overridable Function CanUserEdit() As Boolean
 ' ----- Check the security of the user to see
 ' if editing is allowed.
 Return False
End Function

Public Overridable Function CanUserDelete() As Boolean
 ' ----- Check the security of the user to see
 ' if deleting is allowed.
 Return False
End Function

Public Overridable Function UsesSearch() As Boolean
 ' ----- Does this editor support searching?
 Return False
End Function

That’s it for the generic detail form. Later on in the book, we’ll create derived ver-
sions for each of the code tables.

The Generic Summary Form
The summary form is a little more straightforward, since it is just a plain form. When
it starts up, it uses an instance of one of the derived detail forms to control the expe-
rience presented to the user. I’ve already added the form to the project; it’s called
ListEditRecords.vb, and it looks like Figure 8-4.

A large ListBox control fills most of the form, a control that will hold all existing
items. There are also buttons to add, edit, delete, and search for items in the list.
There’s a lot of code to manage these items; I’ve already written it in a code snippet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 251

Switch to the form’s source code view, and add the source code just after the Public
Class ListEditRecords line.

INSERT SNIPPET

Insert Chapter 8, Snippet Item 7.

The first line of the added code defines a private instance of the generic detail form
we just designed.

Private DetailEditor As Library.BaseCodeForm

This field holds an instance of a class derived from BaseCodeForm. That assignment
appears in the public method ManageRecords.

Public Sub ManageRecords(ByRef UseDetail _
 As Library.BaseCodeForm)
 ' ----- Set up the form for use with this code set.
 Dim exceededMatches As Boolean

Figure 8-4. The Generic Summary form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

252 | Chapter 8: Classes and Inheritance

 DetailEditor = UseDetail
 RecordsTitle.Text = DetailEditor.GetEditTitle()
 RecordsInfo.Text = DetailEditor.GetEditDescription()
 Me.Text = DetailEditor.GetEditTitle()
 ActAdd.Visible = DetailEditor.CanUserAdd()
 ActEdit.Visible = DetailEditor.CanUserEdit()
 ActDelete.Visible = DetailEditor.CanUserDelete()
 ActLookup.Visible = DetailEditor.UsesSearch()
 DetailEditor.FillListWithRecords(RecordsList, _
 exceededMatches)
 RefreshItemCount(exceededMatches)
 Me.ShowDialog()
End Sub

The code that calls ManageRecords passes in a form instance, one of the forms derived
from BaseCodeForm. Once assigned to the internal DetailEditor field, the code uses
the public features of that instance to configure the display elements on the sum-
mary form. For instance, the detail form’s CanUserAdd function, which sports a
Boolean return value, sets the Visible property of the ActAdd button. The
FillListWithRecords method call populates the summary ListBox control with any
existing code values. After some more display adjustments, the Me.ShowDialog
method displays the summary form to the user.

Although the user will interact with the controls on the summary form, most of these
controls defer their processing to the detail form, DetailEditor. For example, a click on
the Add button defers most of the logic to the detail form’s AddRecord method. The code
in the summary form doesn’t do much more than update its own display fields.

Private Sub ActAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActAdd.Click
 ' ----- Let the user add a record.
 Dim newID As Integer
 Dim newPosition As Integer

 ' ----- Prompt the user.
 newID = DetailEditor.AddRecord()
 If (newID = -1) Then Return

 ' ----- Add this record to the list.
 newPosition = RecordsList.Items.Add(_
 (New Library.ListItemData(_
 DetailEditor.FormatRecordName(newID), newID)))
 RecordsList.SelectedIndex = newPosition
 RefreshButtons()
 RefreshItemCount(False)
End Sub

Most of the remaining code in the summary form either is just like this (for edit,
delete, and search features), or is used to refresh the display based on user interac-
tion with the form. Be sure to examine the code to get a good understanding of how
the code works. In later chapters, when we add actual detail forms, we’ll see this
code in action.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

253

Chapter 9 CHAPTER 9

Functional Programming9

In this chapter, we’ll cover two major Visual Basic programming topics: lambda
expressions and error handling. Both are mysterious, one because it uses a Greek let-
ter in its name and the other because it might as well be in Greek for all the difficulty
programmers have with it. Lambda expressions in particular have to do with the
broader concept of functional programming, the idea that every computing task can
be expressed as a function and that functions can be passed around willy-nilly within
the source code. Visual Basic is not a true functional programming language, but the
introduction of lambda expressions in Visual Basic 2008 brings some of those func-
tional ways and means to the language.

Lambda Expressions
Lambda expressions are named for lambda calculus (or λ-calculus), a mathematical
system designed in the 1930s by Alonzo Church, certainly a household name
between the wars. Although his work was highly theoretical, it led to features and
structures that benefit most programming languages today. Specifically, lambda cal-
culus provides the rationale for the Visual Basic functions, arguments, and return
values that we’ve already learned about. So, why add a new feature to Visual Basic
and call it “lambda” when there are lambda things already in the language? Great
question. No answer.

Lambda expressions let you define an object that contains an entire function.
Although this is something new in Visual Basic, a similar feature has existed in the
BASIC language for a long time. I found an old manual from the very first program-
ming language I used, BASIC PLUS on the RSTS/E timeshare computer. It provided
a sample of the DEF statement, which let you define simple functions. Here is some
sample code from that language that prints a list of the first five squares:

100 DEF SQR(X)=X*X
110 FOR I=1 TO 5
120 PRINT I, SQR(I)
130 NEXT I
140 END

http://lib.ommolketab.ir
http://lib.ommolketab.ir

254 | Chapter 9: Functional Programming

The function definition for SQR() appears on line 100, returning the square of any
argument passed to it. It’s used in the second half of line 120, generating the follow-
ing output:

1 1
2 4
3 9
4 16
5 25

Lambda expressions in Visual Basic work in a similar way, letting you define a vari-
able as a simple function. Here’s the Visual Basic equivalent for the preceding code:

Dim sqr As Func(Of Integer, Integer) = _
 Function(x As Integer) x * x
For i As Integer = 1 To 5
 Console.WriteLine("{0}{1}{2}", i, vbTab, sqr(i))
Next i

The actual lambda expression is on the second line:

Function(x As Integer) x * x

Lambda expressions begin with the Function keyword, followed by a list of passed-in
arguments in parentheses. After that comes the definition of the function itself, an
expression that uses the passed-in arguments to generate some final result. In this
case, the result is the value of x multiplied by itself.

One thing you won’t see in a lambda expression is the Return statement. Instead, the
return value just seems to fall out of the expression naturally. That’s why you need
some sort of variable to hold the definition and return the result in a function-like
syntax.

Dim sqr As Func(Of Integer, Integer)

Lambda expression variables are defined using the Func keyword—so original. The
data type argument list matches the argument list of the actual lambda expression,
but with an extra data type thrown in at the end that represents the return value’s
data type. Here’s a lambda expression that checks whether an Integer argument is
even or not, returning a Boolean result:

Public Sub TestNumber()
 Dim IsEven As Func(Of Integer, Boolean) = _
 Function(x As Integer) (x Mod 2) = 0
 MsgBox("Is 5 Even? " & IsEven(5))
End Sub

This code displays a message that says, “Is 5 Even? False.” Behind the scenes, Visual
Basic is generating an actual function, and linking it up to the variable using a dele-
gate. (A delegate, as you probably remember, is a way to identify a method generi-
cally through a distinct variable.) The following code is along the lines of what the
compiler is actually generating for the previous code sample:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lambda Expressions | 255

Private Function HiddenFunction1(_
 ByVal x As Integer) As Boolean
 Return (x Mod 2) = 0
End Function

Private Delegate Function HiddenDelegate1(_
 ByVal x As Integer) As Boolean

Public Sub TestNumber()
 Dim IsEven As HiddenDelegate1 = _
 AddressOf HiddenFunction1
 MsgBox("Is 5 Even? " & IsEven(5))
End Sub

In this code, the lambda expression and related IsEven variable have been replaced
with a true function (HiddenFunction1) and a go-between delegate (HiddenDelegate1).
Although lambdas are new in Visual Basic 2008, this type of equivalent functionality
has been available since the first release of Visual Basic for .NET. Lambda expres-
sions provide a simpler syntax when the delegate-referenced function is just return-
ing a result from an expression.

Lambda expressions were added to Visual Basic 2008 primarily to support the new
LINQ functionality (see Chapter 17). They are especially useful when you need to
supply an expression as a processing rule for some other code, especially code writ-
ten by a third party. And in your own applications, Microsoft is a third party. Coinci-
dence? I think not!

Implying Lambdas
Lambda expressions are good and all, but it’s clear that equivalent functionality was
already available in the language. And by themselves, lambda expressions are just a
simplification of some messy function-delegate syntax. But when you combine
lambda expressions with the type inference features discussed back in Chapter 6, you
get something even better: pizza!

Perhaps I should have written this chapter after lunch. What you get is lambda expres-
sions with inferred types. It’s not a very romantic name, but it is a great new tool.

Let’s say that you wanted to write a lambda expression that multiplies two numbers
together.

Dim mult As Func(Of Integer, Integer, Integer) = _
 Function(x As Integer, y As Integer) x * y

MsgBox(mult(5, 6)) ' Displays 30

This is the Big Cheese version of the code: I tell Visual Basic everything, and it obeys
me without wavering. But there’s also a more laissez faire version of the code that
brings type inference into play.

Dim mult = Function(x As Integer, y As Integer) x * y

http://lib.ommolketab.ir
http://lib.ommolketab.ir

256 | Chapter 9: Functional Programming

Hey, that’s a lot less code. I was getting pretty tired of typing Integer over and over
again anyway. The code works because Visual Basic looked at what you assigned to
mult and correctly identified its strong data type. In this case, mult is of type
Function(Integer, Integer) As Integer (see Figure 9-1). It even correctly guessed the
return type.

This code assumes that you have Option Infer set to On in your source code, or
through the Project properties (it’s the default). Chapter 6 discusses this option.

We could have shortened the mult definition up even more.

Dim mult = Function(x, y) x * y

In this line, Visual Basic would infer the same function, but it would use the Object
data type throughout instead of Integer. Also, if you have Option Strict set to On
(which you should), this line will not compile until you add the appropriate As
clauses.

Expression Trees
Internally, the Visual Basic compiler changes a lambda expression into an “expres-
sion tree,” a hierarchical structure that associates operands with their operators.
Consider this semicomplex lambda expression that raises a multiplied expression to
a power:

Dim calculateIt = Function(x, y, z) (x * y) ^ z

Visual Basic generates an expression tree for calculateIt that looks like Figure 9-2.

When it comes time to use a lambda expression, Visual Basic traverses the tree, cal-
culating values from the lower levels up to the top. These expression trees are stored
as objects based on classes in the System.Linq.Expressions namespace. If you don’t
like typing lambda expressions, you can build up your own expression trees using

Figure 9-1. Visual Basic is also good at playing 20 questions

Figure 9-2. Expression trees group operands by operator

^

* z

x y

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lambda Expressions | 257

these objects. However, my stomach is rumbling even more, so I’m going to leave
that out of the book.

Complex Lambdas
Although lambda expressions can’t contain Visual Basic statements such as For...
Next loops, you can still build up some pretty complex calculations using standard
operators. Calls out to other functions can also appear in lambdas. In this code sam-
ple, mult defers its work to the MultiplyIt function:

Private Sub DoSomeMultiplication()
 Dim mult = Function(x As Integer, y As Integer) _
 MultiplyIt(x, y) + 10

 MsgBox(mult(5, 6)) ' Displays 40
End Sub

Public Function MultiplyIt(ByVal x As Integer, _
 ByVal y As Integer) As Integer
 Return x * y
End Function

That’s pretty straightforward. But things get more interesting when you have lambda
expressions that return other lambda expressions. Lambda calculus was invented
partially to see how any complex function could be broken down into the most basic
of functions. Even literal values can be defined as lambdas. Here’s the lambda
expression that always returns the value 3:

Dim three = Function() 3

You’ve already seen lambda expressions that accept more than one argument:

Dim mult1 = Function(x As Integer, y As Integer) x * y

In lambda calculus, this can be broken down into smaller functionettes, where each
includes only a single argument:

Dim mult2 = Function(x As Integer) Function(y As Integer) x * y

The data type of mult2 is not exactly the same as mult1’s data type, but they both
generate the same answer from the same x and y values. When you use mult1, it cal-
culates the product of x and y and returns it. When you use mult2, it first runs the
Function(x As Integer) part, which returns another lambda calculated by passing the
value of x into its definition. If you pass in “5” as the value for x, the returned
lambda is:

Function(y As Integer) 5 * y

This lambda is then calculated, and the product of 5 and y is returned. Calling mult2
in code is also slightly different. You don’t pass in both arguments at once. Instead,
you pass in the argument for x, and then pass y to the returned initial lambda.

MsgBox(mult2(5)(6))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

258 | Chapter 9: Functional Programming

When run, the mult2(5) part gets replaced with the first returned lambda. Then that
first returned lambda is processed using (6) as its y argument. Isn’t that simple?
Well, no, it isn’t. And that’s OK, since the two-argument mult1 works just fine. The
important part to remember is that it’s possible to build complex lambda expres-
sions up from more basic lambda expressions. Visual Basic will use this fact when it
generates the code for your LINQ-related expressions. We’ll talk more about it in
Chapter 17, but even then, Visual Basic will manage a lot of the LINQ-focused
lambda expressions for you behind the scenes.

Variable Lifting
Although you can pass arguments into a lambda expression, you may also use other
variables that are within the scope of the lambda expression.

Private Sub NameMyChild()
 Dim nameLogic = GetChildNamingLogic()
 MsgBox(nameLogic("John")) ' Displays: Johnson
End Sub

Private Function GetChildNamingLogic() As _
 Func(Of String, String)
 Dim nameSuffix As String = "son"
 Dim newLogic = Function(baseName As String) _
 baseName & nameSuffix
 Return newLogic
End Function

The GetChildNamingLogic function returns a lambda expression. That lambda expres-
sion is used in the NameMyChild method, passing John as an argument to the lambda.
And it works. The question is how. The problem is that nameSuffix, used in the
lambda expression’s logic, is a local variable within the GetChildNamingLogic method.
All local variables are destroyed whenever a method exits. By the time the MsgBox
function is called, nameSuffix will be long gone. Yet the code works as though
nameSuffix lived on.

To make this code work, Visual Basic uses a new feature called variable lifting. See-
ing that nameSuffix will be accessed outside the scope of GetChildNamingLogic, Visual
Basic rewrites your source code, changing nameSuffix from a local variable to a vari-
able that has a wider scope.

In the new version of the source code, Visual Basic adds a closure class, a dynami-
cally generated class that contains both the lambda expression and the local vari-
ables used by the expression. When you combine these together, any code that gets
access to the lambda expression will also have access to the “local” variable.

Private Sub NameMyChild()
 Dim nameLogic = GetChildNamingLogic()
 MsgBox(nameLogic("John")) ' Displays: Johnson
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object Initializers | 259

Public Class GeneratedClosureClass
 Public nameSuffix As String = "son"
 Public newLogic As Func(Of String, String) = _
 Function(baseName As String) baseName & Me.nameSuffix
End Class

Private Function GetChildNamingLogic() As _
 Func(Of String, String)
 Dim localClosure As New GeneratedClosureClass
 localClosure.nameSuffix = "son"
 Return localClosure.newLogic
End Function

The actual code generated by Visual Basic is more complex than this, and it would
include all of that function-delegate converted code I wrote about earlier. But this is
the basic idea. Closure classes and variable lifting are essential features for lambda
expressions since you can never really know where your lambda expressions are at all
hours of the night.

Object Initializers
To initialize object properties not managed by constructors, you need to assign those
properties separately just after you create the class instance.

Dim newHire As New Employee
newHire.Name = "John Doe"
newHire.HireDate = #2/27/2008#
newHire.Salary = 50000@

The With...End With statement provides a little more structure.

Dim newHire As New Employee
With newHire
 .Name = "John Doe"
 .HireDate = #2/27/2008#
 .Salary = 50000@
End With

A new syntax included in Visual Basic 2008 lets you combine declaration (with the
New keyword) and member assignment. The syntax includes a new variation of the
With statement.

Dim newHire As New Employee With { _
 .Name = "John Doe", _
 .HireDate = #2/27/2008#, _
 .Salary = 50000@}

Well, as far as new features go, it’s not glitzy like lambda expressions or variable lift-
ing. But it gets the job done.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

260 | Chapter 9: Functional Programming

Error Handling in Visual Basic
Debugging and error processing are two of the most essential programming activi-
ties you will ever perform. There are three absolutes in life: death, taxes, and soft-
ware bugs. Even in a relatively bug-free application, there is every reason to believe
that a user will just mess things up royally. As a programmer, your job is to be the
guardian of the user’s data as managed by the application, and to keep it safe, even
from the user’s own negligence (or malfeasance), and also from your own source
code.

I recently spoke with a developer from a large software company headquartered in
Redmond, Washington; you might know the company. This developer told me that
in any given application developed by this company, more than 50% of the code is
dedicated to dealing with errors, bad data, system exceptions, and failures. Cer-
tainly, all this additional code slows down each application and adds a lot of over-
head to what is already called “bloatware.” But in an age of hackers and data entry
mistakes, such error management is an absolute must.

Testing—although not a topic covered in this book—goes hand in hand with error
management. Often, the report of an error will lead to a bout of testing, but it should
really be the other way around: testing should lead to the discovery of errors. A few
years ago, NASA’s Mars Global Surveyor, in orbit around the red planet, captured
images of the Beagle 2, a land-based research craft that crashed into the Martian sur-
face in 2003. An assessment of the Beagle 2’s failure pinpointed many areas of con-
cern, with a major issue being inadequate testing:

This led to an attenuated testing programme to meet the cost and schedule con-
straints, thus inevitably increasing technical risk. (From Beagle 2 ESA/UK Commis-
sion of Inquiry Report, April 5, 2004, Page 4)

Look at all those big words. Boy, the Europeans sure have a way with language. Per-
haps a direct word-for-word translation into American English will make it clear
what the commission was trying to convey:

They didn’t test it enough, and probably goofed it all up.

The Nature of Errors in Visual Basic
You will deal with three major categories of errors in your Visual Basic applications:

Compile-time errors
Some errors are so blatant that Visual Basic will refuse to compile your applica-
tion. Generally, such errors are due to simple syntax issues that can be corrected
with a few keystrokes. But you can also enable features in your program that will
increase the number of errors recognized by the compiler. For instance, if you set
Option Strict to On in your application or source code files, implicit narrowing
conversions will generate compile-time errors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Nature of Errors in Visual Basic | 261

' ----- Assume: Option Strict On
Dim bigData As Long = 5&
Dim smallData As Integer
' ----- The next line will not compile.
smallData = bigData

Visual Studio 2008 includes features that help you locate and resolve compile-
time errors. Such errors are marked with a “blue squiggle” below the offending
syntax. Some errors also prompt Visual Studio to display corrective options
through a pop-up window, as shown in Figure 9-3.

Runtime errors
Runtime errors occur when a combination of data and code causes an invalid
condition in what otherwise appears to be valid code. Such errors frequently
occur when a user enters incorrect data into the application, but your own code
can also generate runtime errors. Adequate checking of all incoming data will
greatly reduce this class of errors. Consider the following block of code:

Public Function GetNumber() As Integer
 ' ----- Prompt the user for a number.
 ' Return zero if the user clicks Cancel.
 Dim useAmount As String

 ' ----- InputBox returns a string with whatever
 ' the user types in.
 useAmount = InputBox("Enter number.")
 If (IsNumeric(useAmount) = True) Then
 ' ----- Convert to an integer and return it.
 Return CInt(useAmount)
 Else

Figure 9-3. Error correction options for a narrowing conversion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

262 | Chapter 9: Functional Programming

 ' ----- Invalid data. Return zero.
 Return 0
 End If
End Function

This code looks pretty reasonable, and in most cases, it is. It prompts the user
for a number, converts valid numbers to integer format, and returns the result.
The IsNumeric function will weed out any invalid non-numeric entries. Calling
this function will, in fact, return valid integers for entered numeric values, and 0
for invalid entries.

But what happens when a fascist dictator tries to use this code? As history has
shown, a fascist dictator will enter a value such as “342304923940234.” Because
it’s a valid number, it will pass the IsNumeric test with flying colors, but since it
exceeds the size of the Integer data type, it will generate the dreaded runtime
error shown in Figure 9-4.

Without additional error-handling code or checks for valid data limits, the
GetNumber routine generates this runtime error, and then causes the entire pro-
gram to abort. Between committing war crimes and entering invalid numeric val-
ues, there seems to be no end to the evil that fascist dictators will do.

Logic errors
Logic errors are the third, and the most insidious, type of error. They are caused
by you, the programmer; you can’t blame the user on this one. From process-
flow issues to incorrect calculations, logic errors are the bane of software devel-
opment, and they result in more required debugging time than the other two
types of errors combined.

Logic errors are too personal and too varied to directly address in this book. You
can force many logic errors out of your code by adding sufficient checks for
invalid data, and by adequately testing your application under a variety of condi-
tions and circumstances.

You won’t have that much difficulty dealing with compile-time errors. A general
understanding of Visual Basic and .NET programming concepts, and regular use of
the tools included with Visual Studio 2008, will help you quickly locate and elimi-
nate them.

Figure 9-4. An error message only a fascist dictator could love

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unstructured Error Handling | 263

The bigger issue is: what do you do with runtime errors? Even if you check all possi-
ble data and external resource conditions, it’s impossible to prevent all runtime
errors. You never know when a network connection will suddenly go down, or the
user will trip over the printer cable, or a scratch on a DVD will generate data corrup-
tion. Anytime you deal with resources that exist outside your source code, you are
taking a chance that runtime errors will occur.

Figure 9-4 showed you what Visual Basic does when it encounters a runtime error: it
displays to the user a generic error dialog, and offers a chance to ignore the error
(possible corruption of any unsaved data) or exit the program immediately (com-
plete loss of any unsaved data).

Although both of these user actions leave much to the imagination, they don’t instill
consumer confidence in your coding skills. Trust me on this: the user will blame you
for any errors generated by your application, even if the true problem was far
removed from your code.

Fortunately, Visual Basic includes three tools to help you deal completely with run-
time errors, if and when they occur. These three Visual Basic features—unstructured
error handling, structured error handling, and unhandled error handling—can all be
used in any Visual Basic application to protect the user’s data—and the user—from
unwanted errors.

Unstructured Error Handling
Unstructured error handling has been a part of Visual Basic since it first debuted in
the early 1990s. It’s simple to use, catches all possible errors in a block of code, and
can be enabled or disabled as needed. By default, methods and property procedures
include no error handling at all, so you must add error-handling code—unstruc-
tured or structured—to every routine where you feel it is needed.

The idea behind unstructured error handling is pretty basic. You simply add a line in
your code that says, “If any errors occur at all, temporarily jump down to this other
section of my procedure where I have special code to deal with it.” This “other sec-
tion” is called the error handler.

Public Sub ErrorProneRoutine()
 ' ----- Any code you put here before enabling the
 ' error handler should be pretty resistant to
 ' runtime errors.

 ' ----- Turn on the error handler.
 On Error GoTo ErrorHandler

 ' ----- More code here with the risk of runtime errors.
 ' When all logic is complete, exit the routine.
 Return

http://lib.ommolketab.ir
http://lib.ommolketab.ir

264 | Chapter 9: Functional Programming

ErrorHandler:
 ' ----- When an error occurs, the code temporarily jumps
 ' down here, where you can deal with it. When you're
 ' finished, call this statement:
 Resume
 ' ----- which will jump back to the code that caused
 ' the error. The "Resume" statement has a few
 ' variations available. If you don't want to go
 ' back to main code, but just want to get out of
 ' this routine as quickly as possible, call:
 Return
End Sub

The On Error statement enables or disables error handling in the routine. When an
error occurs, Visual Basic places the details of that error in a global Err object. This
object stores a text description of the error, the numeric error code of the error (if
available), related online help details, and other error-specific values. I’ll list the
details a little later.

You can include as many On Error statements in your code as you want, and each one
could direct errant code to a different label. You could have one error handler for
network errors, one for file errors, one for calculation errors, and so on. Or you
could have one big error handler that uses If...Then...Else statements to examine
the error condition stored in the global Err object.

ErrorHandler:
 If (Err.Number = 5) Then
 ' ----- Handle error-code-5 issues here.

You can find specific error numbers for common errors in the online documentation
for Visual Studio, but it is this dependence on hardcoded numbers that makes
unstructured error handling less popular today than it was before .NET. Still, you are
under no obligation to treat errors differently based on the type of error. As long as
you can recover from error conditions reliably, it doesn’t always matter what the
cause of the error was. Many times, if I have enabled error handling where it’s not
the end of the world if the procedure reaches the end in an error-free matter, I sim-
ply report the error details to the user, and skip the errant line.

Public Sub DoSomeWork()
 On Error GoTo ErrorHandler
 ' ----- Logic code goes here.
 Return

ErrorHandler:
 MsgBox("An error occurred in 'DoTheWork':" & _
 Err.Description)
 Resume Next
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Structured Error Handling | 265

This block of code reports the error, and then uses the Resume Next statement (a vari-
ation of the standard Resume statement) to return to the code line immediately fol-
lowing the one that caused the error. Another option uses Resume some_other_label,
which returns control to some specific named area of the code.

Disabling Error Handling
Using On Error GoTo enables a specific error handler. Although you can use a second
On Error GoTo statement to redirect errors to another error handler in your proce-
dure, a maximum of one error handler can be in effect at any moment. Once you
have enabled an error handler, it stays in effect until the procedure ends, you redi-
rect errors to another handler, or you specifically turn off error handling in the rou-
tine. To take this last route, issue the following statement:

On Error GoTo 0

Ignoring Errors
Your error handler doesn’t have to do anything special. Consider this error-handling
block:

ErrorHandler:
 Resume Next

When an error occurs, this handler immediately returns control to the line just fol-
lowing the one that generated the error. Visual Basic includes a shortcut for this
action.

On Error Resume Next

By issuing the On Error Resume Next statement, all errors will populate the Err object
(as is done for all errors, no matter how they are handled), and then skip the line
generating the error. The user will not be informed of the error, and will continue to
use the application in an ignorance-is-bliss stupor.

Structured Error Handling
Unstructured error handling was the only method of error handling available in
Visual Basic before .NET. Although it was simple to use, it didn’t fulfill the hype that
surrounded the announcement that the 2002 release of Visual Basic .NET would be
an object-oriented programming (OOP) system. Therefore, Microsoft also added
structured error handling to the language, a method that uses standard objects to
communicate errors, and error-handling code that is more tightly integrated with the
code it monitors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

266 | Chapter 9: Functional Programming

This form of error processing uses a multiline Try...Catch...Finally statement to
catch and handle errors.

Try
 ' ----- Add error-prone code here.
Catch ex As Exception
 ' ----- Error-handling code here.
Finally
 ' ----- Cleanup code goes here.
End Try

The Try Clause
Try statements are designed to monitor smaller chunks of code. Although you could
put all the source code for your procedure within the Try block, it’s more common to
put within that section only the statements that are likely to generate errors.

Try
 My.Computer.FileSystem.RenameFile(existingFile, newName)
Catch...

“Safe” statements can remain outside the Try portion of the Try...End Try statement.
Exactly what constitutes a “safe” programming statement is a topic of much debate,
but two types of statements are generally unsafe: (1) those statements that interact
with external systems, such as disk files, network or hardware resources, or even
large blocks of memory; and (2) those statements that could cause a variable or expres-
sion to exceed the designed limits of the data type for that variable or expression.

The Catch Clause
The Catch clause defines an error handler. As with unstructured error handling, you
can include one global error handler in a Try statement, or you can include multiple
handlers for different types of errors. Each handler includes its own Catch keyword.

Catch ex As ErrorClass

The ex identifier provides a variable name for the active error object that you can use
within the Catch section. You can give it any name you wish; it can vary from Catch
clause to Catch clause, but it doesn’t have to.

ErrorClass identifies an exception class, a special class specifically designed to con-
vey error information. The most generic exception class is System.Exception; other,
more specific exception classes derive from System.Exception. Since Try...End Try
implements “object-oriented error processing,” all the errors must be stored as
objects. The .NET Framework includes many predefined exception classes already
derived from System.Exception that you can use in your application. For instance,
System.DivideByZeroException catches any errors that (obviously) stem from divid-
ing a number by zero.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unhandled Errors | 267

Try
 result = firstNumber / secondNumber
Catch ex As System.DivideByZeroException
 MsgBox("Divide by zero error.")
Catch ex As System.OverflowException
 MsgBox("Divide resulting in an overflow.")
Catch ex As System.Exception
 MsgBox("Some other error occurred.")
End Try

When an error occurs, your code tests the exception against each Catch clause until it
finds a matching class. The Catch clauses are examined in order from top to bottom,
so make sure you put the most general one last; if you put System.Exception first, no
other Catch clauses in that Try block will ever trigger because every exception
matches System.Exception. How many Catch clauses you include, or which excep-
tions they monitor, is up to you. If you leave out all Catch clauses completely, it will
act somewhat like an On Error Resume Next statement, although if an error does occur,
all remaining statements in the Try block will be skipped. Execution continues with
the Finally block, and then with the code following the entire Try statement.

The Finally Clause
The Finally clause represents the “do this or die” part of your Try block. If an error
occurs in your Try statement, the code in the Finally section will always be pro-
cessed after the relevant Catch clause is complete. If no error occurs, the Finally
block will still be processed before leaving the Try statement. If you issue a Return
statement somewhere in your Try statement, the Finally block will still be processed
before leaving the routine. (This is getting monotonous.) If you use the Exit Try
statement to exit the Try block early, the Finally block is still executed. If, while your
Try block is being processed, your boss announces that a free catered lunch is start-
ing immediately in the big meeting room and everyone is welcome, the Finally code
will also be processed, but you might not be there to see it.

Finally clauses are optional, so you include one only when you need it. The only
time that Finally clauses are required is when you omit all Catch clauses in a Try
statement.

Unhandled Errors
I showed you earlier in the chapter how unhandled errors can lead to data corrup-
tion, crashed applications, and spiraling, out-of-control congressional spending. All
good programmers understand how important error-handling code is, and they make
the extra effort of including either structured or unstructured error-handling code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

268 | Chapter 9: Functional Programming

Yet there are times when I, even I, as a programmer, think, “Oh, this procedure isn’t
doing anything that could generate errors. I’ll just leave out the error-handling code
and save some typing time.” And then it strikes, seemingly without warning: an
unhandled error. Crash! Burn! Another chunk of user data confined to the bit bucket
of life.

Normally, all unhandled errors “bubble up” the call stack, looking for a procedure
that includes error-handling code. For instance, consider this code:

Private Sub Level1()
 On Error GoTo ErrorHandler
 Level2()
 Return

ErrorHandler:
 MsgBox("Error Handled.")
 Resume Next
End Sub

Private Sub Level2()
 Level3()
End Sub

Private Sub Level3()
 ' ----- The Err.Raise method forces an
 ' unstructured-style error.
 Err.Raise(1)
End Sub

When the error occurs in Level3, the application looks for an active error handler in
that procedure, but finds nothing. So, it immediately exits Level3 and returns to
Level2, where it looks again for an active error handler. Such a search will, sadly, be
fruitless. Heartbroken, the code leaves Level2 and moves back to Level1, continuing
its search for a reasonable error handler. This time it finds one. Processing immedi-
ately jumps down to the ErrorHandler block and executes the code in that section.

If Level1 didn’t have an error handler, and no code farther up the stack included an
error handler, the user would see the Error Message Window of Misery (refer to
Figure 9-4), followed by the Dead Program of Disappointment.

Fortunately, Visual Basic does support a “catchall” error handler that traps such
unmanaged exceptions and lets you do something about them. This feature works
only if you have the “Enable application framework” field selected on the Applica-
tion tab of the project properties. To access the code template for the global error
handler, click the View Application Events button on that same project properties
tab. Select “(MyApplication Events)” from the Class Name drop-down list above the
source code window, and then select UnhandledException from the Method Name
list. The following procedure appears in the code window:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Managing Errors | 269

Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic. _
 ApplicationServices.UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException

End Sub

Add your special global error-handling code to this routine. The e event argument
includes an Exception member that provides access to the details of the error via a
System.Exception object. The e.ExitApplication member is a Boolean property that
you can modify either to continue or to exit the application. By default, it’s set to
True, so modify it if you want to keep the program running.

Even when the program does stay running, you will lose the active event path that
triggered the error. If the error stemmed from a click on some button by the user,
that entire Click event, and all of its called methods, will be abandoned immedi-
ately, and the program will wait for new input from the user.

Managing Errors
In addition to simply watching for them and screaming “Error!” there are a few other
things you should know about error management in Visual Basic programs.

Generating Errors
Believe it or not, there are times when you might want to generate runtime errors in
your code. In fact, many of the runtime errors you encounter in your code occur
because Microsoft wrote code in the Framework Class Libraries (FCLs) that specifi-
cally generates errors. This is by design.

Let’s say that you had a class property that was to accept only percentage values
from 0 to 100, but as an Integer data type.

Private StoredPercent As Integer
Public Property InEffectPercent() As Integer
 Get
 Return StoredPercent
 End Get
 Set(ByVal value As Integer)
 StoredPercent = value
 End Set
End Property

Nothing is grammatically wrong with this code, but it will not stop anyone from set-
ting the stored percent value to either 847 or –847, both outside the desired range.
You can add an If statement to the Set accessor to reject invalid data, but properties
don’t provide a way to return a failed status code. The only way to inform the call-
ing code of a problem is to generate an exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

270 | Chapter 9: Functional Programming

Set(ByVal value As Integer)
 If (value < 0) Or (value > 100) Then
 Throw New ArgumentOutOfRangeException("value", _
 value, "The allowed range is from 0 to 100.")
 Else
 StoredPercent = value
 End If
End Set

Now, attempts to set the InEffectPercent property to a value outside the 0-to-100
range will generate an error, an error that can be caught by On Error or Try...Catch
error handlers. The Throw statement accepts a System.Exception (or derived) object as
its argument, and sends that exception object up the call stack on a quest for an error
handler.

Similar to the Throw statement is the Err.Raise method. It lets you generate errors
using a number-based error system more familiar to Visual Basic 6.0 and earlier
environments. I recommend that you use the Throw statement, even if you employ
unstructured error handling elsewhere in your code.

Mixing Error-Handling Methods
You are free to mix both unstructured and structured error-handling methods
broadly in your application, but a single procedure or method may use only one of
these methods. That is, you may not use both On Error and Try...Catch...Finally
in the same routine. A routine that uses On Error may call another routine that uses
Try...Catch...Finally with no problems.

Now you may be thinking to yourself, “Self, I can easily see times when I would want
to use unstructured error handling, and other times when I would opt for the more
structured approach.” It all sounds very reasonable, but let me warn you in advance
that there are error-handling zealots out there who will ridicule you for decades if
you ever use an On Error statement in your code. For these programmers, “object-
oriented purity” is essential, and any code that uses nonobject methods to achieve
what could be done through an OOP approach must be destroyed.

I’m about to use a word that I forbid my elementary-school-aged son
to use. If you have tender ears, cover them now, though it won’t pro-
tect you from seeing the word on the printed page.

Rejecting the On Error statement like this is just plain stupid. As you may remem-
ber from earlier chapters, everything in your .NET application is object-oriented,
since all the code appears in the context of an object. If you are using unstruc-
tured error handling, you can still get to the relevant exception object through the
Err.GetException() method, so it’s not really an issue of objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Managing Errors | 271

Determining when to use structured or unstructured error handling is no different
from deciding to use C# or Visual Basic to write your applications. For most applica-
tions, the choice is irrelevant. One language may have some esoteric features that
may steer you in that direction (such as optional method arguments in Visual Basic),
but the other 99.9% of the features are pretty much identical.

The same is true of error-handling methods. There may be times when one is just
plain better than the other. For instance, consider the following code that calls three
methods, none of which includes its own error handler:

On Error Resume Next
RefreshPart1()
RefreshPart2()
RefreshPart3()

Clearly, I don’t care whether an error occurs in one of the routines or not. If an error
causes an early exit from RefreshPart1, the next routine, RefreshPart2, will still be
called, and so on. I often need more diligent error-checking code than this, but in
low-impact code, this is sufficient. To accomplish the same thing using structured
error handling would be a little more involved.

Try
 RefreshPart1()
Catch
End Try
Try
 RefreshPart2()
Catch
End Try
Try
 RefreshPart3()
Catch
End Try

That’s a lot of extra code for the same functionality. If you’re an On Error statement
hater, by all means use the second block of code. But if you are a more reasonable
programmer, the type of programmer who would read a book such as this, use each
method as it fits into your coding design.

The System.Exception Class
The System.Exception class is the base class for all structured exceptions. When an
error occurs, you can examine its members to determine the exact nature of the
error. You also use this class (or one of its derived classes) to build your own custom
exception in anticipation of using the Throw statement. Table 9-1 lists the members of
this object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

272 | Chapter 9: Functional Programming

Classes derived from System.Exception may include additional properties that pro-
vide additional detail for a specific error type.

The Err Object
The Err object provides access to the most recent error through its various members.
Anytime an error occurs, Visual Basic documents the details of the error in this
object’s members. It’s often accessed within an unstructured error handler to refer-
ence or display the details of the error. Table 9-2 lists the members of this object.

Table 9-1. Members of the System.Exception class

Object member Description

Data property Provides access to a collection of key-value pairs, each providing additional exception-specific
information.

HelpLink property Identifies online help location information relevant to this exception.

InnerException property If an exception is a side effect of another error, the original error appears here.

Message property A textual description of the error.

Source property Identifies the name of the application or object that caused the error.

StackTrace property Returns a string that fully documents the current stack trace, the list of all active procedure
calls that led to the statement causing the error.

TargetSite property Identifies the name of the method that triggered the error.

Table 9-2. Members of the Err object

Object member Description

Clear method Clear all the properties in the Err object, setting them to their default values. Normally, you
use the Err object only to determine the details of a triggered error. But you can also use it
to initiate an error with your own error details. See the description of the Raise method
later in the table.

Description property A textual description of the error.

Erl property The line number label nearest to where the error occurred. In modern Visual Basic applica-
tions, numeric line labels are almost never used, so this field is generally 0.

HelpContext property The location within an online help file relevant to the error. If this property and the
HelpFile property are set, the user can access relevant online help information.

HelpFile property The online help file related to the active error.

LastDLLError property The numeric return value from the most recent call to a pre-.NET DLL, whether it is an error
or not.

Number property The numeric code for the active error.

Raise method Use this method to generate a runtime error. Although this method does include some argu-
ments for setting other properties in the Err object, you can also set the properties yourself
before calling the Raise method. Any properties you set will be retained in the object for
examination by the error-handler code that receives the error.

Source property The name of the application, class, or object that generated the active error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Summary | 273

The Debug Object
Visual Basic 6.0 (and earlier) included a handy tool that would quickly output debug
information from your program, displaying such output in the “Immediate Win-
dow” of the Visual Basic development environment.

Debug.Print "Reached point G in code"

The .NET version of Visual Basic enhances the Debug object with more features, and
a slight change in syntax. The Print method is replaced with WriteLine; a separate
Write method outputs text without a final carriage return.

Debug.WriteLine("Reached point G in code")

Everything you output using the WriteLine (or similar) method goes to a series of
“listeners” attached to the Debug object. You can add your own listeners, including
output to a work file. But the Debug object is really used only when debugging your
program. Once you compile a final release, none of the Debug-related features works
anymore, by design.

If you wish to log status data from a released application, consider using the My.
Application.Log object instead (or My.Log in ASP.NET programs). Similar to the Debug
object, the Log object sends its output to any number of registered listeners. By default,
all output goes to the standard debug output (just like the Debug object) and to a logfile
created specifically for your application’s assembly. See the online help for the My.
Application.Log object for information on configuring this object to meet your needs.

Other Visual Basic Error Features
The Visual Basic language includes a few other error-specific statements and features
that you may find useful:

ErrorToString function
This method returns the error message associated with a numeric system error
code. For instance, ErrorToString(10) returns “This array is fixed or temporarily
locked.” It is useful only with older unstructured error codes.

IsError function
When you supply an object argument to this function, it returns True if the
object is a System.Exception (or derived) object.

Summary
The best program in the world would never generate errors, I guess. But come on,
it’s not reality. If a multimillion-dollar Mars probe is going to crash on a planet mil-
lions of miles away, even after years of advanced engineering, my customer-tracking
application for a local video rental shop is certainly going to have a bug or two. But
you can mitigate the impact of these bugs using the error-management features
included with Visual Basic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

274 | Chapter 9: Functional Programming

Project
This chapter’s project code will be somewhat brief. Error-handling code will appear
throughout the entire application, but we’ll add it in little by little as we craft the
project. For now, let’s just focus on the central error-handling routines that will take
some basic action when an error occurs anywhere in the program. As for lambda
expressions, we’ll hold off on such code until a later chapter.

General Error Handler
As important and precise as error handling needs to be, the typical business applica-
tion will not encounter a large variety of error types. Applications such as the Library
Project are mainly vulnerable to three types of errors: (1) data entry errors; (2) errors
that occur when reading data from, or writing data to, a database table; and (3) errors
related to printing. Sure, there may be numeric overflow errors or other errors related
to in-use data, but it’s mostly interactions with external resources, such as the data-
base, that concern us.

Because of the limited types of errors occurring in the application, it’s possible to
write a generic routine that informs the user of the error in a consistent manner. Each
time a runtime error occurs, we will call this central routine, just to let the user know
what’s going on. The code block where the error occurred can then decide whether
to take any special compensating action, or continue on as though no error occurred.

PROJECT ACCESS

Load the Chapter 9 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 9 (After) Code instead.

In the project, open the General.vb class file, and add the following code as a new
method to Module General.

INSERT SNIPPET

Insert Chapter 9, Snippet Item 1.

Public Sub GeneralError(ByVal routineName As String, _
 ByVal theError As System.Exception)
 ' ----- Report an error to the user.
 MsgBox("The following error occurred at location '" & _
 routineName & "':" & vbCrLf & vbCrLf & _
 theError.Message, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 275

 MsgBoxStyle.OKOnly Or MsgBoxStyle.Exclamation, _
 ProgramTitle)
End Sub

Not much to that code, is there? So, here’s how it works. When you encounter an error
in some routine, the in-effect error handler calls the central GeneralError method.

Public Sub SomeRoutine()
 On Error GoTo ErrorHandler

 ' ----- Lots of code here.
 Return

ErrorHandler:
 GeneralError("SomeRoutine", Err.GetException())
 Resume Next
End Sub

You can use it with structured errors as well.

Try
 ' ----- Troubling code here.
Catch ex As System.Exception
 GeneralError("SomeRoutine", ex)
End Try

The purpose of the GeneralError global method is simple: communicate to the user
that an error occurred, and then move on. It’s meant to be simple, and it is simple.
You could enhance the routine with some additional features. Logging of the error
out to a file (or any other active log listener) might assist you later if you needed to
examine application-generated errors. Add the following code to the routine, just
after the MsgBox command, to record the exception.

INSERT SNIPPET

Insert Chapter 9, Snippet Item 2.

My.Application.Log.WriteException(theError)

Of course, if an error occurs while writing to the log, that would be a big problem, so
add one more line to the start of the GeneralError routine.

INSERT SNIPPET

Insert Chapter 9, Snippet Item 3.

On Error Resume Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

276 | Chapter 9: Functional Programming

Unhandled Error Capture
As I mentioned earlier, it’s a good idea to include a global error handler in your code,
in case some error gets past your defenses. To include this code, display all files in
the Solution Explorer using the Show All Files button, open the ApplicationEvents.vb
file, and add the following code to the MyApplication class.

INSERT SNIPPET

Insert Chapter 9, Snippet Item 4.

Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, ByVal e As Microsoft. _
 VisualBasic.ApplicationServices. _
 UnhandledExceptionEventArgs) Handles _
 Me.UnhandledException
 ' ----- Record the error, and keep running.
 e.ExitApplication = False
 GeneralError("Unhandled Exception", e.Exception)
End Sub

Since we already have the global GeneralError routine to log our errors, we might as
well take advantage of it here.

That’s it for functional and error-free programming. In the next chapter, which cov-
ers database interactions, we’ll make frequent use of this error-handling code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

277

Chapter 10 CHAPTER 10

ADO.NET10

If you have ever read any programming books related to Microsoft development
technologies, you have already read a chapter just like this one. It seems that every
Windows programming book has an obligatory chapter on database interaction. The
reason for this widespread coverage comes as no surprise: Microsoft comes out with
a new database technology every two years or so.

If you are new to Windows development, you haven’t yet been briefed on the follow-
ing sometimes conflicting, sometimes complementary database interaction tools:

• ODBC—Open DataBase Connectivity

• ISAM—Indexed Sequential Access Method

• DAO—Data Access Objects

• RDO—Remote Data Objects

• OLE DB—Object Linking and Embedding for Databases

• ADO—ActiveX Data Objects

When you look at this list, you might think, “Wow, that’s great. There are so many
options to choose from.” You would be foolish to think this. This list isn’t great; it’s
terrible. Imagine, just for a moment, that we weren’t talking about database inter-
faces, but about other, more practical issues. What if you had to replace the engine
in your car every two years? What if the steering column had to be replaced annu-
ally? What if you had to replace the oil every 3,500 miles or three months, which-
ever came first? Could you imagine life in such a world?

Whenever Microsoft introduced a new database object technology into the mix, it
was quickly followed by a flurry of reprogramming to bring older “legacy” Visual
Basic (and other) applications up to the latest database technology. This wasn’t
always possible, as time and budget constraints kept organizations on older plat-
forms. For nearly a decade I maintained a quarter-million-line application using
DAO, only recently updating it to .NET technologies. Although ADO, a more pow-
erful and flexible technology than DAO, was available for many years during that
interim, the cost at the time to move from DAO to ADO was prohibitive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

278 | Chapter 10: ADO.NET

So far, it seems that ADO.NET, Microsoft’s database library for .NET, is different.
It’s been out for about seven years (as of this writing), and Microsoft hasn’t yet
teased programmers with a replacement. ADO.NET is quite flexible, and that flexi-
bility will hopefully allow it to stretch itself over new advances in technology for the
foreseeable future.

If you are familiar with the ADO technology, prepare to forget it. ADO.NET is not
the natural successor to ADO. It’s a completely new technology that is unrelated to
ADO, and although it shares some terminology with ADO and other older tools,
ADO.NET does this only to play with your mind.

What Is ADO.NET?
ADO.NET is a set of classes, included with the .NET Framework, that represent the
primary method by which .NET applications interact with relational databases and
other open and proprietary data management systems. But it’s not just for interac-
tion; ADO.NET is, in reality, a partial in-memory relational database all by itself.
You can create tables and relationships (joins) with ADO.NET objects, add and
remove records, query tables based on selection criteria, and do other simple tasks
that are typical of standalone relational database systems.

All classes included with ADO.NET appear in the System.Data namespace; other
subordinate namespaces provide derived classes geared toward specific database
platforms. For instance, the System.Data.SqlClient namespace targets SQL Server
databases, and System.Data.OracleClient focuses on Oracle RDBMS systems. Other
database providers can develop streamlined implementations of the various ADO.NET
classes for use with their own systems, and supply them as a separate namespace.

ADO.NET implements a disconnected data experience. In traditional database pro-
gramming, especially in desktop applications, the connection between an applica-
tion and its database was fixed and long-term. When the program started up, the
connection started up. When the program exited many hours later, the connection
finally ended. But in a world of massively scalable web sites, keeping a database con-
nected for hours on end is sometimes wasteful and often impossible.

ADO.NET encourages you to open data connections just long enough to get the data
that fulfills your immediate needs. Once you have the data, you drop the connection
until the next time you need to retrieve, insert, or update database content. If you
issue the following SQL statement:

SELECT * FROM Customer WHERE BalanceDue > 0

you have a choice of (1) scanning through all the records once in a quick and simple
manner; or (2) loading the data into an in-memory table-like object, closing the
connection, and working with the loaded records as though they were the originals.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Overview of ADO.NET | 279

If you use the first method, you can take your sweet time waltzing through the
records, taking many minutes to process each one. But ADO.NET frowns upon this
type of selfish behavior. The goal is to get in and get out as quickly as you can.

Because of the disconnected nature of ADO.NET, some techniques common in data-
base applications need to change. For instance, the long-term locking of database
records during a user modification (“pessimistic concurrency”) is difficult to accom-
plish in ADO.NET’s disconnected environment. You will have to use other methods,
such as transactions or atomic stored procedure features, to accomplish the same goals.

Overview of ADO.NET
ADO.NET divides its world into two hemispheres: providers and the data set. Imag-
ine your kitchen as the world of ADO.NET, with your refrigerator representing the
provider, and the oven/stove as the data set. The provider “provides” access to some
content, such as food, or an Oracle database (which normally appears in the meat-
and-cheese drawer). It’s a long-term storage facility, and content that goes in there
usually stays in there for quite a while. If something is removed, it’s because it is no
longer valid, or has become corrupted.

A data set, like an oven, prepares (cooks) and presents content originally obtained
from the long-term storage. Once presented, it will either be consumed, or be
returned to the refrigerator for more long-term storage. This analogy isn’t perfect; in
fact, something just doesn’t smell right about it. But it conveys the basic idea: pro-
viders give you access to stored data, some of which can be moved into and pro-
cessed through an application and its data set on a short-term basis.

Providers
Large database systems, such as SQL Server and Oracle, are standalone “servers”
(hence the “SQL Server” name) that interact with client tools and applications only
indirectly. These systems generally accept network connections from clients through
a TCP/IP port or similar connection. Once authenticated, the client makes all its
requests through this connection before disconnecting from the system.

Back in the early 1990s, Microsoft implemented ODBC (based on other existing
standards) as a common system through which clients would connect to database
servers, as well as other simpler data sources. Clients no longer had to worry about
all the networking protocols needed to talk with a database; all that code was
included in the ODBC driver.

Microsoft later released a similar data connection system called OLE DB, based on
ActiveX technology. OLE DB drivers for common systems soon appeared, although you
could still get to ODBC resources through a generic ODBC driver built into OLE DB.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

280 | Chapter 10: ADO.NET

In .NET, both ODBC and OLE DB are replaced by providers, libraries of code that
provide all the communication between the database and your application. Provid-
ers are an integral part of ADO.NET, and you will have to use them to get to your
databases. Fortunately, providers exist for the main database systems, and an “OLE
DB provider” exists for systems without their own providers.

Four primary objects make up the programmer’s view of the provider:

The Connection object
This object directs communication between your program and the data source.
It includes properties and methods that let you indicate the location or connec-
tion parameters for the data source. Multicommand transactions are managed at
this object level.

The Command object
This object takes the SQL statement you provide, and prepares it for transport
through the Connection object. You can include parameters in your command
for stored procedure and complex statement support.

The DataReader object
The DataReader provides a simple and efficient way to retrieve results from a data
query. Other objects in ADO.NET use it to receive and redirect data for use
within your program, but your code can use it directly to process the results of a
SELECT statement or other data retrieval action.

The DataAdapter object
This object is what makes communication between a data set and the rest of a
provider possible. One of its primary jobs is to modify data manipulation state-
ments (the SELECT, INSERT, UPDATE, and DELETE statements) generated by a data set
into a format that can be used by the related data source.

Using these objects is a little involved, but not hard to understand. To connect to a
typical relational database, such as SQL Server, and process data, follow these steps:

1. Establish a connection to your data source using a Connection object.

2. Wrap a SQL statement in a Command object.

3. Execute that Command object in the context of the established Connection.

4. If any results are to be returned, use either a DataReader to scan through the
records, or a combination of a DataAdapter and DataSet (or DataTable) to retrieve
or store the results.

5. Close all objects that you opened to process the data.

Although the .NET Framework includes data providers for a few different data sys-
tems, the remainder of this chapter’s discussion focuses only on the SQL Server pro-
vider, exposed through the System.Data.SqlClient namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Overview of ADO.NET | 281

SQL Server 2005 includes support for a feature called “User
Instances,” for use with SQL Server 2005 Express Edition databases.
This feature allows a low-privilege user to access a specific SQL Server
Express database file without the need for an administrator to estab-
lish SQL Server security settings for that user. This feature is useful in
environments where the related software was installed through the
ClickOnce deployment method (discussed in Chapter 25) without
administrator involvement. It also requires specific reconfiguration of
the SQL Server Express installation before use. For more information
on this feature, reference the “Working with User Instances” article in
the ADO.NET portion of the MSDN documentation supplied with
your Visual Studio installation.

Data Sets
If you are going to do more than just quickly scan the data that comes back from a
DataReader query, you will probably use a data set to store, manage, and optionally
update your data. Each data set provides a generic disconnected view of data,
whether it is data from a provider, or data that you build through code. Although
each provider is tied to a specific database platform (such as Oracle) or communica-
tion standard (such as OLE DB), the objects in the data set realm are generic, and
can interact with any of the platform-specific providers.

Three main objects make up the world of data sets:

The DataSet object
Each DataSet object acts like a mini database. You can add as many tables to a
DataSet as you like, and establish foreign-key relationships between the fields of
these tables. The internals of each DataSet are an unfathomable mystery, but you
can export an entire DataSet to XML, and load it back in again later if you must.

The DataTable object
Each table in your DataSet uses a separate DataTable object, accessible through
the DataSet’s Tables collection. DataTables are also useful as standalone objects.
If you plan to add only a single table to your DataSet, you might opt to just use a
DataTable object alone without a DataSet. Within each DataTable object, sepa-
rate DataColumn and DataRow objects establish the field definitions and the actual
data values, respectively.

The DataRelation object
Use the DataRelation objects, stored within a DataSet’s Relations collection, to
establish field-level relationships and constraints between columns in your
DataTable objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

282 | Chapter 10: ADO.NET

Although data sets are most often used with providers, you can use them indepen-
dently to build your own in-memory collection of tables and relationships. This is
similar to the “client-side record sets” that you could build with pre-.NET ADO
objects, although the features included with ADO.NET make data sets much more
powerful than the older record sets.

Visual Basic 2008 includes “Typed DataSets,” a feature used to inte-
grate a DataSet with a specific data or record format. You may find
them useful in your applications, but I won’t be discussing them in
this book. The new LINQ technology uses a similar feature to help
establish relationships between LINQ and database tables.

Data Sets Versus No Data Sets
When used together, providers and data sets give an end-to-end interface to individ-
ual data values, from the fields in your database tables to the in-memory items of a
DataRow record. Figure 10-1 shows this object interaction.

When you interact with data from an external database, you always use the provider
classes, but it’s up to you whether you want to also use data sets. There are pros and
cons of both methods, some of which appear in Table 10-1.

Table 10-1. The pros and cons of using data sets

Without data sets With data sets

You must supply all SQL statements, in the format the pro-
vider expects. This is true for all SELECT, INSERT, UPDATE,
and DELETE requests.

The DataSet and DataAdapter work together to craft
many of the SQL statements on your behalf.

Data retrieved through the DataReader is read-only. You
must issue separate commands to update data.

Data read from the database can be modified in-memory,
and updated as a batch with a single method call.

Data transfers are very efficient, since no overhead is needed
to move data into a complex data set structure.

There may be a performance hit as the data set builds the
necessary objects required for each transferred record.

Memory allocation is limited to a single record’s worth of
data fields, plus some minimal overhead.

Memory allocation is required for the entire result set, plus
overhead for every table, field, column, and row in the result
set.

Only a singleDataReader can be open at a time (unless the
provider supports MARS, which I’ll discuss in just a bit).

Any number of data sets can be in use at once.

A live connection to the database exists as long as a
DataReader is in use. If it takes you five minutes to scan a
result set because you are doing a lot of per-record analysis,
the connection will be active for the full five minutes.

Data connections are maintained only long enough to trans-
fer data from or to the database.

DataReaders present one record at a time. The records
must be processed in the order they arrive.

You can jump around the records in a data set, and reorga-
nize them to meet your needs.

You spend a lot of time working with strings (for SQL state-
ments) and raw data fields.

All data fields are organized logically, just like they are in the
actual database. You can interact with them directly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Sets Versus No Data Sets | 283

Each Command and Connection works with a single
provider-supported data source.

Different DataTables within your DataSet can connect
to distinct data sources. Also, you can hand-craft data so that
each DataRow contains data from different sources.

Because you manage all SQL statements, you have a (rela-
tively) high level of control over the entire data interaction
process.

Because the view of the data is abstracted, you have a (rela-
tively) limited level of control over the entire data interaction
process (although advanced use of data sets does give you
some additional control).

Figure 10-1. Providers and data sets in action

Table 10-1. The pros and cons of using data sets (continued)

Without data sets With data sets

Connection

Command

DataReader

DataAdapter

DataSet

DataReader

DataTable

DataTable

DataRow

DataColum
n

DB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

284 | Chapter 10: ADO.NET

For me, the last entry in Table 10-1 is the clincher. The job of a programmer is to
control the software experience of the user, and the more control, the better. That’s
why I generally hate “wizards” and “code generators” that take control away from
me, the developer. There are limits to my paranoia, though; I put up with the basic
template code supplied by Visual Studio when creating new projects. Still, you’ll see
my code-controlling personality in the Library Project, with my heavy dependence on
DataReaders over DataSets. When I do store data long-term, I usually just stick the
data in a DataTable without a containing DataSet.

MARS Support
I mentioned something called MARS in Table 10-1. MARS stands for “Multiple
Active Result Sets.” Normally, a single Connection object allows only a single
DataReader to be in use at any given moment. This limitation is bidirectional. If you
are scanning a DataReader via a SELECT statement, you cannot issue INSERT, UPDATE, or
DELETE statements on that same connection until you close the DataReader.

With the introduction of MARS, a single connection can now handle multiple data
transmission activities in either direction. SQL Server added MARS support with its
2005 release; Oracle has supported MARS-like features since the initial .NET release.

MARS connections seem like a feature you would always want to enable. But they do
add additional overhead to your application that can slow it down. Also, MARS does
not always mix well with multithreaded applications.

Connecting to SQL Server with Visual Studio
Visual Studio has many built-in tools that make working with data as simple as drag-
and-drop. Well, it’s not really that quick. But by answering a few questions and drag-
ging and dropping one item, you can build an entire application that lets you edit
data in your database. Let’s try it together.

Creating a Data Source
Start up a new Windows Forms project in Visual Studio—just a plain Windows
Forms project, not one of the Library-specific projects. Selecting the Data ➝ Show
Data Sources menu command brings up the Data Sources panel, as shown in
Figure 10-2.

New projects don’t include any data sources by default, so we need to add one. Click
on the Add New Data Source link in the Data Sources panel. The Data Source Con-
figuration Wizard guides you through the data source creation process:

1. The first step asks, “Where will the application get data from?” Select Database
and click the Next button.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connecting to SQL Server with Visual Studio | 285

2. The second step asks, “Which data connection should your application use to
connect to the database?” We’ll have to create a new connection for the Library
database we designed way back in Chapter 4. Click the New Connection button.

3. The Choose Data Source dialog appears. Select Microsoft SQL Server from the
“Data source” list, and then click the Continue button. If you have accessed this
dialog before and checked the “Always use this selection” field, it’s possible that
this dialog will not appear at all.

4. The Add Connection dialog appears to collect the details of the new connection.
If the “Data source” field contains something other than “Microsoft SQL
Server,” click the Change button to alter the connection type using the dialog
mentioned in step 3.

5. Back on the Add Connection form fill in the “Server name” field with the name
of your SQL Server instance. Hopefully, this drop-down list already has the
instances listed, but if not, you’ll have to enter it yourself. The default for SQL
Server Express is the name of your computer, with “\SQLEXPRESS” attached. If
your computer name is “MYSYSTEM,” the instance name would be “MYSYS-
TEM\SQLEXPRESS.”

6. Configure your authentication settings in the “Log on to the server” section. I
used standard Windows authentication, but it depends on how you set up the
database in Chapter 4.

7. In the “Connect to a database” section, either select or type in Library for the
database name.

8. Click the Test Connection button to make sure it all works. When you’re fin-
ished, click the OK button to create the new connection.

9. OK, we’re back on the Data Source Configuration Wizard form. The connec-
tion we just created should now appear in the list, as shown in Figure 10-3. Click
Next.

Figure 10-2. Where are the data sources?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

286 | Chapter 10: ADO.NET

10. The next panel asks whether this data source should become part of the config-
urable settings for this project. We’ll get into the settings features of Visual Basic
in Chapter 14. For now, just accept the default and click Next.

11. We’re almost there. Only 27 more steps to go! Just kidding. This is the last step
in creating the data source. The final panel shows a list of the data-generating
features in the Library database. Open the Tables branch and select Activity, as
shown in Figure 10-4. Then click Finish.

Check out the Data Sources panel shown in Figure 10-5. It includes the new
LibraryDataSet data source with its link to the Activity table.

Using a Data Source
So, what is this data source anyway? It is simply a link to some portion of your data-
base, wrapped up in a typical .NET object. Now that it’s part of your project, you
can use it to access the data in the Activity table through your project’s code, or by
drag-and-drop. In the Data Sources panel, you will find that the “Activity” entry is
actually a drop-down list. Select Details from the list, as I’ve done in Figure 10-6.
(The surface of Form1 must be displayed for this to work.)

Finally, drag-and-drop the “Activity” entry onto the surface of Form1. When you let
go, Visual Studio will add a set of controls to the form, plus a few more non-user-
interface controls just below the form (see Figure 10-7).

Figure 10-3. The new database connection, ready to use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connecting to SQL Server with Visual Studio | 287

Figure 10-4. The final step is to select the Activity table

Figure 10-5. Finally, a real data source

Figure 10-6. Select the Details view instead of DataGrid

http://lib.ommolketab.ir
http://lib.ommolketab.ir

288 | Chapter 10: ADO.NET

By just dragging-and-dropping, Visual Studio added all the necessary controls and
links to turn your form into a turbo-charged Activity table editor. Try it now by
pressing the F5 key. In the running program, you can use the Microsoft Access-style
record access “VCR” control to move between the records in the Activity table. You
can also modify the values of each record, add new records, or delete existing records
(but please restore things back to their original state when you are done; we’ll need
all the original records later). Talk about power! Talk about simplicity! Talk about
unemployment lines! Who needs highly paid programmers like us when Visual Stu-
dio can do this for you?

Data Binding
In reality, Visual Studio isn’t doing all that much. It’s using a feature called “data
binding” to link the on-form fields with the data source, the Library database’s
Activity table. Data binding is a feature built into Windows Forms controls that
allows them to automatically display and edit values in an associated data source,
such as a database. It’s all sorted out through the properties of the control.

Select the FullNameTextBox control added to this project’s form, and then examine its
properties. Right at the top is a property section named “(DataBindings).” Its Text
subproperty contains “ActivityBindingSource – FullName,” a reference to the
ActivityBindingSource non-user-interface control also added by Visual Studio.
ActivityBindingSource, in turn, contains a reference to the LibraryDataSet object,
the data source we created earlier. That data source links to SQL Server, to the
Library database, and finally to the Activity table and its FullName field. Piece of
cake!

Figure 10-7. A complete program without writing a single line of code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interacting with SQL Server in Code | 289

If you count up all the objects involved in this data-binding relationship, you come
up with something like 5,283 distinct objects. It’s no wonder that Visual Studio did
so much of the work for you. Data binding provides a lot of convenience, but it also
takes away a lot of your control as a developer. Although there are properties and
events that let you manage aspects of the data binding and its update process, most
of the essential code is hidden away inside the data-binding portions of .NET. You
may not touch, taste, fold, spindle, or mutilate it, and that’s just bad. A quick look at
one of my core programming beliefs says it all: good software includes maximum con-
trol for the developer, and minimum control for the user.

Part of your job as a developer is to provide a highly scripted environment for the
user to access important data. This requires that you have control over the user’s
experience through your source code. Certainly, you will defer much of that control
to others when you use any third-party supplied tools. As long as those tools allow
you to control the user experience to your level of satisfaction, that’s great. But I’ve
always been disappointed with data binding, except when implementing a read-
only display of data from the database. Similar features were in Visual Basic long
before .NET arrived, and they have always made it difficult for the developer to con-
trol the various data interactions on the form.

Fortunately, if you eschew the data-binding features, Visual Basic will pass to you the
responsibility of managing all interactions between the database and the user.

Interacting with SQL Server in Code
Communicating with a database yourself is definitely more work than dragging-and-
dropping data sources, but whoever said programming was a cakewalk?

Building the Connection String
The first step on the road to the data-controlling lifestyle is to connect to the data-
base using a connection string. If you have used ADO, you are already familiar with
the connection strings used in ADO.NET, for they are generally the same. You prob-
ably also know that it is through connection strings that Microsoft keeps a tight rein
on Windows developers. It’s not that they are complex; they are nothing more than
strings of semicolon-separated parameters. But the parameters to include, and their
exact format, are the stuff of legend. The MSDN documentation included with
Visual Studio does provide some examples of connection strings, but not much
detail. A third-party resource, http://www.connectionstrings.com, also provides
numerous examples of valid connection string formats.

The connection string we will use to connect to the Library database, fortunately,
isn’t overly complex. If you use your Microsoft Windows login to connect to the
database, the following string will meet your needs (as one unbroken line):

http://www.connectionstrings.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

290 | Chapter 10: ADO.NET

Data Source=instance_name;Initial Catalog=Library;
Integrated Security=true

where instance_name is replaced by the name of your SQL Server instance or data
source. The connection string we built visually earlier used “MYSYSTEM\SQLEX-
PRESS” for its data source name.

To use SQL Server user IDs and passwords, try this format:

Data Source=instance_name;Initial Catalog=Library;
User ID=sa;Password=xyz

Of course, replace the user ID (sa) and password (xyz) with your own settings. If you
want to include MARS support in your connection, add another semicolon-delimited
component:

MultipleActiveResultSets=true

Other connection string options let you connect to a SQL Server
Express (SSE) database file directly, alter the “user instancing” method
(often used with ClickOnce-deployed databases), and make other
adjustments. Although they are somewhat scattered about, you can
find these options documented in the MSDN documentation that
comes with Visual Studio.

Establishing the Connection
Use the connection string to create a SqlConnection object, and then open the con-
nection. Create a brand-new Windows Forms application in Visual Studio. Add a
Button control to the surface of Form1. Double-click the button to access its Click
event handler. Then add the following code to that handler:

' ----- Assumes:
' Imports System.Data
Dim libraryDB As New SqlClient.SqlConnection(_
 "Data Source=MYSYSTEM\SQLEXPRESS;" & _
 "Initial Catalog=Library;Integrated Security=true")
libraryDB.Open()

Make sure you replace “MYSYSTEM” with your own system’s name. This entire
block of code sure seems a lot easier to me than those 10 or 15 steps you had to fol-
low earlier when setting up the connection through Visual Studio.

Using SQL Statements
Once the connection is open, you can issue SELECT, INSERT, UPDATE, DELETE, or any
other data manipulation language (DML) or data definition language (DDL) state-
ment accepted by the database. A SqlCommand object prepares your SQL statement for
use by the open connection. Here’s a statement that returns the description for entry
number 1 in the Activity table:

SELECT FullName FROM Activity WHERE ID = 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interacting with SQL Server in Code | 291

Creating a SqlCommand object that wraps around this statement is easy. The construc-
tor for the SqlCommand object takes a SQL statement, plus a SqlConnection object.
Add the following code to the end of your Button1_Click event handler:

Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT FullName FROM Activity WHERE ID = 1", libraryDB)

Processing the Results
The only thing left to do is to pass the SQL statement to the database, via the con-
nection, and retrieve the results as a SqlDataReader object. Once we get the data, pro-
cess each record using that object’s Read method. You access individual fields by
name through the default Item collection. Add this additional code to the end of your
Button1_Click event handler:

Dim sqlResults As SqlClient.SqlDataReader = _
 sqlStatement.ExecuteReader()
sqlResults.Read()
MsgBox(CStr(sqlResults.Item("FullName")))

' ----- Since Item is the default property, this works too...
' MsgBox(CStr(sqlResults("FullName")))

' ----- This shortened syntax also works...
' MsgBox(CStr(sqlResults!FullName))

Taking all these blocks of code together displays the message shown in Figure 10-8.

When you’re finished, make sure you close all the connections you opened. Add this
last bit of code to the end of your Button1_Click event handler:

sqlResults.Close()
libraryDB.Close()

Modifying Data
Making changes to database tables is coded just like data retrieval, but no
SqlDataReader is needed. Instead of using the ExecuteReader method, use the
ExecuteNonQuery method, which returns no results.

Figure 10-8. Basic data retrieved from a database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

292 | Chapter 10: ADO.NET

Dim sqlStatement As New SqlClient.SqlCommand(_
 "UPDATE Activity SET FullName = 'Sleeps all day'" & _
 " WHERE ID = 1", libraryDB)
sqlStatement.ExecuteNonQuery()

SQL Server 2005 has a convenient feature that will return a single field from a new
record created via an INSERT statement. If you look back at the Library Project’s data-
base design, you will see that the ID fields in many of the tables are generated auto-
matically. Traditionally, if you wanted to immediately retrieve the ID field for a new
record, you first had to INSERT the record, and then perform a separate SELECT state-
ment, returning the new record’s ID field.

INSERT INTO CodeSeries (FullName)
 VALUES ('Children''s Books')

SELECT ID FROM CodeSeries
 WHERE FullName = 'Children''s Books'

SQL Server’s OUTPUT INSERTED clause combines both of these statements into a single
action.

INSERT INTO CodeSeries (FullName)
 OUTPUT INSERTED.ID
 VALUES ('Children''s Books')

When the INSERT is complete, SQL Server returns the ID field as a result set, just as
though you had issued a separate SELECT statement. The SqlCommand’s ExecuteScalar
method is a simple way to retrieve a single value from a SQL query.

sqlStatement = New SqlClient.SqlCommand(_
 "INSERT INTO CodeSeries (FullName) " & _
 "OUTPUT INSERTED.ID VALUES ('Children''s Books')", _
 libraryDB)
Dim newID As Integer = CInt(sqlStatement.ExecuteScalar())

Database Transactions
Transactions enable “all or nothing” actions across multiple SQL statements. Once
started, either all the SQL statements issued within the context of the transaction
complete, or none of them complete. If you have 10 data updates to perform, but the
database fails after only 5 of them, you can roll back the transaction. The database
reverses the earlier statements, restoring the data to what it was before the transaction
began. (Updates from other users are not affected by the rollback.) If all statements suc-
ceed, you can commit the entire transaction, making all of its changes permanent.

For SQL Server databases, transactions are managed through the provider’s
SqlTransaction object. Like the other ADO.NET features, it’s easy to use. A transac-
tion begins with a BeginTransaction method call on the connection.

Public atomicSet As SqlClient.SqlTransaction = _
 libraryDB.BeginTransaction()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ADO.NET Entity Framework | 293

To include a SQL statement in a transaction, assign the SqlTransaction object to the
SqlCommand object’s Transaction property.

sqlStatement.Transaction = atomicSet

Then call the appropriate Execute method on the command. When all commands
complete, use the transaction’s Commit method to make the changes permanent.

atomicSet.Commit()

If, instead, you need to abort the transaction, use the Rollback method.

atomicSet.Rollback()

ADO.NET Entity Framework
The release of ADO.NET included with Version 3.5 of the .NET Framework (that’s
the version that comes with Visual Studio 2008) includes a new component: the
ADO.NET Entity Framework. Part entity-relationship modeling tool, part code gen-
erator, this new technology helps you craft logical data views of the data stored in
your relational database or other data source.

The Entity Framework lets you design three types of objects based on your stored
data: entities (similar to tables), relationships (database joins), and entity sets (related
entities). Each type is represented by objects that expose the members of your core
database in a more programmable fashion. For instance, you can design an entity
object representing a table in your database, and the object’s members can represent
the fields in a single record.

“So what,” you say? It sounds like the same features built into ADO.NET’s
DataTable object? But wait, there’s more. What makes the Entity Framework so use-
ful is (1) its mapping of physical data to logical views; (2) its support for entity inher-
itance; and (3) its ability to act as an ADO.NET provider.

Data mapping
The mapping of data is similar to creating a “view” in a traditional relational
database; you can create entities that are built up from multiple source records
spread across multiple database tables. This includes parent-child views of data;
you can create an Order entity that refers to both the main order record and the
multiple order line items included in the order. Logically, this new entity is
treated as a single queryable element. When you request data through the new
entity, you don’t have to teach it each time how to join and relate the various
source pieces of data.

Entity inheritance
Once you have an entity defined, you can extend the structure of the entity
through inheritance. For instance, you might want to create an entity called
InternalOrder based on your original Order entity, adding members that track

http://lib.ommolketab.ir
http://lib.ommolketab.ir

294 | Chapter 10: ADO.NET

data specific to internal orders. These new fields might be in a specialized table,
triggered by a Boolean flag on the main table of orders. But that doesn’t matter:
it can all be hidden by the logic of the entity itself. When you request an instance
of InternalOrder, it will just know that you mean only the special internally
flagged type of order, and not standard orders.

ADO.NET provider support
Once you’ve created your entities and related mapping logic, you can “connect”
to the entities as though they were stored in their own database. Instead of con-
necting up to SQL Server and querying tables directly, you connect to the map-
ping context and query against the new logical view of your data.

Some of the technology that I will discuss in Chapter 17 has the flavor of the ADO.NET
Entity Framework-focused code, but will specifically target SQL Server. The ADO.
NET Entity Framework is the primary way to connect .NET’s new LINQ technology
to non-Microsoft databases such as Oracle and DB2. Unfortunately, a few months
before the release of Visual Studio 2008, Microsoft announced that the Entity Frame-
work would not be ready in time for the main product release (sorry, IBM and Ora-
cle). It was slated to come out as a separate release a few months after Visual Studio.
The final product may or may not be available as you read this.

Summary
There are programmers in this world who never have to access a database, who never
worry about connections or transactions or record locking or INSERT statements or
referential integrity. Yes, there are such programmers in the world—five, maybe six
at last count. All other programmers must include code that manages external data
of some sort, whether in a relational database, or an XML file, or a configuration file.
ADO.NET is one of the .NET tools that make such data management easy. It’s a lot
different from the old ADO system, and I am still not convinced that having discon-
nected data 100% of the time is the way to go. But when I consider the power and
flexibility of ADO.NET, I can’t help feeling sorry for those six programmers who
never use databases.

Project
It’s likely that more than 50% of the code in the Library Project will directly involve
database access, or manipulation of the data retrieved through ADO.NET. Con-
stantly creating new Command and DataReader objects, although simple, is pretty hard
on the fingers. Since so much of the code is repetitive, the code in this chapter’s
project will try to centralize some of that basic, boilerplate code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 295

PROJECT ACCESS

Load the Chapter 10 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 10 (After) Code instead.

Reference the Data Namespaces
The Library Project code has references to several of the important .NET
namespaces, such as System, System.Windows.Forms, and Microsoft.VisualBasic.
However, it doesn’t yet reference any of the ADO.NET namespaces. (Recall that
“referencing” means accessing a .NET DLL in a project and using its types in your
code.) Before using them in code, we need to create references to them. This is done
through the project properties window, on the References tab. You’ll see a list of
those assemblies already referenced by the application (see Figure 10-9).

To add new references, click the Add button just below the list, and select Reference
if prompted for the type of reference to add. On the Add Reference form, the .NET
tab should already be active. It’s pretty amazing to see just how many .NET assem-
blies are installed on your system already. But don’t just sit there gawking: select
both System.Data and System.Xml from the component list, and then click the OK
button. The list of references in the project properties should now include both of
the selected namespace libraries.

We can now refer to classes in the System.Data namespace directly. But typing “System.
Data” before each use of a data-related class will get tedious. We could sprinkle
“Imports System.Data” statements throughout the files in the project, but Visual Studio
provides a more centralized solution. Since you still have the References tab open, look
down to the “Imported namespaces” section. The large checklist indicates which
namespaces should be automatically imported throughout your application. These
namespaces don’t require separate Imports statements in your code, but your source
code acts as though you had added them anyway. Go ahead and select the checkbox
next to the System.Data entry in this list. Then close the project properties window.

Figure 10-9. References included in the Library Project

http://lib.ommolketab.ir
http://lib.ommolketab.ir

296 | Chapter 10: ADO.NET

Most of the new code for this chapter appears in the General.vb file, so open it now.
We will use two project-level (global) variables to manage the primary database con-
nection to the Library database. The first variable, LibraryDB, is a SqlConnection
object that uses our connection string for the Library database. A related object,
HoldTransaction, will hold a SqlTransaction object when a transaction is in effect.
Add these two lines to the General module. I put them just before the existing
CenterText method.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 1.

Public LibraryDB As System.Data.SqlClient.SqlConnection
Public HoldTransaction As System.Data.SqlClient.SqlTransaction

Connecting to the Database
Since the Library Project will depend so much on the database, we will build the
SqlConnection object when first starting up the application.

Maintaining the connection throughout the application goes against
the advice I provided earlier that database connections should be
short-lived. However, to keep the code as simple as possible for pur-
poses of tutorial demonstration, I have chosen this approach. Also,
because the Library Project is designed for a small installation base, it
does not have the requirement of being highly scalable.

The ConnectDatabase procedure contains all the code needed to create this object.
For now, I’ve just hardcoded the connection string into the routine. In a later chap-
ter, we’ll include that connection information as part of a configuration system. Add
the following routine to your General module. Make sure you change the reference to
“MYSYSTEM” to whatever is needed on your own system.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 2.

Public Function ConnectDatabase() As Boolean
 ' ----- Connect to the database. Return True on success.
 Dim connectionString As String

 ' ----- Initialize.
 HoldTransaction = Nothing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 297

 ' ----- Build the connection string.
 ' !!! WARNING: Hardcoded for now.
 connectionString = "Data Source=MYSYSTEM\SQLEXPRESS;" & _
 "Initial Catalog=Library;Integrated Security=true"

 ' ----- Attempt to open the database.
 Try
 LibraryDB = New SqlClient.SqlConnection(connectionString)
 LibraryDB.Open()
 Catch ex As Exception
 GeneralError("ConnectDatabase", ex)
 Return False
 End Try

 ' ----- Success.
 Return True
End Function

This project’s “main” routine is actually the MyApplication_Startup application
event, from the ApplicationEvents.vb source code file. (That’s one that you will have
to use the Show All Files button to see.) To build the connection object at startup,
add the following code to the end of that event handler.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 3.

' ----- Connect to the database.
If (ConnectDatabase() = False) Then
 Me.HideSplashScreen()
 e.Cancel = True
 Return
End If

When the user exits the Library application, the code will call the CleanUpProgram
method to properly dispose of the connection object. Return to the General.vb mod-
ule, and add that method.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 4.

Public Sub CleanUpProgram()
 ' ----- Prepare to exit the program.
 On Error Resume Next
 LibraryDB.Close()
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

298 | Chapter 10: ADO.NET

To simplify things, we’ll call this routine from the application’s MyApplication_
Shutdown event handler, back in the ApplicationEvents.vb file.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 5.

CleanUpProgram()

Interacting with the Database
Now that the database connection is established, it’s time to do something with it.
The first four centralized routines implement much of the code we discussed earlier:
the creation of data readers and tables, and the processing of general SQL code. Add
them to the General module.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 6.

This snippet adds the following seven routines:

Function CreateDataTable
Given a SQL statement, retrieve its results from the database, and put it all in a
DataTable object. A SqlDataAdapter connects the SqlDataReader with the
DataTable.

Function CreateReader
Given a SQL statement, retrieve its results from the database, returning the asso-
ciated SqlDataReader object.

Sub ExecuteSQL
Send a SQL statement to the database for processing.

Function ExecuteSQLReturn
Send a SQL statement to the database for processing, returning a single result
value.

Sub TransactionBegin
Begin a new transaction.

Sub TransactionCommit
Commit the transaction, making all changes permanent.

Sub TransactionRollback
Roll back the transaction, undoing any changes that were part of the transaction.

None of these routines include their own error-processing code; they either suppress
errors with an “On Error Resume Next” statement, or rely on the calling routine to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 299

trap errors. This lets the calling routine take specific action based on the type of error
generated. All of these routines are pretty similar to one another. Here is the code for
CreateReader; one interesting part is the use of the HoldTransaction object when a
transaction is in effect.

Public Function CreateReader(ByVal sqlText As String) _
 As SqlClient.SqlDataReader
 ' ----- Given a SQL statement, return a data reader.
 Dim dbCommand As SqlClient.SqlCommand
 Dim dbScan As SqlClient.SqlDataReader

 ' ----- Try to run the statement. Note that no error
 ' trapping is done here. It is up to the calling
 ' routine to set up error checking.
 dbCommand = New SqlClient.SqlCommand(sqlText, LibraryDB)
 If Not (HoldTransaction Is Nothing) Then _
 dbCommand.Transaction = HoldTransaction
 dbScan = dbCommand.ExecuteReader()
 dbCommand = Nothing
 Return dbScan
End Function

Processing Data Values
Building SQL statements by hand involves a lot of string manipulation, plus condi-
tional processing for those times when data may be missing. For instance, if you
want to store a text value in the database, you have to prepare it for use by a SQL
statement (special processing for single quote marks), but if the text value is zero-
length, you pass the word NULL in the statement instead. All of this data prepara-
tion can clog up your code, so why not centralize it? The eight routines in this sec-
tion either prepare data for use in SQL statements, or adjust retrieved data for use in
the application.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 7.

DBCombo
Takes the numeric code associated with a selected item in a ComboBox control and
returns it as a string. If no item is selected or the value is –1, the routine returns
NULL.

DBDate(String)
Given a string containing a formatted date, returns a date ready for use in a SQL
statement.

DBDate(Date)
Given a true date value, returns a string date ready for use in a SQL statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

300 | Chapter 10: ADO.NET

DBGetDecimal
Returns a decimal number from a result set, even if the field contains a NULL
value.

DBGetInteger
Returns an integer number from a result set, even if the field contains a NULL
value.

DBGetText
Returns a string from a result set, even if the field contains a NULL value.

DBNum
Prepares a number for use in a SQL statement.

DBText
Prepares a string for use in a SQL statement.

Here is the code for the DBText routine. Strings in SQL statements must be sur-
rounded by single quotes, and any embedded single quotes must be doubled.

Public Function DBText(ByVal origText As String) As String
 ' ----- Prepare a string for insertion in a SQL statement.
 If (Trim(origText) = "") Then
 Return "NULL"
 Else
 Return "'" & Replace(origText, "'", "''") & "'"
 End If
End Function

System-Level Configuration
The last blocks of code support the quick update and retrieval of system-wide config-
uration values stored in the SystemValue table of the Library database. The
GetSystemValue routine returns the current setting of a configuration value when sup-
plied with the value name. SetSystemValue updates (or adds, if needed) a named con-
figuration value. Both of these routines appear in the General module.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 8.

Public Function GetSystemValue(_
 ByVal valueName As String) As String
 ' ----- Return the data portion of a system value
 ' name-data pair.
 Dim sqlText As String
 Dim returnValue As String

 ' ----- Retrieve the value.
 returnValue = ""

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 301

 sqlText = "SELECT ValueData FROM SystemValue WHERE " & _
 "UPPER(ValueName) = " & DBText(UCase(valueName))
 Try
 returnValue = DBGetText(ExecuteSQLReturn(sqlText))
 Catch ex As Exception
 GeneralError("GetSystemValue", ex)
 End Try
 Return returnValue
End Function

Public Sub SetSystemValue(ByVal valueName As String, _
 ByVal valueData As String)
 ' ----- Update a record in the SystemValue table.
 Dim sqlText As String

 Try
 ' ----- See if the entry already exists.
 sqlText = "SELECT COUNT(*) FROM SystemValue WHERE " & _
 "UPPER(ValueName) = " & DBText(UCase(valueName))
 If (CInt(ExecuteSQLReturn(sqlText)) > 0) Then
 ' ----- Value already exists.
 sqlText = "UPDATE SystemValue " & _
 "SET ValueData = " & DBText(valueData) & _
 " WHERE UPPER(ValueName) = " & _
 DBText(UCase(valueName))
 Else
 ' ----- Need to create value.
 sqlText = "INSERT INTO SystemValue " & _
 (ValueName, ValueData) VALUES (" & _
 DBText(valueName) & ", " & _
 DBText(valueData) & ")"
 End If

 ' ----- Update the value.
 ExecuteSQL(sqlText)
 Catch ex As System.Exception
 GeneralError("SetSystemValue", ex)
 End Try
End Sub

The GetSystemValue routine is clear. It simply retrieves a single value from the data-
base. SetSystemValue has to first check whether the configuration value to update
already exists in the database. If it does, it modifies the records. Otherwise, it adds a
full new record. To determine whether the record exists, it requests a count of
records matching the system value name. It queries the database through our new
ExecuteSqlReturn method, which returns a single value from a query. In this case, the
value is the count of the matching records.

sqlText = "SELECT COUNT(*) FROM SystemValue WHERE " & _
 "UPPER(ValueName) = " & DBText(UCase(valueName))
If (CInt(ExecuteSQLReturn(sqlText)) > 0) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

302 | Chapter 10: ADO.NET

Using the GetSystemValue routine is easy, so let’s use it right now. Go back to the
MyApplication_Startup event handler in ApplicationEvents.vb, and add the following
code to the end of the routine.

INSERT SNIPPET

Insert Chapter 10, Snippet Item 9.

' ----- Check the database version.
Dim productionDBVersion As String
productionDBVersion = Trim(GetSystemValue("DatabaseVersion"))
If (CInt(Val(productionDBVersion)) <> UseDBVersion) Then
 MsgBox("The program cannot continue due to an " & _
 "incompatible database. The current database " & _
 "version is '" & productionDBVersion & _
 "'. The application version is '" & _
 UseDBVersion & "'.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Critical, ProgramTitle)
 CleanUpProgram()
 Me.HideSplashScreen()
 e.Cancel = True
 Return
End If

Once in a while, I found it necessary to modify the structure of a database to such an
extent that older versions of an application either crashed, or would cause major data
headaches. To prevent this, I added a database version setting, DatabaseVersion, and
use this code block to test against it. If the program doesn’t match the expected data-
base version, it will refuse to run.

Now that we have some basic database access tools, we’re ready to start adding some
real data interaction code to the Library application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

303

Chapter 11 CHAPTER 11

Security11

Secrets are funny things. With billions of people on the planet, there is no shortage
of really interesting events and stories, but none of them will hold our interest if
there is a secret to be discovered somewhere else. For instance, former associate
director of the FBI, W. Mark Felt, revealed himself to be the famous “Deep Throat”
of Watergate fame, but not before 30 years of speculation and whispering about this
secret identity had passed by. Other secrets are just as intriguing, even if we are in on
the secret. Superman is fascinating in part due to his secret alter ego, Clark Kent.
Many books include the word Secret in their titles to make them and their topics
more interesting, titles such as Japanese Cooking Secrets.

In this era of information overload and increasingly permissive moral standards on
television, secrets seem to be scarce. But everyone has important information that he
needs to keep protected from others, and that includes the users of your programs.
Fortunately, .NET programs and related data can be as secure as you need, if you use
the security features available to you in the .NET Framework.

Here’s a secret that I’ll tell right now: I really don’t know that much about computer
security issues. Back in the early 1980s, I worked for a computer vendor that was com-
ing out with its own Unix System V implementation. The company needed to confirm
that its product would be sufficiently secure for governmental sales, and I was tasked
with building a bibliography of computer security resources, including the famous
“Orange Book,” a government security standards document whose title has no rhyme.

Although I don’t recall many of the security details, I do remember that it would take
several city garbage trucks to haul away all the available materials on computer secu-
rity. The bibliography I developed was more than 40 pages long! And that was just
the table of contents. One article that I do recall was quite interesting. It discussed
how passwords are generated in Unix systems, at least back when AT&T was in
charge. The interesting part was that the entire algorithm was printed in a publicly
available book. Anyone could examine the book and see how the passwords were
generated. And if you were familiar with Unix, you knew that each user’s encrypted
password was stored in plain text in the file /etc/passwd. But it wasn’t a big deal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

304 | Chapter 11: Security

Although the method for deriving the password was public knowledge, and although
you could see everyone’s encrypted password, Unix was still considered secure
enough for use even in the military.

Security Features in .NET
Security in .NET involves many features, but they fall generally into three major
areas:

Internal security
Classes and class members in .NET can be protected via user-based or role-
based security. This Code Access Security (CAS) exists to keep unauthorized
users from accessing powerful libraries of .NET features. Only those users meet-
ing a minimum or specific set of rights can use those protected features.

External security
Since anyone can develop and distribute a .NET application, it’s important to
protect system resources from malicious code. This is a big issue, especially with
the ongoing reports of hackers taking advantage of “buffer overrun” problems in
released software from Microsoft and other vendors. Just as CAS keeps code
from accessing certain features of a class, it interacts with the operating system
to keep rogue code from accessing some or all files and directories, registry
entries, network resources, hardware peripherals, or other .NET assemblies
based on in-effect security policies.

Data security
Programs and computer resources aren’t the only things that need to be pro-
tected. Some highfalutin users think their precious data is so important that it
deserves to be protected through “special” software means. Encryption, digital
signatures, and other cryptographic features provide the “special” support
needed for such data.

Because the Library Project interacts with a major external resource—a SQL Server
database—it does deal with external security issues, although indirectly through
ADO.NET and system security policies. Still, because of this book’s focus on typical
business application development, this chapter will not discuss either internal secu-
rity or external security issues. Instead, it will focus on data security topics, espe-
cially the encryption of data.

Cryptography and Encryption
Knowing a secret is one thing. Keeping it safe and protected from others is another.
Making sure an enemy doesn’t alter it while we’re blabbing—I mean, confiding—it
to someone else is still another issue. Confirming that a secret coming from someone
else is reliable is yet another issue. Making sure that I get the best deal on car insur-
ance is again another issue entirely.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cryptography and Encryption | 305

Clearly, data security is about more than just keeping a piece of data protected from
prying eyes. And it’s not only prying eyes that concern us. Recently I experienced the
Windows “blue screen of death” when I tried to synchronize the data on my desk-
top system with my electronic handheld scheduler. The potential for data corrup-
tion through the normal everyday use of technology is vast. Fortunately, the word
processor I am using to type this chapter is frëë fℜôm suh ¢θr®µptioñ¡

Keeping Secrets
When people think about encryption and data security, they generally focus on the
“keeping secrets” aspect. The ability to cryptographically encode content, keep it
from an adversary, and still have it decoded by you or an associate at some later time
is important. Encryption techniques range from simple language aberrations (such as
pig Latin) and replacement ciphers (letter substitutions, used in cryptogram puzzles)
to complex enigma-machine-quality encoding systems.

Software-enabled encryption is now a part of our everyday experience. When you
make credit card purchases from web sites, the chance is pretty good that your credit
card information is encrypted and transferred in 128-bit secret fidelity.

Typical encryption methods make use of one or more keys, plus a combination of
hashing functions and encryption algorithms, to convert sensitive content into a form
that is not easily accessible without the original or related key. Symmetric cryptogra-
phy is the name used for encryption methods using a single secret key.

Public-key encryption—also known as asymmetric cryptography—uses a pair of keys
to encrypt and decrypt data. One of the keys, a public key, can be given to anyone
who cares about communicating with you securely. You can even give it to your ene-
mies; it’s public. The related private key is kept safe for your use; you never show it
to anyone, not even your mother. Content encrypted using one of the keys (and an
encryption algorithm) can only be decrypted later using the other key. If your friend
encrypts some information using the public key, nobody except you will be able to
decrypt it, and it will require your private key. You can also encrypt data with your
private key, but anyone would be able to decrypt it with the public key. We’ll see
uses for this seemingly insecure action a little bit later.

Data Stability
Data encryption helps to ensure the integrity of a block of data, even if that data is
not encrypted. If you send someone an email during a lightning storm, there is cer-
tainly the chance that some or all of the email content could be electronically altered
before it reaches the recipient. Let’s say that some static in the transmission line just
happens to cause one sentence of the content to be duplicated. Let’s say that some
static in the transmission line just happens to cause one sentence of the content to be
duplicated. How would you know whether it was the author trying to make some
clever point, or simply a computer glitch?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

306 | Chapter 11: Security

Including a checksum with the content can help to identify data problems during
transmission. A checksum—sometimes called a hash value—takes the original con-
tent and passes it through a function that generates a short value that “represents”
the original data. Checksum functions (or hashing algorithms) are very sensitive to
even single-byte changes on the content, whether that single byte was altered, reposi-
tioned, added, or removed from the original data. By generating a checksum both
before and after data transmission, you can confirm whether the content changed at
all during the transfer.

Checksums represent a unidirectional encryption of the original data. It is impossible
to use the checksum to obtain the original data content. That’s all right, though,
since the purpose of a checksum is not to deliver content secretly, but to deliver it
unchanged. Bidirectional encryption is what I talked about in the “Keeping Secrets”
section. If you have the right key and the right algorithm, bidirectional encryption
restores original content from encrypted content.

Identity Verification
Let’s say that you receive an email from your boss that says, “Order 50 copies of Tim
Patrick’s newest book, and hurry.” How do you know this message is reliable, or
really from your boss? In this case, the content alone should prove that it is trustwor-
thy. But if you really wanted to verify the source, and your boss was unavailable, you
could employ digital signatures to confirm the identity of the sender.

One method of using digital signatures employs public-key encryption to transmit an
agreed-upon password or message, and passes that encrypted content along with the
larger email. For instance, your boss could encrypt the text “I’m the boss” using his
private key. When you receive the email, you could decrypt the digital signature
using your boss’s public key. If the decryption resulted in the “I’m the boss” mes-
sage, you would know that the message did, in fact, come from your boss.

Encryption in .NET
The data encryption and security features included with .NET appear in the System.
Security.Cryptography namespace. Most of the classes in this namespace implement
various well-known encryption algorithms that have been accepted by organizations
and governments as dependable encryption standards. For instance, the
DESCryptoServiceProvider class provides features based on the Data Encryption Stan-
dard (DES) algorithm, an algorithm originally developed by IBM in the mid-1970s.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Encryption in .NET | 307

Symmetric Cryptography
Symmetric cryptography uses a single secret key to both encrypt and decrypt a block
of data. Although these algorithms are often quite fast (when compared to asymmet-
ric cryptography), the need to provide the full secret key to others to share data may
make them inherently less secure. Still, for many applications, “secret key encryp-
tion” is sufficient.

The .NET Framework includes support for four symmetric encryption algorithms:

• Data Encryption Standard (DES), a 56-bit block cipher with primary support
through the DESCryptoServiceProvider class. This algorithm is generally secure,
but due to its small key size (smaller keys are more easily compromised), it is
inappropriate for highly sensitive data.

• RC2 (Rivest Cipher number 2), a 56-bit block cipher with primary support
through the RC2CryptoServiceProvider class. Lotus originally developed the
cipher for use in its Lotus Notes product. It is not excitingly secure, but for this
reason, it was given more favorable export freedoms by the U.S. government.

• Rijndael (derived from the names of its two designers, Daemen and Rijmen), a
variable bit (between 128 to 256 bits) block cipher with primary support
through the RijndaelManaged class. It is related to a similar algorithm named
Advanced Encryption Standard (AES), and is the most secure of the secret key
algorithms provided with .NET.

• Triple DES, a block cipher that uses the underlying DES algorithm three times to
generate a more secure result, with primary support through the
TripleDESCryptoServiceProvider class. Although more secure than plain DES, it
is still much more vulnerable than the Rijndael or AES standard.

The various “provider” classes are tools that must be used together with other cryp-
tography classes to work properly. For instance, this sample code (based on code
found in the MSDN documentation) uses the DESCryptoServiceProvider and
CryptoStream classes, both members of System.Security.Cryptography, to jointly
encrypt and decrypt a block of text:

Imports System
Imports System.IO
Imports System.Text
Imports System.Security.Cryptography

Class CryptoMemoryStream
 Public Shared Sub Main()
 ' ----- Encrypt then decrypt some text.
 Dim key As New DESCryptoServiceProvider
 Dim encryptedVersion() As Byte
 Dim decryptedVersion As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

308 | Chapter 11: Security

 ' ----- First, encrypt some text.
 encryptedVersion = Encrypt("This is a secret.", key)

 ' ----- Then, decrypt it to get the original.
 decryptedVersion = Decrypt(encryptedVersion, key)
 End Sub

 Public Shared Function Encrypt(origText As String, _
 key As SymmetricAlgorithm) As Byte()
 ' ----- Uses a crytographic memory stream and a
 ' secret key provider (DES in this case)
 ' to encrypt some text.
 Dim baseStream As New MemoryStream
 Dim secretStream As CryptoStream
 Dim streamOut As StreamWriter
 Dim encryptedText() As Byte

 ' ----- A memory stream just shuffles data from
 ' end to end. Adding a CryptoStream to it
 ' will encrypt the data as it moves through
 ' the stream.
 secretStream = New CryptoStream(baseStream, _
 key.CreateEncryptor(), CryptoStreamMode.Write)
 streamOut = New StreamWriter(secretStream)
 streamOut.WriteLine(origText)
 streamOut.Close()
 secretStream.Close()

 ' ----- Move the encrypted content into a useful
 ' byte array.
 encryptedText = baseStream.ToArray()
 baseStream.Close()
 Return encryptedText
 End Function

 Public Shared Function Decrypt(encryptedText() As Byte, _
 key As SymmetricAlgorithm) As String
 ' ----- Clearly, this is the opposite of the
 ' Encrypt() function, using a stream reader
 ' instead of a writer, and the key's
 ' "decryptor" instead of its "encryptor."
 Dim baseStream As MemoryStream
 Dim secretStream As CryptoStream
 Dim streamIn As StreamReader
 Dim origText As String

 ' ----- Build a stream that automatically decrypts
 ' as data is passed through it.
 baseStream = New MemoryStream(encryptedText)
 secretStream = New CryptoStream(baseStream, _
 key.CreateDecryptor(), CryptoStreamMode.Read)
 streamIn = New StreamReader(secretStream)

 ' ----- Move the decrypted content back to a string.
 origText = streamIn.ReadLine()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Encryption in .NET | 309

 streamIn.Close()
 secretStream.Close()
 baseStream.Close()
 Return origText
 End Function
End Class

This code combines a DES encryption class with a stream, a common tool in .NET
applications for transferring data from one state or location to another. (Streams are
a primary method used to read and write files.) Streams are not too hard to use, but
the code still seems a little convoluted. Why doesn’t the DESCryptoServiceProvider
class simply include Encrypt and Decrypt methods? That’s my question, at least. I’m
sure it has something to do with keeping the class generic for use in many data envi-
ronments. Still, as chunky as this code is, it’s sure a lot easier than writing the
encryption code myself. And it’s general enough that I could swap in one of the other
secret key algorithms without very much change in the code.

Asymmetric Cryptography
In secret key cryptography, you can use any old key you wish to support the encryp-
tion and decryption process. As long as you keep it a secret, the content of the key
itself isn’t really too important. The same cannot be said, though, of asymmetric
(public key) cryptography. Because separate keys are used to encrypt and decrypt the
data, specific private and public keys must be crafted specifically as a pair. You can’t
just select random public and private keys and hope that they work together.

The components used to support asymmetric cryptography include “generators” that
emit public and private key pairs. Once generated, these keys can be used in your
code to mask sensitive data. And due to the large key size, it’s very difficult for any-
one to hack into your encrypted data.

Public key encryption is notoriously slow; it takes forever and a day to encode large
amounts of data using the source key. This is one of the reasons that the founding
fathers didn’t use public key encryption on the Declaration of Independence. Because
of the sluggish performance of asymmetric encryption, many secure data systems use
a combination of public-key and secret-key encryption to protect data. The initial
authorization occurs with public-key processes, but once the secure channel opens,
the data passed between the systems gets encrypted using faster secret-key methods.

.NET includes two public key cryptography classes for your encrypting and decrypt-
ing pleasure:

• The Digital Signature Algorithm (DSA), an algorithm designed by the U.S. gov-
ernment for use in digital signatures, with primary support through the
DSACryptoServiceProvider class

• The RSA algorithm (named after its founders, Ron Rivest, Adi Shamir, and Len
Adleman), an older though generally secure asymmetric algorithm, with pri-
mary support through the RSACryptoServiceProvider class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

310 | Chapter 11: Security

We will be using asymmetric encryption in the Library Project, but not until a later
chapter. Even then, I won’t be getting into too much detail about how asymmetric
encryption works. Although the background information on prime number genera-
tion and large number factorization is fascinating, such discussions are beyond the
scope of this book.

Hashing
Although hashing algorithms do not give you the ability to encrypt and decrypt data
at will, they are useful in supporting systems that secure and verify data content. We
will perform some hashing of data in the project code for this chapter, so stay alert.

Coming up with a hashing algorithm is easy. It took the best minds of the National
Security Agency and the Massachusetts Institute of Technology to come up with reli-
able secret-key and public-key encryption systems, but you can develop a hashing algo-
rithm in just a few minutes. A few years ago, I wrote my own hashing algorithm that I
used for years in business applications. That fact alone should prove how simple and
basic they can be. Here’s a hashing algorithm I just made up while I was sitting here:

Public Function HashSomeText(ByVal origText As String) As Long
 ' ----- Create a hash value from some data.
 Dim hashValue As Long = 0&
 Dim counter As Long

 For counter = 1 To Len(origText)
 hashValue += Asc(Mid(origText, counter, 1))
 If (hashValue > (Long.MaxValue * 0.9)) Then _
 hashValue /= 2
 Next counter
 Return hashValue
End Function

In the code, I just add up the ASCII values of each character in the text string, and
return the result. I do a check in the loop to make sure I don’t exceed 90% of the
maximum Long value; I don’t want to overflow the hashValue variable and generate
an error. Although HashSomeText does generate a hashed representation of the input
data, it also has some deficiencies:

• It’s pretty easy to guess from the hash value whether the incoming content was
short or long. Shorter content will usually generate small numbers, and larger
output values tend to indicate longer input content.

• It’s not very sensitive to some types of content changes. For instance, if you
rearrange several characters in the content, it probably won’t impact the hash value.
Changing a character will impact the value, but if you change one character from A
to B and another nearby letter from T to S, the hash value will remain unchanged.

• The shorter the content, the greater the chance that two inputs will generate the
same hash value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other Security Features | 311

Perhaps you want something a little more robust. If so, .NET includes several hash-
ing tools:

• Hash-based Message Authentication Code (HMAC) is calculated using the Secure
Hash Algorithm number 1 (SHA-1) hash function, made available through the
HMACSHA1 class. It uses a 160-bit hash code. There are no specific restrictions on
the length of the secret key used in the calculation. Although suitable for low-
risk situations, the SHA-1 algorithm is susceptible to attack.

• Message Authentication Code (MAC) is calculated using the Triple-DES secret
key algorithms (described earlier), made available through the MACTripleDES
class. The secret key used in the calculation is either 16 or 24 bytes long, and the
generated value is 8 bytes in length.

• Message-Digest algorithm number 5 (MD5) hash calculation, made available
through the MD5CryptoServiceProvider class. MD5 is yet another super-secret
algorithm designed by Ron Rivest (that guy is amazing), but it has been shown
to contain some flaws that could make it an encoding security risk. The result-
ant hash value is 128 bits long.

• Like the HMACSHA1 class, the SHA1Managed class computes a hash value using the
SHA-1 hash function. However, it is written using .NET managed code only.
HMACSHA1 and some of the other cryptographic features in .NET are simply wrap-
pers around the older Cryptography API (CAPI), a pre-.NET DLL. SHA1Managed
uses a 160-bit hash code.

• Three other classes—SHA256Managed, SHA384Managed, and SHA512Managed—are
similar to the SHA1Managed class, but use 256-bit, 384-bit, and 512-bit hash codes,
respectively.

Each of these algorithms uses a secret key that must be included each time the hash
is generated against the same set of input data. As long as the input data is
unchanged, and the secret key is the same, the resultant hash value will also remain
unchanged. By design, even the smallest change in the input data generates major
changes in the output hash value.

Other Security Features
That about sums up the major cryptography-related security features in .NET. There
are a few other interesting security features that I won’t discuss in detail, but they
deserve at least a passing mention.

User Authentication and My.User
The Visual Basic My.User object includes several authentication features that can help
you design security-enabled code. One useful member is the Name property, which
supplies the name of the current authenticated user. The IsInRole method tells you
whether the active user is included in, say, the Administrators security group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

312 | Chapter 11: Security

For Windows Forms applications, the members of My.User will typically refer to the
logged-in Windows user. However, you can use other authentication systems that
meet your special development needs. Options include using the Internet-based
“Windows Live ID” system from Microsoft, other third-party authentication sys-
tems, or your own custom-designed user management system.

The SecureString Class
It’s amazing that with all of these advanced tools, programmers still spend much of
their time building and parsing string data. Fortunately, .NET includes a plethora of
useful string manipulation tools. Unfortunately, they aren’t very secure. You may
recall that .NET strings are immutable; once created, they are never changed. Even-
tually, they will be destroyed by the garbage collection process. But until then, they
sit around in memory, just waiting to be scanned by some hacker-designed code.
Internally, string data is stored as plain text, so if someone can get to the memory, he
can copy the content for nefarious purposes.

SecureString to the rescue! The System.Security.SecureString class lets you store
strings and get them back, but internally, the content of the string is encrypted. If
anyone obtained the internal content of a class instance, it would look like gibberish.

Summary
When you write a business application for some organization or department, you
might not care all that much about the security and integrity of the data managed by
the software tool. As long as the data gets from the user’s fingertips to the database
and back, it’s all hunky-dory.

Although such views may work for many applications, there are systems and users
that expect much more in the way of security. Sometimes you need to ensure the
security and integrity of the data managed by the application, especially if it will
leave the confines of your software or associated database. The security features
found in the System.Security.Cryptography namespace provide a fun variety of data
hiding and restoration options.

Project
This chapter will see the following security-focused features added to the Library
Project:

• The “login” form, which authenticates librarians and other administrative users

• Security group and user management forms

• A function that encrypts a user-supplied password

• Activation of some application features that depend on user authentication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 313

PROJECT ACCESS

Load the Chapter 11 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 11 (After) Code instead.

Authentication Support
Since all of the library’s data is stored in a SQL Server database, we already use either
Windows or SQL Server security to restrict access to the data itself. But once we con-
nect to the database, we will use a custom authentication system to enable and dis-
able features in the application. It’s there that we’ll put some of the .NET
cryptography features into use.

Before adding the interesting code, we need to add some global variables that sup-
port security throughout the application. All of the global elements appear in the
General.vb file, within the GeneralCode module.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 1.

Public LoggedInUserID As Integer
Public LoggedInUserName As String
Public LoggedInGroupID As Integer
Public SecurityProfile(MaxLibrarySecurity) As Boolean

Although we added it in a previous step, the LibrarySecurity enumeration is an
important part of the security system. Its elements match those found in the Activity
table in the Library database. Each enumeration value matches one element in the
SecurityProfile array that we just added to the code.

Public Enum LibrarySecurity As Integer
 ManageAuthors = 1
 ManageAuthorTypes = 2

...more here...
 ManagePatronGroups = 22
 ViewAdminPatronMessages = 23
End Enum
Public Const MaxLibrarySecurity As LibrarySecurity = _
 LibrarySecurity.ViewAdminPatronMessages

All of the newly added global variables store identity information for the active
administrator. When a patron is the active user, the program sets all of these values
to their default states. Since this should be done when the program first begins, we’ll
add an InitializeSystem routine that is called on startup. It also appears in the
General module.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

314 | Chapter 11: Security

INSERT SNIPPET

Insert Chapter 11, Snippet Item 2.

Public Sub InitializeSystem()
 ' ----- Initialize global variables here.
 Dim counter As Integer

 ' ----- Clear security-related values.
 LoggedInUserID = -1
 LoggedInUserName = ""
 LoggedInGroupID = -1
 For counter = 1 To MaxLibrarySecurity
 SecurityProfile(counter) = False
 Next counter
End Sub

(The SecurityProfile array has items that range from 0 to MaxLibrarySecurity, but
the loop at the end of this code starts from element 1. Because the Activity table
starts its counting at 1, I decided to just skip element 0.) The InitializeSystem
method is called from the MyApplication_Startup event in the ApplicationEvents.vb
file, just before establishing a connection to the database. Let’s add that code now.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 3.

' ----- Perform general initialization.
InitializeSystem()

Each time an administrator tries to use the system, and each time the administrator
logs off and returns the program to patron mode, all of the security-related global
variables must be reset. This is done in the ReprocessSecuritySet method, added to
the General module.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 4.

Public Sub ReprocessSecuritySet()
 ' ----- Reload in the security set for the current
 ' user. If no user is logged in, clear all settings.
 Dim counter As Integer
 Dim sqlText As String
 Dim dbInfo As SqlClient.SqlDataReader = Nothing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 315

 ' ----- Clear out the existing items.
 For counter = 1 To MaxLibrarySecurity
 SecurityProfile(counter) = False
 Next counter

 ' ----- Exit if there is no user logged in.
 If (LoggedInUserID = -1) Or _
 (LoggedInGroupID = -1) Then Return

 Try
 ' ----- Load in the security elements for this user.
 sqlText = "SELECT ActivityID FROM GroupActivity " & _
 "WHERE GroupID = " & LoggedInGroupID
 dbInfo = CreateReader(sqlText)
 Do While (dbInfo.Read)
 SecurityProfile(CInt(dbInfo!ActivityID)) = True
 Loop
 dbInfo.Close()
 Catch ex As Exception
 ' ----- Some database-related error.
 GeneralError("ReprocessSecuritySet", ex)
 If (dbInfo IsNot Nothing) Then dbInfo.Close()

 ' ----- Un-log in the administrator through recursion.
 LoggedInUserID = -1
 LoggedInGroupID = -1
 ReprocessSecuritySet()
 Finally
 dbInfo = Nothing
 End Try
End Sub

This routine uses code built in Chapter 10 and other earlier chapters. When it
detects an authorized user (the LoggedInUserID variable), it creates a SqlDataReader
object with that user’s allowed security features, and stores those settings in the
SecurityProfile array. Once it is loaded, any array element that is True represents an
application feature that the administrator is authorized to use. I’ll discuss the
GroupActivity table a little later in this chapter.

If a database error occurs during processing, the code resets everything to patron
mode, making a recursive call to ReprocessSecuritySet to clear the SecurityProfile
array. (Recursion occurs when a routine directly or indirectly calls itself.)

Encrypting Passwords
The entire content of this chapter has been building to this very moment, the section
where I reveal the winner of the next presidential election. Wait! Even better than that, I
will use one of the .NET hashing methods to encrypt an administrator-supplied pass-
word before storing it in the database. One of the tables in the Library database, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

316 | Chapter 11: Security

UserName table, stores the basic security profile for each librarian or other administra-
tive user, including a password. Since anyone who can get into the database will be
able to see the passwords stored in this table, we will encrypt them to make them a
little less tempting. (For patrons simply using the program, there shouldn’t be any
direct access to the database apart from the application, but you never know about
those frisky patrons.)

To keep things secure, we’ll scramble the user-entered password, using it to generate
a hash value, and store the hash value in the database’s password field for the user.
Later, when an administrative user wants to gain access to enhanced features, the
program will again convert the entered password into a hash value, and compare that
value to the on-record hashed password.

Each .NET hashing function depends on a secret code. Since the Library Project will
only perform a unidirectional encryption, and it will never ask any other program to
re-encrypt the password, we’ll just use the user’s login name as the “secret” key. I
decided to use the HMACSHA1 hashing class, mostly for its ability to accept a variable-
size key. Although it is reported to have security issues, that shouldn’t be a problem
for the way that we’re using it. I mean, if someone actually got into the database try-
ing to decrypt the passwords stored in the UserName table, she would already have full
access to everything in the Library system.

Of course, the encryption code requires references to the System.Security.
Cryptography namespace. We’ll also need a reference to System.Text for some of the
support code. Add the relevant Import statements to the top of the General.vb code
file.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 5.

Imports System.Text
Imports System.Security.Cryptography

The actual jumbling of the password occurs in the EncryptPassword routine, making
its entrance in the General module.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 6.

Public Function EncryptPassword(ByVal loginID As String, _
 ByVal passwordText As String) As String
 ' ----- Given a username and a password, encrypt the
 ' password so that it is not easy to decrypt. There
 ' is no limit on password length since it is going
 ' to be hashed anyway.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 317

 Dim hashingFunction As HMACSHA1
 Dim secretKey() As Byte
 Dim hashValue() As Byte
 Dim counter As Integer
 Dim result As String = ""

 ' ----- Prepare the secret key. Force it to uppercase for
 ' consistency, and then stuff it in a byte array.
 secretKey = (New UnicodeEncoding).GetBytes(UCase(loginID))

 ' ----- Create the hashing component using Managed SHA-1.
 hashingFunction = New HMACSHA1(secretKey, True)

 ' ----- Calculate the hash value. One simple line of code.
 hashValue = hashingFunction.ComputeHash(_
 (New UnicodeEncoding).GetBytes(passwordText))

 ' ----- The hash value is ready, but I like things in
 ' plain text when possible. Let's convert it to a
 ' long hex string.
 For counter = 0 To hashValue.Length - 1
 result &= Hex(hashValue(counter))
 Next counter

 ' ----- Stored passwords are limited to 20 characters.
 Return Left(result, 20)
End Function

The primary methods of interacting with the security providers in .NET are via a
byte array or a stream. I opted to use the byte array method, converting the incom-
ing string values through the UnicodeEncoding object’s GetBytes method. Once stored
as a byte array, I pass the login ID and password as arguments to the HMACSHA1 class’s
features.

Although I could store the output of the ComputeHash method directly in a database
field, I decided to convert the result into readable ASCII characters so that things
wouldn’t look all weird when I issued SQL statements against the UserName table. My
conversion is basic: convert each byte into its printable hexadecimal equivalent using
Visual Basic’s Hex function. Then just string the results together. The UserName.
Password field holds only 20 characters, so I chop off anything longer.

Just to make sure that this algorithm generates reasonable output, I called
EncryptPassword with a few different inputs.

MsgBox("Alice/none: " & _
 EncryptPassword("Alice", "") & vbCrLf & _
 "Alice/password: " & _
 EncryptPassword("Alice", "password") & vbCrLf & _
 "Bob/none: " & _
 EncryptPassword("Bob", "") & vbCrLf & _
 "Bob/password: " & _
 EncryptPassword("Bob", "password"))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

318 | Chapter 11: Security

This code generated the following message:

Alice/none: 6570FC214A797C023F40
Alice/password: 4AEC6C914C65D88BD082
Bob/none: 7F544120E3AB9FB48C32
Bob/password: 274A56F047293EA0B97E

Undoing Some Previous Changes
The UserName, GroupName, and GroupActivity tables in the database define the secu-
rity profiles for each administrative user. Every user (a record in UserName) is part of
one security group (a GroupName record). Each group includes access to zero or more
enhanced application features; the GroupActivity table identifies which features
match up to each security group record.

To manage these tables, we need to add property forms that edit the fields of a sin-
gle database record. We already wrote some of the code awhile back. Chapter 8
defined the BaseCodeForm.vb file, a template for forms that edit single database
records. That same chapter introduced the ListEditRecords.vb file, the “parent” form
that displays a listing of already-defined database records. Our record editor for both
users and security groups will use the features in these two existing forms.

Your friendly author, Tim Patrick, is about to rant on and on about
something that really bugs him. Why not join him in this rant?

When we designed the code for BaseCodeForm.vb in Chapter 8, my goal was to show
you the MustInherit and MustOverride class features included with Visual Basic. They
are pretty useful features. Unfortunately, they just don’t mix well with user interface
elements, and here’s why: Visual Studio actually creates instances of your forms at
design time so that you can interact with them inside the editor. If you were to delve
into the source code for, say, a TextBox control, you would find special code that
deals with design-time presentation of the control. Interesting? Yes. Flexible? Yes.
Perfect in all cases? No.

The problem—and problem is putting it mildly—is that Visual Studio won’t (actu-
ally, can’t) create an instance of a class defined as MustInherit. That’s because you
must inherit it through another class first before you create instances. What does this
mean to you? It means that if you try to design a form that inherits from a
MustInherit form template, Visual Studio will not present the user interface portion
of the form for your editing enjoyment. You can still access the source code of the
form, and if this is how you want to design the inherited form, that’s fine. But you
and I are looking for simplicity in programming, and we plunked down good money
for Visual Studio, so we’re certainly going to use its visual tools to edit our visual
forms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 319

The upshot of all this ranting—and I’m almost at the end of my rant, but you can
keep going on if you want—is that we must change the BaseCodeForm.vb file,
removing the MustInherit and MustOverride keywords, and making other appropri-
ate adjustments. I’ve already made the changes to both the before and after tem-
plates of the Chapter 11 code.

This is part of the reality of programming in a complex system such as Visual Studio.
Sometimes, even after you have done all your research and carefully mapped out the
application features and structure, you run into some designer- or compiler-specific
behavior that forces you to make some change. Once you learn to avoid the major
issues, you find that it doesn’t happen too often. But when it does occur, it can be a
great time to rant.

Managing Security Groups
So, back to our GroupName record editor. I haven’t added it to the project yet, so let’s
add it now. Because it will inherit from another form in the project, we have to allow
Visual Studio to instantiate the base form by first compiling the application. This is
easily done through the Build ➝ Build Library menu command.

To create the new form, select the Project ➝ Add Windows Form menu command.
When the Add New Item window appears, select Windows Forms from the Catego-
ries list, followed by Inherited Form from the Templates list. Enter GroupName.vb in
the Name field, and then click the Add button. When the Inheritance Picker form
appears (see Figure 11-1), select BaseCodeForm from the list, and click OK. The new
GroupName form appears, but it look remarkably like the BaseCodeForm form.

Figure 11-1. Who says you can’t pick your own relatives?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

320 | Chapter 11: Security

Add two Label controls, two TextBox controls, two Button controls, and a
CheckedListBox control from the toolbox, and set their properties using the follow-
ing settings.

Don’t forget to adjust the tab order of the controls on the form.

Let’s add the code all at once. Add the next code snippet to the class source code
body.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 7.

Hey, that’s nearly 300 lines of source code. Good typing. The class includes two pri-
vate members. ActiveID holds the ID number of the currently displayed GroupName
database record, or –1 when editing new records. The StartingOver flag is a little
more interesting. Remember that we are using a shared summary form to display all

Control type Property settings

Label (Name): LabelFullName
AutoSize: True
Location: 8, 10
Text: &Security Group Name:

TextBox (Name): RecordFullName
Location: 128, 8
MaxLength: 50
Size: 248, 20

Label (Name): LabelActivity
AutoSize: True
Location: 8, 34
Text: &Allowed Activities:

CheckedListBox (Name): ActivityList
Location: 128, 32
Size: 248, 244

Button (Name): ActOK
Location: 208, 288
Size: 80, 24
Text: OK

Button (Name): ActCancel
DialogResult: Cancel
Location: 296, 288
Size: 80, 24
Text: Cancel

Form (GroupName) (Name): GroupName
AcceptButton: ActOK
CancelButton: ActCancel
Size: 392, 351
Text: Edit Security Group

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 321

of the already-entered GroupName records. To allow this generic form, ListEditRecords.vb,
to work with the different record editors, we pass an instance of the detail form
(GroupName.vb in this case) to the summary form:

ListEditRecords.ManageRecords(New Library.GroupName)

Within the ListEditRecords form’s code, the instance of GroupName is used over and
over, each time the user wants to add or edit a GroupName database record. If the user
edits one record, and then tries to edit another, the leftovers from the first record will
still be in the detail form’s fields. Therefore, we will have to clear them each time we
add or edit a different record. The StartingOver flag helps with that process by reset-
ting the focus to the first detail form field in the form’s Activated event.

Private Sub GroupName_Activated(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Activated
 ' ----- Return the focus to the main field.
 If (StartingOver) Then RecordFullName.Focus()
 StartingOver = False
End Sub

The related PrepareFormFields private method does the actual clearing and storing of
data with each new Add or Edit call. For new records, it simply clears all entered
data on the form. When editing an existing record, it retrieves the relevant data from
the database, and stores saved values in the various on-form fields. The following state-
ments display the stored group name in the RecordFullName field, a TextBox control:

' ----- Load in the values stored in the database.
sqlText = "SELECT FullName FROM GroupName WHERE ID = " & _
 ActiveID
RecordFullName.Text = CStr(ExecuteSQLReturn(sqlText))

Most of the routines in the GroupName form provide simple overrides for base mem-
bers of the BaseCodeForm class. The CanUserAdd method, which simply returns False
in the base class, includes actual logic in the inherited class. It uses the
SecurityProfile array we added earlier to determine whether the current user is
allowed to add group records.

Public Overrides Function CanUserAdd() As Boolean
 ' ----- Check the user for security access: add.
 Return SecurityProfile(LibrarySecurity.ManageGroups)
End Function

If you look through the added code, you’ll find overrides for all of the BaseCodeForm
members except for the UsesSearch and SearchForRecord methods. The derived class
accepts the default action for these two members.

The user adds, edits, and deletes group name records through the AddRecord,
EditRecord, and DeleteRecord overrides, respectively, each called by code in the
ListEditRecords form. Here’s the code for EditRecord:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

322 | Chapter 11: Security

Public Overrides Function EditRecord(_
 ByVal recordID As Integer) As Integer
 ' ----- Edit an existing record.
 ActiveID = recordID
 PrepareFormFields()
 Me.ShowDialog()
 If (Me.DialogResult = Windows.Forms.DialogResult.OK) Then _
 Return ActiveID Else Return -1
End Function

After storing the ID of the record to edit in the ActiveID private field, the code loads
the data through the PrepareFormFields method, and prompts the user to edit the
record with the Me.ShowDialog call. The form sticks around until some code or con-
trol sets the form’s DialogResult property. This is done in the ActOK_Click event, and
also through the ActCancel button’s DialogResult property, which Visual Basic will
assign to the form automatically when the user clicks the ActCancel button.

The AddRecord routine is just like EditRecord, but it assigns –1 to the ActiveID mem-
ber to flag a new record. The DeleteRecord routine is more involved, and uses some
of the database code we wrote in the last chapter.

Public Overrides Function DeleteRecord(_
 ByVal recordID As Integer) As Boolean
 ' ----- The user wants to delete the record.
 Dim sqlText As String

 On Error GoTo ErrorHandler

 ' ----- Confirm with the user.
 If (MsgBox("Do you really wish to delete the " & _
 "security group?", MsgBoxStyle.YesNo Or _
 MsgBoxStyle.Question, ProgramTitle) <> _
 MsgBoxResult.Yes) Then Return False

 ' ----- Make sure this record is not in use.
 sqlText = "SELECT COUNT(*) FROM UserName " & _
 "WHERE GroupID = " & recordID
 If (CInt(ExecuteSQLReturn(sqlText)) > 0) Then
 MsgBox("You cannot delete this record because " & _
 "it is in use.", MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 Return False
 End If

 ' ----- Delete the record.
 TransactionBegin()
 sqlText = "DELETE FROM GroupActivity " & _
 "WHERE GroupID = " & recordID
 ExecuteSQL(sqlText)
 sqlText = "DELETE FROM GroupName WHERE ID = " & recordID
 ExecuteSQL(sqlText)
 TransactionCommit()
 Return True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 323

ErrorHandler:
 GeneralError("GroupName.DeleteRecord", Err.GetException())
 TransactionRollback()
 Return False
End Function

After confirming the delete with the user, a quick check determines whether the
group is still being used somewhere in the UserName table. If everything checks out
fine, the record is deleted using a SQL DELETE statement. Since we need to delete data
in two tables, I wrapped it all up in a transaction. If an error does occur, the error
handler at the end of the routine will roll back the transaction through
TransactionRollback.

When the user is done making changes to the record, a click on the OK button
pushes the data back out to the database. The ActOK_Click event handler verifies the
data, and then saves it.

If (ValidateFormData() = False) Then Return
If (SaveFormData() = False) Then Return
Me.DialogResult = Windows.Forms.DialogResult.OK

The ValidateFormData method does some simple checks for valid data, such as
requiring that the user enter the security group name, and that it is unique. If every-
thing looks good, the SaveFormData routine builds SQL statements that save the data.

Private Function SaveFormData() As Boolean
 ' ----- The user wants to save changes.
 ' Return True on success.

Database Integrity Warning
If you have a background in database development, you have already seen the flaw in
the delete code. Although I take the time to verify that the record is not in use before
deleting it, it’s possible that some other user will use it between the time I check the
record’s use and the time when I actually delete it. Based on the code and database con-
figuration I’ve presented so far, it would indeed be an issue. When I designed this sys-
tem, I expected that a single librarian would manage administrative tasks such as this,
so I didn’t worry about such conflicts and “race conditions.”

If you are concerned about the potential for deleting in-use records through code like
this, you can enable referential integrity on the relationships in the database. I estab-
lished a relationship between the GroupName.ID and UserName.GroupID fields, but it was
for informational purposes only. You can reconfigure this relationship to have SQL
Server enforce the relationship between the tables. If you do this, it will not be possible
to delete an in-use record; an error will occur in the program when you attempt it. That
sounds good, and it is, but an overuse of referential integrity can slow down your data
access. I will leave this configuration choice up to you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

324 | Chapter 11: Security

 Dim sqlText As String
 Dim newID As Integer = -1

 On Error GoTo ErrorHandler

 ' ----- Prepare to save the data.
 Me.Cursor = Windows.Forms.Cursors.WaitCursor
 TransactionBegin()

 ' ----- Save the data.
 If (ActiveID = -1) Then
 ' ----- Create a new entry.
 sqlText = "INSERT INTO GroupName (FullName) " & _
 "OUTPUT INSERTED.ID VALUES (" & _
 DBText(Trim(RecordFullName.Text)) & ")"
 newID = CInt(ExecuteSQLReturn(sqlText))
 Else
 ' ----- Update the existing entry.
 newID = ActiveID
 sqlText = "UPDATE GroupName SET FullName = " & _
 DBText(Trim(RecordFullName.Text)) & _
 " WHERE ID = " & ActiveID
 ExecuteSQL(sqlText)
 End If

 ' ----- Clear any existing security settings.
 sqlText = "DELETE FROM GroupActivity " & _
 "WHERE GroupID = " & newID
 ExecuteSQL(sqlText)

 ' ----- Save the selected security settings.
 For Each itemChecked As ListItemData In _
 ActivityList.CheckedItems
 sqlText = "INSERT INTO GroupActivity (GroupID, " & _
 "ActivityID) VALUES (" & newID & ", " & _
 itemChecked.ItemData & ")"
 ExecuteSQL(sqlText)
 Next itemChecked

 ' ----- Complete all changes.
 TransactionCommit()
 ActiveID = newID

 ' ----- This change may affect this user.
 If (LoggedInGroupID = ActiveID) Then _
 ReprocessSecuritySet()

 ' ----- Success.
 ActiveID = newID
 Me.Cursor = Windows.Forms.Cursors.Default
 Return True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 325

ErrorHandler:
 Me.Cursor = Windows.Forms.Cursors.Default
 GeneralError("GroupName.SaveFormData", Err.GetException())
 TransactionRollback()
 Return False
End Function

Be sure to check out the other routines in the GroupName form; they exist to support
and enhance the user experience.

Managing Users
We also need a form to manage records in the UserName table. Since the code for that
form generally follows what we’ve already seen in the GroupName form, I won’t bore
you with the details. I’ve already added UserName.vb to your project, but to prevent
bugs in your code while you were in the middle of development, I disabled it (at least
in the “Before” version of the code). To enable it, select the file in the Solution
Explorer window. Then in the Properties panel, change the Build Action property
from None to Compile.

The only interesting code in this form that is somewhat different from the GroupName
form is the handling of the password. To keep things as secure as possible, I don’t
actually load the saved password into the on-form Password field. It wouldn’t do any
good anyway since I’ve stored a hashed version in the database.

Since I use the user’s Login ID as the secret key when encrypting the password, I
must regenerate the password if the user ever changes the Login ID. The private
OrigLoginID field keeps a copy of the Login ID when the form first opens, and checks for
any changes when resaving the record. If changes occur, it regenerates the password.

passwordResult = EncryptPassword(Trim(RecordLoginID.Text), _
 Trim(RecordPassword.Text))

Using the UserName and GroupName editing forms requires some additional code in the
main form. Add it to the body of the General module.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 8.

The AdminLinkGroups and AdminLinkUsers controls are web-style link labels that we
added to the program a few chapters back. The LinkClicked event—not the Clicked
event—triggers the display of the code editor. Here’s the code to edit the GroupName
table:

Private Sub AdminLinkGroups_LinkClicked(_
 ByVal sender As Object, ByVal e As System.Windows. _
 Forms.LinkLabelLinkClickedEventArgs) _
 Handles AdminLinkGroups.LinkClicked

http://lib.ommolketab.ir
http://lib.ommolketab.ir

326 | Chapter 11: Security

 ' ----- Let the user edit the list of security groups.
 If (SecurityProfile(LibrarySecurity.ManageGroups) _
 = False) Then
 MsgBox(NotAuthorizedMessage, MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 Return
 End If

 ' ----- Edit the records.
 ListEditRecords.ManageRecords(New Library.GroupName)
 ListEditRecords = Nothing
End Sub

Per-User Experience
Now that we have all of the security support code added to the project, we can start
using those features to change the application experience for patrons and administra-
tors. It’s not polite to tempt people with immense power, so it’s best to hide those fea-
tures that are not accessible to the lowly and inherently less powerful patron users.

First, let’s provide the power of differentiation by adding the administrative login
form, shown in Figure 11-2.

I’ve already added the ChangeUser.vb form to the project. If you’re using the
“Before” version of this chapter’s code, select ChangeUser.vb in the Solution
Explorer. Then change its Build Action property (in the Properties panel) from None
to Compile, just as you did with the UserName.vb form.

All of the hard work occurs in the form’s ActOK_Click event handler. If the user
selects the Return to Patron Mode option, all security values are cleared, and the
main form hides most features (through code added later).

LoggedInUserID = -1
LoggedInUserName = ""
LoggedInGroupID = -1
ReprocessSecuritySet()

Figure 11-2. The official Library Project administrative login form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 327

This form gets connected into the application through the main form’s ActLogin_
Click event. Open up the MainForm.vb file, double-click on the Login button in the
upper-right corner, and add the following code to the Click event template that
appears.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 9.

' ----- Prompt the user for patron or administrative mode.
ShowLoginForm()

That wasn’t much code. Add the ShowLoginForm method’s code to the form as well.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 10.

Private Sub ShowLoginForm()
 ' ----- Prompt the user for patron or administrative mode.
 Dim userChoice As Windows.Forms.DialogResult
 userChoice = ChangeUser.ShowDialog()
 ChangeUser = Nothing
 If (userChoice = Windows.Forms.DialogResult.OK) Then _
 UpdateDisplayForUser()
End Sub

Let’s also enable the F12 key to act as a login trigger. Add the following code to the
Select Case statement in the MainForm_KeyDown event handler.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 11.

Case Keys.F12
 ' ----- Prompt the user for patron or administrative mode.
 ShowLoginForm()
 e.Handled = True

The ShowLoginForm routine calls another method, UpdateDisplayForUser, which hides
and shows various display elements on the main form based on the security profile of
the current user. Add it to the MainForm class code. I won’t show the code here, but
basically it looks at the LoggedInUserID variable, and if it is set to –1, it hides all the
controls for advanced features.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

328 | Chapter 11: Security

Currently, when you run the application, all the advanced features appear, even though
no administrator has supplied an ID or password. Calling UpdateDisplayForUser when
the main form first appears solves that problem. Add the following code to the end of
the MainForm_Load method.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 13.

' ----- Prepare for a patron user.
UpdateDisplayForUser()

The last update (five updates, actually) involves limiting the major sections of the
form to just authorized administrators. For instance, only administrators who are
authorized to run reports should be able to access the reporting panel on the main
form. Locate the TaskReports method in the main form, and find the line that dis-
plays the panel.

PanelReports.Visible = True

Replace this line with the following code.

INSERT SNIPPET

Insert Chapter 11, Snippet Item 14.

If (SecurityProfile(LibrarySecurity.RunReports)) Then _
 PanelReports.Visible = True

We need to do the same thing in the TaskCheckOut, TaskCheckIn, TaskAdmin, and
TaskProcess methods. In each case, replace the line that reads:

Panel???.Visible = True

with code that checks the security settings before showing the panel.

INSERT SNIPPET

Insert Chapter 11, Snippet Items 15 through 18.

• Use Snippet 15 for TaskCheckOut.

• Use Snippet 16 for TaskCheckIn.

• Use Snippet 17 for TaskAdmin.

• Use Snippet 18 for TaskProcess.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 329

Run the program and you’ll see that it’s starting to look like a real application. If you
want access to the enhanced features, try a Login ID of “admin” with no password.
You can change that through the UserName form if you want!

Since we have a way to secure access to the data and features of the Library Project,
let’s move to the next chapter and start focusing on the data, the focal point of any
business application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

330

Chapter 12CHAPTER 12

Overloads and Extensions 12

Do you ever wish you could do things beyond what people were designed to do? Like
flying? We all dream about it, but we can’t do it without several hundred pounds of
jet fuel. Or what about bending steel in our bare hands? Does that sound like any-
one you know? Then there’s breathing underwater, doing long division in your head,
speaking a foreign language fluently without much study, and having a successful
career as an author of popular computer books. Ah, one can dream.

It’s not that we want to do all of these things, but once in a while it would be nice to
be slightly enhanced with the ability to do one or two of the things that are beyond
our natural abilities. Unfortunately, it doesn’t work for humans very often, but could
it work for .NET operators?

You probably didn’t even know that the humble Visual Basic addition operator (+)
had dreams of flying, or of speaking Hungarian, or of bending steel. Well, operators
are people, too. And now their dreams can be fulfilled because Visual Basic supports
operator overloading.

This chapter will show how you can direct the body-building enhancement process
for the various Visual Basic operators. I’ll also introduce extension methods, which let
you similarly enhance classes, even if you don’t have access to the original source
code for those classes.

What Is Operator Overloading?
Operator overloading allows your code to enhance the basic Visual Basic operators,
and endow them with abilities not previously granted to them by the compiler. Over-
loading doesn’t change the syntax used when employing operators, but it does
change the types of objects that each operator can manage. For instance, the multi-
plication operator (*) normally interacts only with numbers, but you can augment it
to work with your own custom Bumblebee class.

Dim swarm As Bumblebee
Dim oneBumblebee As New Bumblebee

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Is Operator Overloading? | 331

Dim twoBumblebee As New Bumblebee
swarm = oneBumblebee * twoBumblebee

The meaning you apply to the overloaded operator is up to you. Although you would
normally want to retain the additive nature of the addition operator when overload-
ing it, you don’t have to. In fact, you could overload the addition operator so that it
subtracts one value from another. But I’d fire you if you did that working for me.
Just so you know.

All operator overloading features tie directly to one or more of your classes. Over-
loaded features look curiously like standard function members, and appear as mem-
bers of your classes.

Visual Basic includes two types of operators: unary and binary, defined based on the
number of operands recognized by the operator. Unary operators accept a single
operand, which always appears to the right of the operator name or symbol. The log-
ical Not operator is a unary operator:

oppositeValue = Not originalValue

Binary operators accept two operands, one on each side of the operator. The multi-
plication operator is a binary operator:

ten = two * five

The nature of an operator is that once it has done its work, the operator and its input
operand(s) are, in effect, fully replaced by the calculated result. The expression “10/5”
is replaced by the calculated “2” result, and this result is used to complete whatever
statement or expression the original operation appeared in. It works just like a function.

' ----- These two lines (probably) place the same
' calculated result in theAnswer.
theAnswer = 2 * 5
theAnswer = DoubleIt(5)

To get ready for operator overloading, alter your mind to see operators as functions.
Look past the confines of your operator universe, and open yourself to the truth that
operators and functions are one. If you’ve ever programmed in LISP, I truly feel sorry for
you. But you also already understand operators as functions. In LISP, everything is a
function. To multiply two numbers together in LISP, you use “prefix” syntax, where the
operator name comes first. The expression “seven times three” uses this syntax:

(* 7 3)

Once complete, the entire parenthesized expression is replaced, function-like, by its
answer. The LISP expression:

(+ 2 (* 7 3))

becomes:

(+ 2 21)

becomes:

23

http://lib.ommolketab.ir
http://lib.ommolketab.ir

332 | Chapter 12: Overloads and Extensions

Defining overloaded operators in Visual Basic 2008 is somewhat similar. If you were
to translate the definition of multiplication into Visual Basic function-ese, it might
look like this:

Public Shared Function *(_
 ByVal firstOperand As Integer, _
 ByVal secondOperand As Integer) _
 As Integer

The operator (*) becomes a function name, with operands playing the role of func-
tion parameters, ultimately generating a value exposed through the function’s return
value. Although operators aren’t defined as functions in this way in Visual Basic,
overloads of those operators are.

To overload the multiplication operator in our imaginary Bumblebee class, we use the
Operator keyword to define a “multiplication function” for operands of the Bumblebee
class.

Partial Class Bumblebee
 Public Shared Operator *(ByVal operand1 As Bumblebee, _
 ByVal operand2 As Bumblebee) As Bumblebee
 ' ----- Multiply two bumblebees together.
 Dim finalResult As New Bumblebee

 ' ----- Add special "multiplication" code here, then...
 Return finalResult
 End Operator
End Class

Now, when you multiply two Bumblebee instances together with the multiplication
operator, Visual Basic recognizes the “operand1 * operand2” pattern as matching a
multiplication operator overload with two Bumblebee arguments, and calls this class-
based Operator function to get the result.

All Operator declarations must include the Public and Shared keywords. If they
weren’t shared, Visual Basic would be required to create an extra instance of the
class just to access the operator overload code, and that wouldn’t be very efficient.

What Can You Overload?
You can overload pretty much any of Visual Basic’s standard operators (except for Is
and IsNot), plus a few other features. This section describes each overloadable opera-
tor, grouped by general type. Each section includes a table of operators. To overload an
operator in a class, use the name in the Operator column as the function name. If there
were an operator named XX, the matching Operator statement would be as follows:

Public Shared Operator XX(...)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Can You Overload? | 333

Mathematical Operators
Visual Basic defines 10 mathematical or pseudo-mathematical operators. All but one
of these exists to manipulate numbers. The leftover operator is the string concatena-
tion operator (&), which works with strings, but kind of looks like the other mathe-
matical operators in its syntax and use.

Two of the operators, plus (+) and minus (–), are both unary and binary operators.
The minus sign (–) works as a unary “negation” operator (as in “–5”) and as a binary
“subtraction” operator (the common “5 – 2” syntax). When overloading these opera-
tors, the difference lies in the number of arguments included in the argument signature.

Public Shared Operator -(ByVal operand1 As SomeClass, _
 ByVal operand2 As SomeClass) As SomeClass
 ' ----- This is the binary "subtraction" version.
End Operator

Public Shared Operator -(ByVal operand1 As SomeClass) _
 As SomeClass
 ' ----- This is the unary "negation" version.
End Operator

Table 12-1 lists the mathematical operators that support overloading.

Table 12-1. The overloadable mathematical operators

Operator Type Comments

+ Unary The unary “plus” operator. You can already use this operator with numbers, as in “+5.” But
if you enter this value in Visual Studio, the plus operator gets stripped out since it is consid-
ered redundant. However, if you overload this operator on a class of your own, Visual Studio
will retain the unary form of this operator when used in code.

' ----- Assuming the unary + operator is overloaded...
Dim oneBuzz As New Bumblebee
Dim moreBuzz As Bumblebee = +oneBuzz

Since this is a unary operator, include only a single argument when defining the Operator
method.

+ Binary The standard addition operator. Remember, just because the operator is called the “addi-
tion” operator doesn’t mean that you have to retain that connotation. However, you should
attempt to overload the operators as close to their original meaning as possible. Visual Basic
itself overloads this operator to let it act a little like the string concatenation operator.

- Unary This is the unary “negation” operator that comes just before a value or expression.

- Binary The subtraction operator, although if you can figure out how to subtract one bumblebee
from another, you’re a better programmer than I am.

* Binary The multiplication operator.

/ Binary The standard division operator.

\ Binary The integer division operator. Remember, you are not required to retain any sense of “inte-
ger” in this operator if it doesn’t meet your class’s needs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

334 | Chapter 12: Overloads and Extensions

Comparison Operators
Visual Basic includes seven basic comparison operators, most often used in If state-
ments and similar expressions that require a Boolean conditional calculation. The
Operator methods for these comparison operators have the same syntax as is used for
mathematical operators, but most of them must be implemented in pairs. For example,
if you overload the less than (<) operator, Visual Basic requires you to overload the
greater than (>) operator within the same class, and for the same argument signature.

All comparison operators are Boolean operators. Although you can alter the data
types of the arguments passed to the operator, they must all return a Boolean value.

Public Shared Operator <=(ByVal operand1 As SomeClass, _
 ByVal operand2 As SomeClass) As Boolean
 ' ----- The <= operator returns a Boolean result.
End Operator

Table 12-2 lists six of the seven basic comparison operators that you can overload.
Each entry includes a “buddy” value that identifies the matching operator that must
also be overloaded.

The seventh comparison operator is Like. In standard Visual Basic, it compares the first
operand to a string “pattern,” which is a set of matching characters and wildcards:

If (someValue Like somePattern) Then

^ Binary The exponentiation (“to the power of”) operator.

Mod Binary The modulo operator, sometimes called the remainder operator since it returns the remain-
der of a division action.

& Binary The string concatenation operator.

Table 12-2. The overloadable comparison operators

Operator Buddy Comments

= <> The equal to operator compares two operands for equivalence, returning True if they are
equal.

<> = The not equal to operator compares two operands for non-equivalence, and returns True if
they do not match.

< > The less than operator returns True if the first operand is “less than” the second.

> < The greater than operator returns True if the first operand is “greater than” the second.

<= >= The less than or equal to operator returns True if the first operand is “less than or equal to”
the second. Aren’t you getting tired of reading basically the same sentence over and over
again?

>= <= The greater than or equal to operator returns True if the first operand is “greater than or
equal to” the second.

Table 12-1. The overloadable mathematical operators (continued)

Operator Type Comments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Can You Overload? | 335

You don’t have to use the same pattern rules when overloading the Like operator
and you can accept any data type for the pattern operand, but you must still return a
Boolean result.

Public Shared Operator Like(ByVal operand1 As Bumblebee, _
 ByVal operand2 As Integer) As Boolean
 ' ----- See if Bumblebee matches an Integer pattern.
End Operator

There is no “buddy” operator that you must implement when overloading the Like
operator.

Bitwise and Logical Operators
Among the logical and bitwise operators included in Visual Basic, four already per-
form double duty as overloaded operators. The bitwise And, Or, Xor, and Not opera-
tors accept integer operands, generating numeric results with values transformed at
the individual bit level. They also work as logical operators, accepting and returning
Boolean values, most often in conditional statements. But they can handle the stress
of being overridden a little more.

When you do override these four operators, you are overriding the bitwise versions,
not the logical versions. Basically, this means that you have control over the return
value, and aren’t required to make it Boolean.

Table 12-3 lists the eight overloadable bitwise and logical operators.

Table 12-3. The overloadable bitwise and logical operators

Operator Comments

<< The shift left operator performs bit shifting on a source integer value, moving the bits to the left by a specified
number of positions. Although you do not have to use this operator to perform true bit shifting, you must
accept a shift amount (an Integer) as the second operand.

Public Shared Operator <<(ByVal operand1 As Bumblebee, _
 ByVal operand2 As Integer) As Bumblebee
 ' ----- Add shifting code here.
End Operator

>> The shift right operator performs bit shifting just like the shift left operator, but it moves the bits in the
“right” direction. I guess that would make those bits more conservative. Your code can make the return value
more liberal if you want, but as with the shift left operator, you must accept anInteger as the second
operand.

Not The bitwise negation operator is unary, accepting only a single operand argument.

And The bitwise conjunction operator sets a bit in the return value if both equally positioned bits in the source
operands are also set.

Or The bitwise disjunction operator sets a bit in the return value if either of the equally positioned bits in the
source operands is set.

Xor The bitwise exclusion operator sets a bit in the return value if only one of the equally positioned bits in the
source operands is set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

336 | Chapter 12: Overloads and Extensions

The CType Operator
The Visual Basic CType feature looks more like a function than an operator:

result = CType(source, type)

But looks are deceiving. It is not a true function, and as with the other conversion
functions (such as CInt), it is actually processed at compile time, long before the pro-
gram even runs. By allowing you to overload it as an operator, Visual Basic enables
you to create custom and special conversions between data types that don’t seem
compatible. The following method template converts a value of type Bumblebee to an
Integer:

Public Shared Operator CType(ByVal operand1 As Bumblebee) _
 As Integer
 ' ----- Perform conversion here, returning an Integer.
End Operator

If you try to type that last block of code into Visual Basic, it will complain that you
are missing either the Widening or the Narrowing keyword (see Figure 12-1).

IsTrue Overloading the Or operator does not automatically overload the related OrElse operator. To use OrElse,
you must also overload the special IsTrue operator. It’s not a real Visual Basic operator, and you can’t call it
directly even when overloaded. But when you use the OrElse operator in place of an overloaded Or opera-
tor, Visual Basic calls the IsTrue operator when needed. There are a few rules you must follow to use the
IsTrue overload:

• The overloaded Or operator must return the class type of the class in which it is defined. If you want to use
OrElse on the Bumblebee class, the overload of the Or operator in that class must return a value of
type Bumblebee.

• The overloaded IsTrue operator must accept a single operand of the containing class’s type
(Bumblebee), and return a Boolean.

• You must also overload the IsFalse operator.

How you determine the truth or falsity of a Bumblebee is up to you.

IsFalse The IsFalse overload works just like IsTrue, and has similar rules, but it applies to the And and
AndAlso operators.

Figure 12-1. Visual Basic complains about all things wide and narrow

Table 12-3. The overloadable bitwise and logical operators (continued)

Operator Comments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Can You Overload? | 337

I mentioned widening and narrowing conversions in passing in Chapter 2, but let’s
examine them in more depth. When you convert between some core data types in
Visual Basic, there is a chance that it will sometimes fail because the source value
cannot fit into the destination value. This is true when converting a Short value to a
Byte.

Dim quiteBig As Short = 5000
Dim quiteSmall As Byte
' ----- These next two lines will fail.
quiteSmall = quiteBig
quiteSmall = CByte(quiteBig)

And it’s obvious why it fails: A Byte variable cannot hold the value 5000. But what
about this code?

Dim quiteBig As Short = 5
Dim quiteSmall As Byte
' ----- These next two lines will succeed.
quiteSmall = quiteBig
quiteSmall = CByte(quiteBig)

It will run just fine, since 5 fits into a Byte variable with room to spare. (If Option
Strict is set to On, the first assignment will still fail to compile.) Still, there is nothing
to stop me from reassigning a value of 5000 to quiteBig and trying the assignment
again. It’s this potential for failure during conversion that is the issue.

When a conversion has the potential to fail due to the source data not being able to
fully fit in the target variable, it’s called a narrowing conversion. Narrowing conver-
sions are a reality, and as long as you have checked the data before the conversion,
there shouldn’t be any reason to permanently restrict such conversions.

Widening conversions go in the opposite direction. They occur when any source value
in the original data type will always fit easily in the target type. A widening conver-
sion will always succeed as long as the source data is valid.

Visual Basic allows widening conversions to occur automatically, implicitly. You
don’t have to explicitly use CType to force the conversion. If you had a widening con-
version from Bumblebee to Integer, and you had set Option Strict to On, the follow-
ing code would work just fine:

Dim sourceValue As New Bumblebee
Dim destValue As Integer = sourceValue

If the conversion from Bumblebee to Integer was narrowing, you would have to force
the conversion using CType just so that Visual Basic was sure you really wanted to do
this.

Dim sourceValue As New Bumblebee
Dim destValue As Integer = CType(sourceValue, Integer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

338 | Chapter 12: Overloads and Extensions

When you create custom conversions with the overloaded CType operator, you must
inform Visual Basic whether the conversion is widening or narrowing by inserting either
the Widening or Narrowing keyword between the Shared and Operator keywords.

Public Shared Narrowing Operator CType(_
 ByVal operand1 As Bumblebee) As Integer
 ' ----- Perform narrowing conversion here.
End Operator

Other Operator Overloading Issues
There are a few other rules you must follow when overloading operators, but first
let’s look at a semi-useful Bumblebee class.

Class Bumblebee
 Public Bees As Integer

 Public Sub New()
 ' ----- Default constructor.
 Bees = 0
 End Sub

 Public Sub New(ByVal startingBees As Integer)
 ' ----- Assign an initial number of bees.
 Bees = startingBees
 End Sub

 Public Shared Operator +(ByVal operand1 As Bumblebee, _
 ByVal operand2 As Bumblebee) As Bumblebee
 ' ----- Join bumblebee groups.
 Dim newGroup As New Bumblebee
 newGroup.Bees = operand1.Bees + operand2.Bees
 Return newGroup
 End Operator

 Public Shared Operator -(ByVal operand1 As Bumblebee, _
 ByVal operand2 As Bumblebee) As Bumblebee
 ' ----- Separate bumblebee groups.
 Dim newGroup As New Bumblebee
 newGroup.Bees = operand1.Bees - operand2.Bees
 If (newGroup.Bees < 0) Then newGroup.Bees = 0
 Return newGroup
 End Operator

 Public Shared Operator *(ByVal operand1 As Bumblebee, _
 ByVal operand2 As Bumblebee) As Bumblebee
 ' ----- Create a swarm.
 Dim newGroup As New Bumblebee
 newGroup.Bees = operand1.Bees * operand2.Bees
 Return newGroup
 End Operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other Operator Overloading Issues | 339

 Public Shared Widening Operator CType(_
 ByVal operand1 As Bumblebee) As Integer
 ' ----- Perform conversion here.
 Return operand1.Bees
 End Operator
End Class

The class is pretty simple; it exists to maintain a simple count of bees. But by over-
loading the addition, subtraction, multiplication, and CType operators, we can use
instances of bees with a more natural syntax.

Dim studyGroup1 As New Bumblebee(20)
Dim studyGroup2 As New Bumblebee(15)
Dim swarmGroup As Bumblebee = studyGroup1 * studyGroup2
MsgBox("The swarm contains " & CInt(swarmGroup) & " bees.")

Running this code correctly generates a 300-bee swarm and the message in
Figure 12-2.

Including a CType overload that generates an Integer allowed me to convert a
Bumblebee using the CInt operator. I could also have changed the last line to use the
true CType operator.

MsgBox("The swarm contains " & _
 CType(swarmGroup, Integer) & " bees.")

Declaration Requirements
As mentioned earlier, you must always make Operator methods Public Shared. And
because the overloaded operators need some sort of intimate connection to their
containing class, at least one of the operands or the return value must match the type
of the containing class. (In some overloads, Visual Basic requires that it be one of the
operands that match.) Either of the two following overloads will work just fine, since
Bumblebee is used for one of the operands:

Public Shared Operator <=(ByVal operand1 As Bumblebee, _
 ByVal operand2 As Integer) As Boolean
 ' ----- Compare a bumblebee to a value.
End Operator

Figure 12-2. Bees sure know how to multiply

http://lib.ommolketab.ir
http://lib.ommolketab.ir

340 | Chapter 12: Overloads and Extensions

Public Shared Operator <=(ByVal operand1 As Date, _
 ByVal operand2 As Bumblebee) As Boolean
 ' ----- Compare a date to a bumblebee.
End Operator

However, you cannot set both operands to a non-Bumblebee type at the same time
and still keep the overload in the Bumblebee class.

Class Bumblebee
 Public Shared Operator <=(ByVal operand1 As Date, _
 ByVal operand2 As Integer) As Boolean
 ' ----- This will not compile.
 End Operator
End Class

Overloading Overloads
You can overload overloaded operators. No, dear editor, I didn’t type the same word
twice by mistake. You can add multiple argument-and-return-value signature varia-
tions of an overloaded operator to a single class.

Public Shared Widening Operator CType(_
 ByVal operand1 As Bumblebee) As Integer
 ' ----- Perform conversion to Integer here.
End Operator

Public Shared Widening Operator CType(_
 ByVal operand1 As Bumblebee) As Date
 ' ----- Perform conversion to Date here, somehow.
End Operator

As long as the argument signatures or return values differ, you can add as many over-
loads of an operator as you want. You don’t need to use the Overloads keyword either.

Be Nice
That’s right. Be nice. Just because you have the power to redefine addition to be divi-
sion, you don’t have to be so shocking. Don’t make the maintenance programmers who
have to modify your code later work harder because of your mischievous operator over-
loads. When you add overloads, let the meaning of the new feature at least have the feel-
ing of the original operator. My fellow maintenance programmers and I will thank you.

Extension Methods
What if you want to modify the behavior of a class, but you don’t have access to the
source code? You could derive from it and build a new class, but that’s not always
convenient. You could call up the original developer and beg for the code, but some
of those programmers are tight-fisted when it comes to their software.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extension Methods | 341

Another option is to use a new Visual Basic 2008 feature: extension methods. Here’s
how it works:

1. You decide which class you want to extend with new methods.

2. You write those methods within a standard Module in your source code.

3. You start using the new methods as though they were included in the class
definition.

The String data type includes several built-in methods that return a modified ver-
sion of a string instance. For example, in this code:

Dim bossyString As String = "are you talking to me?"
MsgBox(bossyString.ToUpper())

the text that appears in the message box will be all uppercase because the ToUpper
method returns a new uppercase version of the original string instance. A matching
ToLower method works the other way, but what I really want is a ToTitle method that
capitalizes just the first letter of each word.

MsgBox(bossyString.ToTitle())

The String class doesn’t include a ToTitle method, but we can add it thanks to
extension methods. To create an extension method, create a method within a stan-
dard module that accepts the target data type as its first parameter.

Module MyExtensions
<System.Runtime.CompilerServices.Extension()> _

 Public Function ToTitle(ByVal sourceText As String) As String
 Return StrConv(sourceText, VbStrConv.ProperCase)
 End Function
End Module

Normally, you would call this function as is, passing in the original string.

MsgBox(ToTitle(bossyString))

And that code does work, but the addition of the Extension attribute (from the
System.Runtime.CompilerServices namespace) turns ToTitle into an extension
method, extending the String data type. Your code isn’t really modifying String.
Behind the scenes, the Visual Basic compiler is converting the new method-like syn-
tax into the old function-like syntax on each use of ToTitle.

By themselves, extension methods don’t do much. Calling ToTitle(bossyString) is
not that different from bossyString.ToTitle(). But as with so many new features in
Visual Basic 2008, extension methods were added just to raise the price of the prod-
uct. Just kidding! Actually, the new extension methods feature is an important sup-
port for the new LINQ technology.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

342 | Chapter 12: Overloads and Extensions

Summary
Operator overloading is a pretty neat feature, but you don’t really need it. Anything
you can do by overloading the addition operator you can also do by adding an Append
method to a class. But operator overloading does allow you to bring your classes
more into the mainstream of Visual Basic syntax usage.

Extension methods can also be replicated using standard method code, but there are
some features of LINQ that specifically take advantage of extension methods.

When you do overload your operators or use extension methods, make sure you
include sufficient documentation or comments to make it clear what it means to left-
shift a customer, Normalize() a String, or multiply a bank account. Hey, I’d like to
know about that last one.

Project
This chapter’s project will add a lot of code to the Library application, as much as
25% of the full code base. Most of it is identical to code we added in earlier chap-
ters, so I won’t print it all here. There’s a lot to read here, too, so I won’t overload
you with pasting code snippets right and left. But as you add each new form to the
project, be sure to look over its code to become familiar with its inner workings.

PROJECT ACCESS

Load the Chapter 12 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 12 (After) Code instead.

Overloading a Conversion
Operator overloading is a useful tool, and I have grown especially fond of the CType
overload. Let’s add a CType overload to a class we first designed back in Chapter 8:
ListItemData. This class exposes both ItemText and ItemData properties, providing
access to the textual and numeric aspects of the class content. Its primary purpose is
to support the tracking of ID numbers in ListBox and ComboBox controls. If we need
to know the ID number of a selected item in a ListBox control (let’s name it
SomeList), we use code similar to the following:

Dim recordID As Integer = _
 CType(SomeList.SelectedItem, ListItemData).ItemData

There’s nothing wrong with that code. But I thought, “Wouldn’t it be nice to con-
vert the ListItemData instance to an Integer using the CInt function, and not have to
mess with member variables like ItemData?”

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 343

Dim recordID As Integer = _
 CInt(CType(SomeList.SelectedItem, ListItemData))

Hmm. The code’s not that different. But hey, why not? Let’s do it. To support this
conversion, we need to add a CType overload to the ListItemData class. Open that
class’s file, and add the following code as a member of the class.

INSERT SNIPPET

Insert Chapter 12, Snippet Item 1.

Public Shared Widening Operator CType(_
 ByVal sourceItem As ListItemData) As Integer
 ' ----- To convert to integer, simply extract the
 ' integer element.
 Return sourceItem.ItemData
End Operator

That’s pretty simple. This widening conversion from ListItemData to Integer just
returns the Integer portion of the instance. There are only about four or five places
in the current Library Project that directly access the ItemData member, and it’s not
that important to go back and change them. But we’ll use this conversion overload
frequently in the new code added in this chapter.

Global Support Features
We need to add a few more global variables and common global routines to support
various features used throughout the application. Two new global variables will
track settings stored in the database’s SystemValue table. Add them as members to
the General module (in General.vb).

INSERT SNIPPET

Insert Chapter 12, Snippet Item 2.

Public DefaultItemLocation As Integer
Public SearchMatchLimit As Integer

The Library program identifies books and other items as stored in multiple locations,
such as multiple branches or storage rooms. DefaultItemLocation indicates which one of
these locations, from the CodeLocation table, is the default. The DefaultLocation entry of
the SystemValue database table stores this value permanently.

When searching for books, authors, or other things that could result in thousands of
matches, the SearchMatchLimit indicates the maximum number of matches returned
by such searches. It’s stored as the SearchLimit system value.

Since we’re already in the General module, add two more helper functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

344 | Chapter 12: Overloads and Extensions

INSERT SNIPPET

Insert Chapter 12, Snippet Item 3.

ConfirmDefaultLocation
This routine verifies that a valid DefaultLocation entry exists in the SystemValue
table. It returns True on success.

GetCopyDisposition
This routine provides a short description for the current status of a specific
library item copy. It analyzes the item’s and patron’s records, and returns one of
the following status code strings: New Item Copy, Checked In, Checked Out, Overdue,
Missing, or Reference.

Extending a Framework-Supplied Class
What’s in a name? Well, if it’s the author names in the Library Project, they might
include first and last names, prefixes (such as “Dr.”) and suffixes (“Jr.”), and dates
for birth and death. Some of those parts are optional, so formatting the author name
is a multistep process. Since the application will need to format author names in sev-
eral places throughout the code, let’s add a central routine, FormatAuthorName, that
does the work for us.

INSERT SNIPPET

Insert Chapter 12, Snippet Item 4.

<System.Runtime.CompilerServices.Extension()> _
Public Function FormatAuthorName(_
 ByRef dbInfo As SqlClient.SqlDataReader) As String
 ' ----- Given an author record, return the formatted name.
 Dim authorName As String

 On Error Resume Next

 ' ----- Format the name.
 authorName = CStr(dbInfo!LastName)
 If (IsDBNull(dbInfo!FirstName) = False) Then
 authorName &= ", " & CStr(dbInfo!FirstName)
 If (IsDBNull(dbInfo!MiddleName) = False) Then _
 authorName &= " " & CStr(dbInfo!MiddleName)
 End If
 If (IsDBNull(dbInfo!Suffix) = False) Then _
 authorName &= ", " & CStr(dbInfo!Suffix)

 ' ----- Add in the birth and death years.
 If (IsDBNull(dbInfo!BirthYear) = False) Or _
 (IsDBNull(dbInfo!DeathYear) = False) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 345

 authorName &= " ("
 If (IsDBNull(dbInfo!BirthYear) = True) Then
 authorName &= "????"
 Else
 authorName &= CStr(Math.Abs(CInt(dbInfo!BirthYear)))
 If (CInt(dbInfo!BirthYear) < 0) Then _
 authorName &= "BC"
 End If
 authorName &= "-"
 If (IsDBNull(dbInfo!DeathYear) = False) Then
 authorName &= CStr(Math.Abs(CInt(dbInfo!DeathYear)))
 If (CInt(dbInfo!DeathYear) < 0) Then _
 authorName &= "BC"
 End If
 authorName &= ")"
 End If

 ' ----- Finished.
 Return authorName
End Function

This routine is an extension method that extends the SqlClient.SqlDataReader class.
The fully qualified Extension attribute makes the connection between our custom
extension and the framework-defined SqlDataReader class. Given a SqlDataReader
built from records in the Author table, the function formats and returns a friendly
author name in the format “Public, John Q, Jr. (1900–1999).” Elsewhere in the
application, it’s called as though it were a member of the data reader instance.

dbInfo.FormatAuthorName()

We could have left out the extension method features altogether by simply omitting
the Extension attribute. Then, calls for author formatting would look like this:

FormatAuthorName(dbInfo)

Record Editors and Supporting Forms
Now things really start to hop. We’ll add 23 new forms to the application in this
chapter. Most of them implement basic code editors, similar to the UserName.vb and
GroupName.vb files we built in Chapter 11. Other forms exist to provide additional
support for these record editors. I won’t reprint anything I’ve gone over before, but
I’ll point out some interesting new code on our way through each of these 23 forms.

If you’re following along in the “Before” version of this chapter’s project, you will
need to enable each form as you encounter it. To do this, select the file in the Solu-
tion Explorer window, and change the file’s Build Action property (in the Properties
panel) from None to Compile.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

346 | Chapter 12: Overloads and Extensions

Search-limiting forms

The first four forms allow the librarian to limit the information overload that comes
through using a database with thousands of books, publishers, and authors. You
probably remember that the generic ListEditRecords form displays all existing
records from a table of records by default. This works fine for the security groups
stored in the GroupName table since you probably won’t have even a dozen of those.
But listing all books in even a small library can generate quite an imposing list. And
depending on the speed of your workstation, it can take awhile to load all book titles
into the list.

The four “search-limiting” forms help to reduce the number of records appearing in
the list at once. When the librarian accesses the list of books and other library items,
the ItemLimit form (see Figure 12-3) provides a quick search prompt that reduces the
listed results.

The form lets the user retrieve all records, or specific items based on item name (with
wildcard support). Once the matches are loaded, the user can access this form again
by clicking on the Lookup button on the ListEditRecords form for those types of
code editors that support lookups (authors, items, patrons, and publishers).

We are ready to include these four search-limiting forms in the project:

AuthorLimit.vb
This form limits author records as loaded from the Author table.

ItemLimit.vb
This is the form we just talked about. It limits the display of library items from
the NamedItem table.

PatronLimit.vb
Just in case patrons are flocking to your library, this form lets you limit the
records loaded from the Patron table.

PublisherLimit.vb
This form limits records from the Publisher table.

Figure 12-3. The ItemLimit form acts like a bar-room bouncer for items

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 347

Keyword and subject editors

Although most record editors provide a full editing experience through the
ListEditRecords form, some are subordinate to other editor forms. Keywords and
subjects are a good example. Though each has its own independent tables (Keyword
and Subject), I chose to allow editing of them through the form that edits individual
library items, the NamedItem form (added later). That form manages all interactions
between the Keyword and Subject records and the NamedItem table, all through the
intermediate many-to-many tables ItemKeyword and ItemSubject.

The KeywordAdd and SubjectAdd forms provide a simple text entry form for a single
keyword or subject. Include each of these forms now in the project:

• KeywordAdd.vb

• SubjectAdd.vb

More named item support forms

As we’ll see later, the NamedItem form is one of the most complex forms added to the
Library Project so far. It manages everything about a generalized library item (such as
a book). Each item can have multiple copies, authors, keywords, subjects, and so on.
It’s simply too much editing power to include on a single form. We already added
two of the subordinate forms: KeywordAdd and SubjectAdd. Let’s add five additional
support forms:

AuthorAddLocate.vb
This form presents a wizard-like interface that lets the user add a new or exist-
ing author record to an item. Authors in the Library program is a generic term
that refers to authors, editors, illustrators, performers, and so on. This form’s
three wizard steps let the user (1) indicate the type of author via the
CodeAuthorType table; (2) perform a search for an existing author by name; and
(3) select from a list of matching author names. If the desired author isn’t yet in
the database, the last step allows a new author to be added. Figure 12-4 shows
the first two of these steps.

Figure 12-4. The first two of three author wizard steps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

348 | Chapter 12: Overloads and Extensions

Most of the logic is controlled through the Next button’s event handler. The
code in this routine varies based on the current wizard panel in view (as indi-
cated by the ActivePanel class-level variable). Here’s the code that runs when the
user clicks Next after selecting the author type:

' ----- Make sure a name type is selected.
If (CInt(CType(NameType.SelectedItem, _
 ListItemData)) = -1) Then
 MsgBox("Please select a name type from the list.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 ProgramTitle)
 NameType.Focus()
 Return
End If

' ----- Move to the search panel.
ActivePanel = PanelCriteria
SecondPanel.Visible = True
FirstPanel.Visible = False
ActBack.Enabled = True
LastName.Focus()

Did you see the first logic line in that code? We used the CInt conversion func-
tion to get an ItemData value from a list item. This calls our overloaded CType
operator in the ListItemData class.

PublisherAddLocate.vb
This form is just like the AuthorAddLocate form, but focuses on publishers. Its
wizard has only two steps since publishers are not grouped by type. It locates or
adds records in the Publisher table. When it’s time to add a publisher to an
item, the item editor form calls the public PublisherAddLocate.PromptUser func-
tion. This function returns the ID of the selected publisher record, or –1 to abort
the adding of a publisher. A return value of –2 clears any previously selected
publisher ID.

SeriesAddLocate.vb
This form is similar to the PublisherAddLocate form, but it prompts for records
from the CodeSeries table.

ItemAuthorEdit.vb
Once an author has been added to an item, the only way to change it to a differ-
ent author is to remove the incorrect author, and add the correct author sepa-
rately through the AuthorAddLocate form. But if the user simply selected the
wrong author type (such as “Editor” instead of “Illustrator”), it’s kind of a bur-
den to search for the author name again just to change the type. The
ItemAuthorEdit form lets the user modify the type for an author already added to
an item. It modifies the ItemAuthor.AuthorType database field.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 349

ItemCopy.vb
A library will likely have multiple copies of a particular book, CD, or other item.
In the Library program, this means that each NamedItem record can have more
than one ItemCopy record attached to it. Each copy is edited through the
ItemCopy form (see Figure 12-5).

Although this code does not inherit from BaseCodeForm as other record editors
do, it still has many of the features of those forms, including a SaveFormData rou-
tine that writes records to the database.

One interesting thing that this form does have is support for reading bar codes.
Many bar code readers act as a “wedge,” inserting the text of a scanned bar code
into the keyboard input stream of the computer. Any program monitoring for
bar codes simply has to monitor normal text input.

Bar code wedge scanners append a carriage return (the Enter key) to the end of
the transmitted bar code. This lets a program detect the end of the bar code
number. But in most of the Library program’s forms, the Enter key triggers the
OK button and closes the form. We don’t want that to happen here. To prevent
this, we’ll add some code to this form that disables the auto-click on the OK but-
ton whenever the insertion point is in the Barcode text entry field.

Figure 12-5. Details only a librarian could love

http://lib.ommolketab.ir
http://lib.ommolketab.ir

350 | Chapter 12: Overloads and Extensions

INSERT SNIPPET

Insert Chapter 12, Snippet Item 5.

Private Sub RecordBarcode_Enter(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles RecordBarcode.Enter
 ' ----- Highlight the entire text.
 RecordBarcode.SelectAll()

 ' ----- Don't allow Enter to close the form.
 Me.AcceptButton = Nothing
End Sub

Private Sub RecordBarcode_Leave(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles RecordBarcode.Leave
 ' ----- Allow Enter to close the form again.
 Me.AcceptButton = ActOK
End Sub

Private Sub RecordBarcode_KeyPress(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyPressEventArgs) _
 Handles RecordBarcode.KeyPress
 ' ----- Ignore the enter key.
 If (e.KeyChar = ChrW(Keys.Return)) Then e.Handled = True
End Sub

With this code, when the user presses the Enter key in the Barcode field manu-
ally, the form will not close. But it’s a small price to pay for bar code support.

Inherited code editors

Twelve of the forms added in this chapter inherit directly from the BaseCodeForm
class. Add them to the project as I review each one.

Author.vb
The Author form edits records in the Author database table. As a typical derived
class of BaseCodeForm, it overrides many of the public elements of its base class.
Two overrides that we haven’t yet used in earlier chapters are the UsesSearch and
SearchForRecord methods. These allow the user of the ListEditRecords form to
limit the displayed authors through the prompting of the AuthorLimit form
described earlier in this chapter. (The FillListWithRecords override also calls
SearchForRecord to prompt the user for the initial list of authors to display.)

In SearchForLimit, the call to AuthorLimit.PromptUser returns a comma-separated
string in “Last, First” format.

' ----- Prompt the user for the limited author name.
exceededMatches = False
userLimit = (New AuthorLimit).PromptUser()
If (userLimit = "") Then Return

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 351

The user can include the asterisk (*) character as a wildcard in the first or last
name parts. The asterisk has become a common character to use in all types of
wildcard searches. Unfortunately, it is not supported in SQL Server SELECT state-
ments. SQL Server uses the percent (%) character for a wildcard instead (as do
many other SQL-compliant database platforms). As SearchForLimit extracts the
first and last names, it ensures that the right wildcard character is used.

' ----- Use the limits to help prepare the search text.
limitLast = Trim(GetSubStr(userLimit, ",", 1))
limitFirst = Trim(GetSubStr(userLimit, ",", 2))
If ((limitLast & limitFirst) = "") Then Return
If (InStr(limitLast, "*") = 0) Then limitLast &= "*"
If (InStr(limitFirst, "*") = 0) Then limitFirst &= "*"
limitLast = Replace(limitLast, "*", "%")
limitFirst = Replace(limitFirst, "*", "%")

This code uses our custom GetSubStr routine already added to the General mod-
ule. Once the name parts are extracted, the Visual Basic Replace function
replaces all instances of * with %. You’ll find similar code in the other record edi-
tors that allow limits on the list of records, such as the Publisher form added
later.

While you have the source code open for this form, zoom up to the top. There,
you’ll find an interesting Imports statement:

Imports MVB = Microsoft.VisualBasic

Normally, Imports is followed immediately by a namespace. This variation
includes the MVB = prefix, which defines a shortcut for the Microsoft.VisualBasic
namespace for code in this file. With Visual Basic importing so many
namespaces into an existing class that also defines a lot of public members, there
are bound to be member name conflicts. In this case, the conflict is the Left
form member. Since this source code for the Author form sees everything
through the prism of that form, when you include the keyword Left in your
logic, the code naturally assumes that you mean the form’s Left property, which
sets the left position of the form. The problem is that Left is also a common
string manipulation function that extracts the leftmost characters from a larger
string:

smallerString = Left(largerString, 5)

In a form, this code generates an error since it thinks Left means Me.Left. To use
the string version of Left, you have to prefix it with its namespace:

smallerString = Microsoft.VisualBasic.Left(_
 largerString, 5)

The special Imports statement lets us substitute a shorter name for the rather
long Microsoft.VisualBasic namespace:

smallerString = MVB.Left(largerString, 5)

You will find a few instances of such code in this and other forms that include
the MVB shortcut.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

352 | Chapter 12: Overloads and Extensions

The Author form has one more notable element. A Name Matches label appears
near the bottom of the form, as shown in Figure 12-6.

This field helps the user avoid adding the same author to the database twice. As
changes are made to the Last Name and First Name fields, the Name Matches
field gets refreshed with matching author names found in the Author table. The
RefreshMatchingAuthors routine counts the number of matching authors through
the following code:

sqlText = "SELECT COUNT(*) AS TheCount " & _
 "FROM Author WHERE LastName LIKE " & _
 DBText(Trim(RecordLastName.Text))
If (Trim(RecordFirstName.Text) <> "") Then
 sqlText &= " AND FirstName LIKE " & _
 DBText(MVB.Left(Trim(_
 RecordFirstName.Text), 1) & "%")
End If
matchCount = CInt(ExecuteSQLReturn(sqlText))

This is similar to the lookup code in the SearchForLimit routine, but it only adds
a wildcard to the first name before doing the search.

CodeAuthorType.vb
The CodeAuthorType form edits records in the related CodeAuthorType table. Who
knew?

CodeCopyStatus.vb
This form edits records in the CodeCopyStatus database table.

CodeLocation.vb
As expected, this form edits records in the CodeLocation table. Once you’ve
added at least one record to that table, you’ll be able to set the default location
for the database. I’ll discuss this again a little later in this chapter.

CodeMediaType.vb
The CodeMediaType form, which edits records in the CodeMediaType table, includes
a few more fields than the other “Code” table editors. Most of the fields accept
numeric input. Although I do a final check for valid numeric data just before
writing the record to the database, I try to prevent any non-numeric data from
showing up in the first place by restricting the acceptable keystrokes. For
instance, the RecordCheckoutDays text field’s KeyPress event includes this code:

Figure 12-6. The bottom of the Author form showing Name Matches

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 353

' ----- Only allow digits and backspaces.
If (e.KeyChar = vbBack) Or _
 (IsNumeric(e.KeyChar)) Then Return
e.Handled = True

Setting the e.Handled property to True stops Visual Basic from doing anything
else (pretty much) with the entered key. It’s a quick and easy way to dispose of a
user-entered keystroke.

CodePatronGroup.vb
This form edits records in the CodePatronGroup table.

CodeSeries.vb
This editor manages records in the CodeSeries table. Earlier I mentioned how
series names and keywords are subordinate to named items. But it made sense to
me to also provide direct management for series names, in case you wanted to
build up a common list before adding individual library items. So, this form per-
forms double duty: you can access it as a standard record editor through the
ListEditRecords form, and it’s also used for a specific named item through the
not-yet-added NamedItem form.

When editing item-specific series names, the user first gets to search for a series
name by typing it. Since I don’t want the user to have to retype the series name
again in this editor form, I wanted to pass the typed series name into the
CodeSeries form, but none of the overridden public methods supported this. So,
we’ll need to add a new method that will accept the typed name. The AddRecord
member already overrides the base function of the same name.

Public Overrides Function AddRecord() As Integer
 ' ----- Add a new record.
 ActiveID = -1
 PrepareFormFields()
 Me.ShowDialog()
 If (Me.DialogResult = Windows.Forms. _
 DialogResult.OK) Then _
 Return ActiveID Else Return -1
End Function

Let’s add an overload to this function that includes a string argument. The caller
will pass the originally typed text to this argument. We’ll assign it to the
RecordFullName control’s Text property so that it shows up automatically when the
form opens.

INSERT SNIPPET

Insert Chapter 12, Snippet Item 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

354 | Chapter 12: Overloads and Extensions

Public Overloads Function AddRecord(_
 ByVal seriesText As String) As Integer
 ' ----- Add a new record, but use a starting value
 ' previously entered by the user.
 ActiveID = -1
 PrepareFormFields()
 RecordFullName.Text = seriesText
 Me.ShowDialog()
 If (Me.DialogResult = Windows.Forms.DialogResult.OK) Then _
 Return ActiveID Else Return -1
End Function

Yes, we could have used some name other than AddRecord for this function and
avoided adding an overload. But it’s nice to keep things consistent.

Holiday.vb
This form manages the records in the Holiday table. In a later chapter, we’ll add
a cache of holidays within the program for quick access.

Patron.vb
The Patron form provides editing services for records in the Patron table, and
appears in Figure 12-7.

Figure 12-7. Most of the Patron form (Messages tab details are hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 355

This form includes a TabControl to help break up the number of fields the user
has to experience at once. If you have ever used the tab control included with
Visual Basic 6.0, you’ll quickly appreciate the .NET replacement. It manages all
of the panel-switching logic automatically when the user selects a different tab.
Each panel is a separate TabPage class instance. In your code, forcing the tab con-
trol to display a different tab is as easy as assigning the appropriate TabPage
instance to the TabControl object’s SelectedTab property, as with this code line
from the ValidateFormData function:

TabPatron.SelectedTab = TabGeneral

Although this form looks quite complex, it’s made up almost entirely of code
we’ve seen in other forms. Beyond the standard overrides of BaseCodeForm mem-
bers, this form includes bar code scanning support borrowed from the ItemCopy
form, password logic stolen from the UserName form, and name-matching code
similar to that used in the Author form.

I included a Manage Patron’s Items button on the form, but we won’t add its
logic until a later chapter. An extra public function, EditRecordLimited, becomes
important at that time.

Publisher.vb
The Publisher form lets the user edit the records in the Publisher table. It’s a
pretty simple form with only two data entry fields. A Status field indicates how
many NamedItem records link to this publisher. A small button appears to the
right of the text entry field for the publisher’s web site. This is the “show me the
web site” button, and when clicked, it brings up the supplied web page in the user’s
default browser. To enable this button, add the following code to the ShowWeb
button’s Click event handler.

INSERT SNIPPET

Insert Chapter 12, Snippet Item 7.

' ----- Show the web site displayed in the field.
Dim newProcess As ProcessStartInfo

On Error Resume Next
If (Trim(RecordWeb.Text) = "") Then Return
newProcess = New ProcessStartInfo(Trim(RecordWeb.Text))
Process.Start(newProcess)

SystemValue.vb
This code editor handles items in the SystemValue table. Although we will con-
nect it to a link on the main Library form in this chapter, we will change this
access method in a future chapter.

Well, that’s 11 of the 12 derived forms. The last one is the NamedItem form, shown in
Figure 12-8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

356 | Chapter 12: Overloads and Extensions

The NamedItem form is the largest and most complex of the forms that derive from
BaseCodeForm. It edits primary library items recorded in the NamedItem database table.
It’s complex because it also directly or indirectly manages records in other subordi-
nate tables: ItemAuthor, ItemCopy, ItemKeyword, ItemSubject, and indirectly, Author,
Keyword, Publisher, and Subject.

All of the fields on the General and Classification tabs are basic data entry fields that
flow directly into the NamedItem table, just as is done with the other record-editing
forms. The Publisher and Series fields use separate selection forms
(PublisherAddLocate and SeriesAddLocate) to obtain the ID values stored in
NamedItem. Here’s the code that looks up the publisher:

' ----- Prompt the user.
newPublisher = (New PublisherAddLocate).PromptUser()
If (newPublisher = -1) Then Return

' ----- Check to clear the publisher.
If (newPublisher = -2) Then
 RecordPublisher.Text = "Not Available"
 PublisherID = -1
 Return
End If

Figure 12-8. The NamedItem form with the General tab active

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 357

The other four tabs—Authors/Names, Subjects, Keywords, and Copies—manage
subordinate records. The code is pretty consistent among the four different tabs, so
I’ll limit my comments to the Authors/Names tab (see Figure 12-9).

The controls on this tab are quite similar to those on the ListEditRecords form; they
exist to manage a set of records in a table. In this case, it’s the ItemAuthor table. For
the presentation list, I chose to use a ListView control instead of a standard ListBox
control. By setting a ListView control’s View property to Details, setting its
FullRowSelect field to True, and modifying its Columns collection (see Figure 12-10),
you can quickly turn it into a multicolumn listbox.

When you add an item to this list, you also have to add “subitems” to have anything
appear in all but the first column.

Dim newItem As Windows.Forms.ListViewItem = _
 AuthorsList.Items.Add("John Smith")
newItem.SubItems.Add("Illustrator")

The Add button brings up the AuthorAddLocate form, whereas the Properties button
displays the ItemAuthorEdit form instead.

Before any of the subordinate records can be added, the “parent” record must
exist in the database. That is because the “child” records include the ID number
of the parent record, and without a parent record, there is no parent ID number.

Figure 12-9. The NamedItem form with the Authors/Names tab active

http://lib.ommolketab.ir
http://lib.ommolketab.ir

358 | Chapter 12: Overloads and Extensions

If you look in each of the Add button routines on this form, you will find code such
as the following:

' ----- The record must be saved first.
If (ActiveID = -1) Then
 ' ----- Confirm with the user.
 If (MsgBox("The item must be saved to the database " & _
 "before authors or names can be added. Would you " & _
 "like to save the record now?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 ProgramTitle) <> MsgBoxResult.Yes) Then Return

 ' ----- Verify and save the data.
 If (ValidateFormData() = False) Then Return
 If (SaveFormData() = False) Then Return
End If

If this is a brand-new NamedItem record (ActiveID = –1), this code will save it before
allowing the user to add the subordinate record. Any invalid data that prevents the
record from being saved will be caught in the call to ValidateFormData.

Actually, the calls to both ValidateFormData and SaveFormData are the same ones that
occur when the user clicks on the OK button. Normally, that triggers a return of the
new record’s ID number to the calling form. But what if SaveFormData gets called by

Figure 12-10. The ColumnHeader editor for a ListView control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 359

adding an author, but then the user clicks the Cancel button (which normally returns
a –1 value to indicate “no record added”)? To avoid that, the SaveFormData function
sets a class-level variable named SessionSaved:

SessionSaved = True

This flag is cleared when the form first opens, but is set to True pretty much anytime
a subordinate record changes. The NamedItem form’s overridden AddRecord and
EditRecord functions check for this flag before returning to the calling form.

If (Me.DialogResult = Windows.Forms.DialogResult.OK) Or _
 (SessionSaved = True) Then Return ActiveID Else Return -1

There’s lots of other interesting code in the NamedItem form. But at nearly 1,400 lines
(not counting the related designer code), I’ll have to let you investigate it on your
own.

Connecting the Editors to the Main Form
OK, take a breath. That was a lot of code to go through. But if you run the program
now, you won’t see any difference at all. We still need to connect all of the record
editors to the main form. They all connect through the LinkLabel controls on the
main form’s Administration panel (PanelAdmin). We need to add 12 LinkClicked
event handlers to access all of the new and various forms. Go ahead and add them
now to the MainForm class.

INSERT SNIPPET

Insert Chapter 12, Snippet Item 8.

Each of the LinkClicked event handlers is almost a mirror image of the other, except
for a few object instance names here and there. Here’s the code that handles a click
on the Publisher link label:

Private Sub AdminLinkPublishers_LinkClicked(_
 ByVal sender As System.Object, ByVal e As _
 System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles AdminLinkPublishers.LinkClicked
 ' ----- Make sure the user is allowed to do this.
 If (SecurityProfile(LibrarySecurity.ManagePublishers) = _
 False) Then
 MsgBox(NotAuthorizedMessage, MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 Return
 End If

 ' ----- Let the user edit the list of publishers.
 ListEditRecords.ManageRecords(New Library.Publisher)
 ListEditRecords = Nothing
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

360 | Chapter 12: Overloads and Extensions

After doing a quick security check, the code calls up the standard ListEditRecords
form, passing it an instance of the record editor it is to use.

There are still a few inactive links on the Administration panel that we’ll enable in
later chapters.

Setting the Default Location
The program is now ready to run with all of its new features in place. Since we added
only administrative features, you must click the Login button in the upper-right cor-
ner of the main form before gaining access to the Administration panel and its fea-
tures. Unless you changed it, your login username is “admin” with no password.

Although you can now run the program and access all of the record editors, you won’t
be able to add new item copies until you set a default location. To set the location:

1. Add at least one location through the Locations link on the Administration
panel.

2. Obtain the ID number of the CodeLocation record you want to be the default.
You can use SQL Server Management Studio Express’s query features to access
the records in this table. If this is the first time you’ve added records to the
CodeLocation table, the first item you add will have an ID value of 1.

3. Back in the Library program, edit the SystemValue table through the System Val-
ues link on the Administration panel.

4. Add or modify the “DefaultLocation” system value, setting its value to the ID
number of the default location record.

Alternatively, you can update the DefaultLocation record in the SystemValue table
directly using SQL Server Management Studio Express. If the ID of the location to
use is 1, use this SQL statement to make the change:

UPDATE SystemValue
 SET ValueData = '1'
 WHERE ValueName = 'DefaultLocation'

In a future chapter, we’ll add a more user-friendly method to update this default
location.

Speaking of user-friendly, we’re about to enter the not-user-friendly but logic-
friendly world of text structured data: XML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

361

Chapter 13 CHAPTER 13

XML13

Because computers are computers and people are people, they generally have differ-
ent requirements when it comes to getting their data into a usable format. XML is an
attempt to arrange data in a structure that is usable for both people and software.

XML has really come into vogue in recent years, but its roots are quite old. It’s derived
from SGML (Standard Generalized Markup Language), as is HTML (cousins!). SGML
in turn came from GML (Generalized Markup Language), a “metalanguage” (a lan-
guage that describes another language) designed by IBM back in the 1960s. So, blame
IBM if you want to, but either way, you will come in regular contact with XML as you
develop .NET applications.

I might as well tell you right from the start: either you will love XML, or you will hate
it, but probably both. It’s a strange beast, this XML, as you would expect from any
acronym that takes letters from the middle of the words it represents (“eXtensible
Markup Language”). XML represents an alphabet of data manipulation technolo-
gies, an alphabet which strangely has seven Xs. But enough of the teasing; let’s
extend our understanding of this basic .NET technology.

What Is XML?
XML is nothing more than a data format that is both human-readable and machine-
readable. Have you ever tried to open a Microsoft Word document with Notepad?
Good luck (see Figure 13-1). Although you can usually sift out the main text of the
document, most of what you see is gobbledygook. That’s because it is in a propri-
etary binary format. It’s proprietary because, frankly, you shouldn’t be poking your
fingers in there. That’s what Microsoft Word is for. And it’s binary because you can
store a lot of information conveniently in a little bit of disk space. With such a file, I
can store my data any way I choose. If fact, I can write my data out willy-nilly, and
not have to get permission from anyone, because it’s mine, mine, all mine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

362 | Chapter 13: XML

Binary files are great for storing any kind of data: numbers, strings, base-64
encrypted images, streams of networking data chatter, anything. The problem is that
unless you know the exact structure you used to write it out, there is little chance of
ever getting the data back. This is good if your goal is secrecy, but if you ever need to
share that data with another person or program, or worse yet, debug the output from
your errant program, you’re in for a tough time. If one little byte gets messed up, the
whole file might be useless.

There are, of course, other ways to store your data. For files that store records of data,
tab-delimited and CSV (comma-separated value) files provide a convenient transfer
medium, in a more human-friendly format. For instance, consider this data from
Microsoft’s sample “Northwind Traders” database, stored as comma-separated values:

ProductID,ProductName,SupplierID,Category,UnitPrice,Available
"1","Chai","652","Beverages","$18.00","Yes"
"2","Chang","9874","Beverages","$19.00","No"
"3","Aniseed Syrup","9874","Condiments","On Sale","Yes"

Now that’s better. This data is pretty easy to understand. Each piece of data is
grouped by commas, and the first row indicates what each column contains. And the
best part is that many programs already know how to read files in this format. If you
save this data in a text file with a .csv extension, and open it in Microsoft Excel, the
data automatically appears in columns.

But it could be better. For instance, what do those “652” and “9874” values refer
to anyway? And is it correct that the unit price of Aniseed Syrup is “On Sale?”

Figure 13-1. This chapter in Notepad

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Is XML? | 363

Sure, I can load this data into my program, but can I do anything with it? At least it’s
an easy read for both people and computer programs, and isn’t that what I said XML
was all about?

Well, yes. Although XML includes rules and features that make it more flexible than
your average text datafile, it’s not that different. For all the hype, XML is just a way
of storing data. Any of the fancy-schmancy XML traits discussed in this chapter
could be performed easily with data stored in simpler text or binary proprietary for-
mats. In fact, it is often quicker and more convenient to develop using a proprietary
format, because your data will contain exactly and only what you need, without any
fluff.

That being said, XML does include many aspects that make it a strong contender
when considering a data format:

It’s straightforward to read
Each data element includes a type of title. Good titles make for good reading.

It’s easy to process
All data includes starting and ending tags, so a program can process the data
without much effort. And one bad element won’t necessarily ruin the whole file.

It’s flexible
You can store any type of data in XML. It is just a text file, after all. If you have a
certain XML file format used in version 1 of your program, and you add features
to it in version 2, you can do it in a way that still allows version 1 programs to
use version 2 files without breaking.

It’s self-describing
XML includes several features that let you describe the content of a given XML
file. Two of the most popular are DTD (Document Type Definition) and XSD
(XML Schema Definition). You use these tools to indicate exactly what you
expect your datafile to contain. Additionally, XML allows you to embed com-
ments in the content without impacting the actual data.

It’s self-verifying
Tools are available, including tools in .NET, which can confirm the integrity and
format of an XML file by comparing the content to the associated DTD or XSD.
This lets you verify a file before you even process it.

It’s an open standard
XML has gained widespread acceptance, even across divergent computer platforms.

It’s built into .NET
This is going to be the biggest reason for using it. In fact, you won’t be able to
get away from XML in .NET, even if you try. It’s everywhere.

But there’s bad news, too:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

364 | Chapter 13: XML

It’s bulky
XML content contains a lot of repetitive structural information, and generally
lots of whitespace. You could abbreviate many of the structure elements, and
remove all the whitespace (XML doesn’t require it), but that would remove the
human-readable aspects of the data. Some platforms, such as cell phone brows-
ers, like to keep data small. XML is anything but small.

It’s text
Wait a minute, this is a good thing—most of the time. Sometimes you just need
to store binary data, such as pictures. You can’t really store true binary data in
an XML file without breaking one of the basic rules about XML: text only!
Often, binary data is encoded in a text-like format, such as base-64 (which uses
readable characters to store binary data).

It’s inefficient
This comes from having data in a verbose semi-human-readable format, rather
than in a terse, compact binary form. It simply takes longer for a computer to
scan text looking for matching angle brackets than it does to move a few bytes
directly from a lump of binary data into a location in memory.

It’s human-readable
There are not many secrets in an XML file. And although you could encrypt the
data elements in the file, or the entire file for that matter, that would kind of
defeat the purpose of using XML.

It’s machine-readable
If you are expecting the average Joe to pick up an XML printout and read it in
his easy chair, think again. XML is not appropriate for every type of datafile.

It’s not immune to errors
As I keep repeating, XML is just a text file. If you open it in Notepad and let
your five-year-old pound on the keyboard, the content will have problems. XML
is not a panacea; it’s just a useful file format.

The XML Rule
Before we look at some actual XML, you need to know The Rule. You must obey The
Rule with every piece of XML text you write.

THE RULE

If you open it, close it.

That’s it. Don’t forget it. Obey it. Live it. I’ll explain what it means later.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML Content | 365

XML Content
There’s no better way to learn about XML than to start looking at it. If you’ve never
used XML, but you’ve written some HTML, this should look somewhat familiar.

Some Basic XML
Here’s a simple chunk of XML for you to enjoy:

<?xml version="1.0"?>
<hello>
 <there>
 <!-- Finally, real data here. -->
 <world target="everyone">think XML</world>
 <totalCount>694.34</totalCount>
 <goodbye />
 </there>
</hello>

Hey, I didn’t say it was going to be interesting. As I mentioned before, it’s just data,
but it is useful data, and here’s why:

It’s obviously XML
This is clear from the first line, which always starts with <?xml. . . . This line also
indicates the XML version number, which tells XML processing routines (pars-
ers) to adjust behavior if needed. That’s foresight.

It’s structured
XML is a hierarchical data structure. That is, you can have data elements embed-
ded inside other data elements to any depth you want. Every element is bounded
by a set of tags. In this sample, the tags are hello, there, world, totalCount, and
goodbye. Tags always appear inside <angle brackets>, and always appear in
pairs, as in <hello>...</hello>. (This is where The Rule, “If you open it, close
it,” comes in.) Don’t forget the / just before the tag name in the closing bracket.
This syntax lets you organize your data into specifically arranged named units. For
tag pairs that have nothing in between them, you can use the shortened syntax
<tagname />, as I did with the goodbye tag. By the way, XML tags are case-sensitive,
so type carefully.

It’s readable
It’s human-readable, thanks to all the whitespace, although you could remove it
all and still have XML. It’s also computer-readable because of the consistent use
of tags.

It’s a single unit of data
All XML files have a single root element in which all other elements must appear.
In the sample, <hello> is the root element. Once that element is closed (through
its ending tag) you can’t add any additional elements. Nope. Nada.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

366 | Chapter 13: XML

It’s got comments
See that <!--...--> line? That’s a comment. You can stick comments here and
there just like they were free-floating tags.

It’s got attributes
XML supports two varieties of data: real data and attributes. Real data values
come between the innermost tag pairs, as with think XML and 694.34 in the sam-
ple. Attributes provide extended information about the tags themselves. I
included an attribute named target in the world element. The content of all
attributes must be in quotes. I could have made this attribute a subelement
instead, and a lot of people do. There is disagreement among programmers as to
when data should be an element or an attribute. Let your conscience be your
guide.

So, there you have it—some clean, clear XML data.

Some Basic—and Meaningful—XML
Let’s see what that comma-delimited data from Northwind Traders that I listed pre-
viously could look like in XML.

<?xml version="1.0"?>
<productList>
 <supplier ID="652" fullName="Beverages R Us">
 <product ID="1" available="Yes">
 <productName>Chai</productName>
 <category>Beverages</category>
 <unitPrice>18.00</unitPrice>
 </product>
 </supplier>
 <supplier ID="9874" fullName="We Sell Food">
 <product ID="2" available="No">
 <productName>Chang</productName>
 <category>Beverages</category>
 <unitPrice>19.00</unitPrice>
 </product>
 <product ID="3" available="Yes" onSale="true">
 <productName>Aniseed Syrup</productName>
 <category>Condiments</category>
 <unitPrice>12.00</unitPrice>
 </product>
 </supplier>
</productList>

Moving the data to XML has greatly increased the size of the content. But with an
increase in size comes an increase in processing value. I was immediately able to get
some benefit from the hierarchical structure of XML. In the original data, supplier
was just another column. But in the XML version, all the data is now grouped into
supplier sections, which makes sense (at least, if that is how I was planning to use
the data).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML Content | 367

You can also see that I followed The Rule. Every opening tag has a matching closing
tag. Whatever you do, don’t forget The Rule.

Now, you’re saying to yourself, “Tim, I could have grouped the data by supplier
once I loaded the comma-delimited data into my program.” And to that I say,
“You’re right.” I told you that XML was just another data format. By itself, the XML
content is not all that sexy. It’s really the tools that you use with your XML data that
make it zoom. Because XML uses a consistent yet generic structure to manage data,
it was a snap to develop tools that could process consistent yet generic data in ways
that look interesting and specific.

What About the Human-Readable Part?
One of the tools used with XML is XSLT, which stands for XSL Transformations
(XSL stands for eXtensible Stylesheet Language). XSLT is a hard-to-use scripting lan-
guage that lets you transform some XML data into whatever other data or output for-
mat you want. It’s just one of a handful of XSL-related languages created to
manipulate XML data in complex ways. Ready for some hands-on XSL fun? Take the
useful chunk of XML listed previously (the <productList> sample), and replace the
first ?xml line with the following two lines:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="hello.xsl"?>

Save all of that beautiful XML text to a file on your desktop as hello.xml. Next, put
the following XSLT script into another file on your desktop named hello.xsl. (Notice
that I broke one line with a special marker so that the content could fit in this book.
Please don’t really break the comma-separated list on that line in the file.)

<?xml version="1.0"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:template match="/">
 <xsl:text>
 ProductID,ProductName,SupplierID,Category,

UnitPrice,Available
 </xsl:text>

 <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="supplier">
 <xsl:variable name="supID" select="@ID"/>
 <xsl:for-each select="product">
 "<xsl:value-of select="@ID"/>",
 "<xsl:value-of select="productName"/>",
 "<xsl:value-of select="$supID"/>",
 "<xsl:value-of select="category"/>",
 "<xsl:choose>
 <xsl:when test="@onSale='true'">On Sale</xsl:when>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

368 | Chapter 13: XML

 <xsl:otherwise>
 $<xsl:value-of select="unitPrice"/>
 </xsl:otherwise>
 </xsl:choose>",
 "<xsl:value-of select="@available"/>"

 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

I told you it was hard to use, and even harder to look at. OK, now for the show. I
have Internet Explorer installed on my system, but this should work with most cur-
rent browsers. Open the hello.xml file in your browser, and voilà, the following beau-
tifully formatted text should appear:

ProductID,ProductName,SupplierID,Category,UnitPrice,Available
"1","Chai","652","Beverages","$18.00","Yes"
"2","Chang","9874","Beverages","$19.00","No"
"3","Aniseed Syrup","9874","Condiments","On Sale","Yes"

Now that’s more like it. XML and XSLT together have made this advance in data
technology possible. (I did cheat a little in this example. You will notice the

entries in the XSLT script that don’t appear in the final output. I added these just to
make it look right in your browser.) But seriously, although I was able to generate a
comma-separated data set with XSLT, more common tasks for XSLT include gener-
ating nicely formatted HTML based on XML data, or generating a new XML docu-
ment with a specific alternative view of the original data. How does it work?
Basically, the <xsl:template> elements tell the parser to look for tags in the XML
document that match some pattern (such as “supplier”). When it finds a match, it
applies everything inside the <xsl:template> tags to that matching XML tag and its
contents. The pattern specified in the “match” attributes uses an XML technology called
XPath, a system to generically search for matching tags within your XML document.

Sounds confusing? Well, it is, and don’t get me started on how long it took to write
that short little XSLT script. XSLT scripting is, blissfully, beyond the scope of this
book. Of course, tools are available to make the job easier. But XSLT is useful only if
the XML data it manipulates is correct. You could write an XSL Transformation to
report on data inconsistencies found in an XML document, but it won’t work if some
of the tags in your document are misspelled or arranged in an inconsistent manner.
For that, you need another advancement in XML technology: XSD.

XML Schemas
XSD (XML Structure Definitions) lets you define the schema—the “language” or
“vocabulary”—of your particular XML document. Remember, XML is a wide-open
generic standard; you can define the tags any way you want and nobody will care, at
least until you have to process the tags with your software. If they aren’t correct,
your processing will likely fail. XSD lets you define the rules that your XML docu-
ment must follow if it is to be considered a valid document for your purposes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML Content | 369

(DTD, or Document Type Definition, is a similar, though older, technology. It’s
widely support by XML tools, but it is not as flexible as XSD. There are also other
schema definition languages similar to XSD, but since XSD is built right into .NET,
we’ll focus on that.)

XSD schemas are every bit as endearing as XSLT scripts. Let’s create an XSD for our
original sample <productList> XML listed previously. First, we need to change the
top of the XML to let it know that an XSD schema file is available. Change this:

<?xml version="1.0"?>
<productList>

to this:

<?xml version="1.0"?>
<productList xmlns="SimpleProductList"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="hello.xsd">

These directives tell the XML parser to look in hello.xsd for the schema. They also
define a namespace; more on that later. The hello.xsd file contains the following
schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="SimpleProductList">
 <xs:element name="productList" type="ProductListType"/>

 <xs:complexType name="ProductListType">
 <xs:sequence>
 <xs:element name="supplier" type="SupplierType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="SupplierType">
 <xs:sequence>
 <xs:element name="product" type="ProductType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:integer"/>
 <xs:attribute name="fullName" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="ProductType">
 <xs:sequence>
 <xs:element name="productName" type="xs:string"/>
 <xs:element name="category" type="xs:string"/>
 <xs:element name="unitPrice" type="xs:decimal"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:integer"/>
 <xs:attribute name="available" type="YesOrNoType"/>
 <xs:attribute name="onSale" type="xs:boolean"/>
 </xs:complexType>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

370 | Chapter 13: XML

 <xs:simpleType name="YesOrNoType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Yes"/>
 <xs:enumeration value="No"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

It looks nasty, doesn’t it? Actually, it’s more straightforward than XSLT. Basically,
the schema says that for each element (or “tag” or “node”) in my XML document,
here are the subelements and attributes they contain, and the data type of each of
them. You can even create your own pseudodata types (actually, limiting factors on
existing data types), as I did with the YesOrNoType data type, which limits the related
value to the strings Yes and No.

You can look at the XML file with the attached XSD schema in your browser, but it
wouldn’t be all that interesting. It just shows you the XML. But schemas will be use-
ful when you need to assess the quality of XML data coming into your software
applications from external sources.

XML Namespaces
The product list XML shown earlier is nice, but someone else could come up with a
product list document that is just as nice, but with different naming and formatting
rules. For instance, someone might create a document that looks like this:

<?xml version="1.0"?>
<allProducts>
 <vendor ID="652" vendorName="Beverages R Us">
 <item ID="1" available="Yes">
 <itemName>Chai</itemName>
 <group>Beverages</group>
 <priceEach>18.00</priceEach>
 </item>
 </vendor>
</allProducts>

All of the data is the same, but the tags are different. Such a document would be
incompatible with software written to work with our original document. Running
the document through our XSD would quickly tell us that we have a bogus data set,
but it would be nicer if something told us that from the start. Enter namespaces.
Namespaces provide a convenient method to say, “This particular tag in the XML
document uses this XSD-defined language.” Notice the start of the XSD schema
shown previously:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

This line sets up a namespace named xs by using the xmlns attribute. (The :xs part
tells XML what you want to call your namespace.) The value of the attribute is a Uni-
form Resource Identifier (URI), just a unique value that you are sure no one else is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using XML in .NET: The Old Way | 371

going to use. Typically, you use a web site address for your own company; the web
site doesn’t have to exist. You could even put your phone number there, just as long
as it is unique.

The most common way to use a namespace is to prefix the relevant tags in your XML
document with the new namespace name, as in “xs:schema” instead of just “schema.”
This tells the parser, “If you are checking my syntax against an XSD schema, use the
one that I defined for the xs namespace.” You can also use a “default” namespace for
a given element and all its descendants by including the xmlns attribute in the outer-
most element. Then all elements within that outermost element will use the speci-
fied namespace. I used this method in one of the preceding examples:

<productList xmlns="SimpleProductList"...

For basic XML files that will only be used by your program, you may not need to
bother with namespaces. They really come in handy when you are creating XML
data that uses some publicly published standard. There are also instances where a
single XML file might contain data related to two or more distinct uses of XML. In
this case, different parts of your XML file could refer to different namespaces.

As with other parts of the XML world, XSD and namespaces are not all that easy to
use, but they are flexible and powerful. As usual, there are tools, including tools in
Visual Studio, which let you build all of this without having to think about the
details.

As I keep saying, XML is just data, and if your program and data don’t understand each
other, you might as well go back to chisel and stone. XML and its related technologies
provide a method to help ensure that your data is ready to use in your application.

Using XML in .NET: The Old Way
Visual Basic includes two primary methods for working with XML content: the old
way and the new way. The old way uses classes from the System.Xml namespace, and
provides traditional object-based access to XML tags, attributes, and data. The new
way, introduced in the 2008 release, uses classes in the System.Xml.Linq namespace,
and provides access to XML content directly within the syntax of Visual Basic source
code. I’ll discuss both methods in this chapter, starting with the old way.

Since XML is no fun to manage as a big chunk of text, .NET includes several classes
that manage XML data. All of these tools appear in the System.Xml namespace and its
subordinate namespaces:

System.Xml
The main collection of old-way XML-related classes.

System.Xml.Linq
Classes that integrate XML with LINQ technologies. This is the new way that
I’m going to talk about later.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

372 | Chapter 13: XML

System.Xml.Schema
Classes that create and use XSD schemas.

System.Xml.Serialization
Classes that read and write XML documents via a standard .NET stream.

System.Xml.XPath
Classes that implement the XPath technology used to search XML documents.

System.Xml.Xsl
Classes that enable XSL Transformations.

The features included in each class tie pretty closely to the structure of XML and
related technologies such as XSD and XSLT.

The Basic XML Classes, Basically
The System.Xml namespace includes the most basic classes you will use to manage XML
data. An XmlDocument object is the in-memory view of your actual XML document:

Dim myData As New System.Xml.XmlDocument

Your document is made up of declarations (that <?xml...?> thing at the top), data
elements (all the specific tags in your document), attributes (inside each starting ele-
ment tag), and comments. These are represented by the XmlDeclaration, XmlElement,
XmlAttribute, and XmlComment classes, respectively. Together, these four main units of
your document are called nodes, represented generically by the XmlNode class. (The
four specific classes all inherit from the more basic XmlNode class.) When you build
an XML document by hand in memory, you use the individual classes such as
XmlElement. Later on, when you need to scan through an existing document, it is eas-
ier to use the generic XmlNode class.

Let’s build a subset of our sample XML product data.

<?xml version="1.0"?>
<productList>
 <!-- We currently sell these items. -->
 <supplier ID="652" fullName="Beverages R Us">
 <product ID="1" available="Yes">
 <productName>Chai</productName>
 <category>Beverages</category>
 <unitPrice>18.00</unitPrice>
 </product>
 </supplier>
</productList>

Declare all the variables you will use, and then use them.

Dim products As XmlDocument
Dim prodDeclare As XmlDeclaration
Dim rootSet As XmlElement
Dim supplier As XmlElement
Dim product As XmlElement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using XML in .NET: The Old Way | 373

Dim productValue As XmlElement
Dim comment As XmlComment

' ----- Create the document with a valid declaration.
products = New XmlDocument
prodDeclare = products.CreateXmlDeclaration("1.0", _
 Nothing, String.Empty)
products.InsertBefore(prodDeclare, products.DocumentElement)

' ----- Create the root element, <productList>.
rootSet = products.CreateElement("productList")
products.InsertAfter(rootSet, prodDeclare)

' ----- Add a nice comment.
comment = products.CreateComment(_
 " We currently sell these items. ")
rootSet.AppendChild(comment)

' ------ Create the supplier element, <supplier>.
' Include the attributes.
supplier = products.CreateElement("supplier")
supplier.SetAttribute("ID", "652")
supplier.SetAttribute("fullName", "Beverages R Us")
rootSet.AppendChild(supplier)

' ----- Create the product element, <product>, with the
' subordinate data values.
product = products.CreateElement("product")
product.SetAttribute("ID", "1")
product.SetAttribute("available", "yes")
supplier.AppendChild(product)

productValue = products.CreateElement("productName")
productValue.InnerText = "Chai"
product.AppendChild(productValue)

productValue = products.CreateElement("category")
productValue.InnerText = "Beverages"
product.AppendChild(productValue)

productValue = products.CreateElement("unitPrice")
productValue.InnerText = "18.00"
product.AppendChild(productValue)

It really works, too. To prove it, put this code in the Click event of a button, and end
it with the following line:

products.Save("c:\products.xml")

Run the program and view the c:\products.xml file to see the XML product data.
There are many different ways to use the XML classes to create an XML document in
memory. For instance, although I used the SetAttribute method to add attributes to
the supplier and product nodes, I could have created separate attribute objects, and
appended them onto these nodes, just like I did for the main elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

374 | Chapter 13: XML

Dim attrData As XmlAttribute
attrData = products.CreateAttribute("ID")
attrData.Value = "652"
supplier.SetAttributeNode(attrData)

So, this is nice and all, but what if you already have some XML in a file, and you just
want to load it into an XmlDocument object? Simply use the XmlDocument object’s Load
method.

Dim products As XmlDocument
products = New XmlDocument
products.Load("c:\products.xml")

For those instances where you just want to read or write some XML from or to a file,
and you don’t care much about manipulating it in memory, the XmlTextReader and
XmlTextWriter classes let you quickly read and write XML data via a text stream. But
if you are going to do things with the XML data in your program, the Load and Save
methods of the XmlDocument object are a better choice.

Finding Needles and Haystacks
In our sample data, all of the products appear in supplier groups. If we just want a
list of products, regardless of supplier, we ask the XmlDocument object to supply that
data via an XmlNodeList object.

Dim justProducts As XmlNodeList
Dim oneProduct As XmlNode

' ----- First, get the list.
justProducts = products.GetElementsByTagName("product")

' ----- Then do something with them.
For Each oneProduct In justProducts
 ' ----- Put interesting code here.
Next oneProduct
MsgBox("Processed " & justProducts.Count.ToString() & _
 " product(s).")

For a more complex selection of nodes within the document, the System.Xml.XPath
namespace implements the XPath searching language, which gives you increased
flexibility in locating items. The Visual Studio documentation describes the methods
and searching syntax used with these classes.

Schema Verification
An XmlDocument object can hold any type of random yet valid XML content, but you
can also verify the document against an XSD schema. If your XML document refers
to an XSD schema, includes a DTD, or uses XDR (XML Data Reduced schemas, sim-
ilar to XSD), an XmlReader, when configured with the appropriate XmlReaderSettings,
will properly compare your XML data against the defined rules, and throw an excep-
tion if there’s a problem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using XML in .NET: The New Way | 375

Dim products As New XmlDocument
Dim xmlRead As XmlTextReader
Dim withVerify As New XmlReaderSettings
Dim xmlReadGood As XmlReader

' ----- Open the XML file and process schemas
' referenced within the content.
withVerify.ValidationType = ValidationType.Schema
xmlRead = New XmlTextReader("c:\temp\products.xml")
xmlReadGood = XmlReader.Create(xmlRead, withVerify)

' ----- Load content, or throw exception on
' validation failure.
products.Load(xmlReadGood)

' ----- Clean up.
xmlReadGood.Close()
xmlRead.Close()

XML Transformations
XSL Transformations are no more difficult than any of the other manipulations of
XML. Just as there are many ways to get XML source data (from a file, building it by
hand with XmlDocument, etc.), there are many ways to transform the data. If you just
want to go from input file to output file, the following code provides a quick and effi-
cient method. It uses a System.Xml.Xsl.XslCompiledTransform instance to perform the
magic.

' ----- Above: Imports System.Xml.Xsl
Dim xslTrans As XslCompiledTransform

' ----- Open the XSL file as a transformation.
xslTrans = New XslCompiledTransform()
xslTrans.Load("c:\convert.xsl")

' ----- Convert and save the output.
xslTrans.Transform("c:\input.xml", "c:\output.txt")

Using XML in .NET: The New Way
When Visual Basic first came out, no one had even heard of XML. But now it’s
everywhere. It’s like that black oozing stuff that bonds with Peter Parker in Spider-
man 3, but without all the creepy special effects. And now in Visual Basic 2008, XML
is part of the language syntax itself. When will it end?

It turns out that making XML part of the language is pretty cool. In the old-way sec-
tion a few pages ago, I showed you some code that created the XML product list for
“Chai.” The XML content was 11 lines long, but it took nearly 50 lines of source
code to produce it. But you can build that same XML content using the new way in
pretty close to the final 11 lines.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

376 | Chapter 13: XML

Dim chaiItem As System.Xml.Linq.XDocument = _
 <?xml version="1.0"?>
 <productList>
 <!-- We currently sell these items. -->
 <supplier ID="652" fullName="Beverages R Us">
 <product ID="1" available="Yes">
 <productName>Chai</productName>
 <category>Beverages</category>
 <unitPrice>18.00</unitPrice>
 </product>
 </supplier>
 </productList>

How about that! Except for the first declaration line, the content is identical to the
final XML. The new XML Literals feature makes building XML documents a snap.
The content gets stored in the new XDocument object, part of the System.Xml.Linq
namespace. If you want to store just a section of XML instead of the entire docu-
ment, use the XElement class instead.

Dim productSection As System.Xml.Linq.XElement = _
 <product ID="1" available="Yes">
 <productName>Chai</productName>
 <category>Beverages</category>
 <unitPrice>18.00</unitPrice>
 </product>

If you have type inference enabled in your program (Option Infer On), you don’t even
need to tell Visual Basic whether it’s an XElement or an XDocument.

Dim productSection = _
 <product ID="1" available="Yes">
 <productName>Chai</productName>
 <category>Beverages</category>
 <unitPrice>18.00</unitPrice>
 </product>

Just like the XmlDocument class, the XDocument class includes Load and Save methods to
manage file-based XML.

Embedded XML Expressions
Including XML in your source code is amazing stuff, but it will stay amazing only if
you always sell Chai for $18.00 per unit. Real XML content is usually going to come
from variable data. And despite the XML “Literal” name, XML Literals can include
nonliteral variable content through embedded XML expressions. Whenever you want
to add data from a variable or expression to your XML text, you use the special <%=
and %> symbols to offset your custom data.

Dim productID As Integer = 1
Dim productName As String = "Chai"
Dim productCategory As String = "Beverage"
Dim productPrice As Decimal = 18@
Dim isAvailable As Boolean = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using XML in .NET: The New Way | 377

Dim productSection = _
 <product ID=<%= productID %>
 available=<%= Format(isAvailable, "Yes/No") %>>
 <productName><%= productName %></productName>
 <category><%= productCategory %></category>
 <unitPrice><%= productPrice %></unitPrice>
 </product>

Of course, to generate an entire catalog of products, you’re going to be doing a lot of
typing. In Chapter 17, I’ll introduce some additional ways to embed XML expres-
sions with entire tables of data.

XML Axis Properties
Earlier in the chapter, in “Finding Needles and Haystacks,” I showed you how you
could access specific sections of old-style XML documents. The new-style XML
objects also include ways to scan and access portions of the XML tree. These are called
XML axis properties, and they come bundled up in three syntax-friendly varieties:

Child-member axis
You can access an immediate child tag of any XElement by using the child’s name as
a member of the parent object, enclosing the child’s name in a set of angle brackets:

childElement = parentElement.<childName>

Descendent-member axis
A variation of the child-member axis syntax lets you access named members at
any depth within a parent element. Instead of using just a single dot (.) between
the parent and child names, use three dots:

setOfElements = parentElement...<descendentName>

Attribute axis
Access any attribute of an element by treating the attribute name as a member
name, prefixing the attribute name with the @ character:

attributeValue = parentElement.@attributeName

The following block of code scans through the product list we designed early in the
chapter, displaying the ID number and name of each product on the console:

For Each oneProduct In allProducts...<product>
 Console.WriteLine(oneProduct.@ID & ": " & _
 oneProduct.<productName>.Value)
Next oneProduct

This code uses all three axis styles. The For Each...Next loop scans through all
matching <product> entries by using a descendent-member axis. In each matching
product element, the code accesses the ID attribute using an attribute axis, and gets
the name of the product using a child-member axis, along with the Value property of
the returned child element. The output looks like this:

1: Chai
2: Chang
3: Aniseed Syrup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

378 | Chapter 13: XML

For more advanced ways of scanning through XML content and selecting child ele-
ments based on complex criteria, see Chapter 17.

Namespaces and Schemas for XML Literals
As with the old way of managing XML, the new way lets you include namespaces in
your XML content. To add an XML namespace prefix, simply include it in the con-
tent as you would in any other XML scenario.

Dim foodItems = _
 <?xml version="1.0"?>
 <menu:items xmlns:menu="http://www.timaki.com/menu">
 <menu:item>
 <menu:name>Pizza</menu:name>
 <menu:price>12.99</menu:price>
 </menu:item>
 <menu:item>
 <menu:name>Breadsticks</menu:name>
 <menu:price>1.99</menu:price>
 </menu:item>
 </menu:items>

You can also define the namespace, the xmlns part, by using a variation of the Visual
Basic Imports statement.

Imports <xmlns:menu="http://www.timaki.com/menu">
...later...
Dim foodItems = _
 <?xml version="1.0"?>
 <menu:items>
 ...and so on...

Visual Basic will still insert the xmlns definition at the right place in the XML con-
tent. It’s actually stored as a distinct XNamespace object within the XDocument or
XElement. To generate an XNamespace object for your own use, Visual Basic includes a
new GetXmlNamespace function.

Dim justTheNamespace = GetXmlNamespace(menu)

Summary
There are a lot of useful features in the various System.Xml namespaces, and you can
manage complex data in very effective ways. It’s not always the most efficient way to
manage data, but if you have structured hierarchical data, it may be the most direct
and clearest method.

Although XML lurks everywhere in the .NET Framework, and in all applications
written using .NET, you could actually write large and interesting applications without

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 379

looking at a single line of XML content. Even if your application needs to interact with
XML content, the new XML features included in Visual Basic make managing XML
as easy as typing the content directly into Notepad. Wait a minute, that’s not easy or
fun. But it’s a lot better than piecing the content together through string concatenation.

XML is a very useful and flexible data format that is here to stay. Although it will
always lack the speed of more compact data standards, its benefits are numerous.
There has been talk of introducing a “binary XML” format as a standard, although
nothing concrete has come of it yet. If binary XML does become a standard, you will
likely continue to use the same classes and methods introduced in this chapter, with
the possible addition of an OutputFormat (“Text” or “Binary”) property.

Project
The administrator of the Library system will want to see statistics and information at
a glance, or run various reports that provide meaningful summary or detail views of
system data. Although as a programmer I could try to add every conceivable type of
report that the user may need, I have learned from experience that this is not possi-
ble. Users always want the moon, usually in the form of some weird esoteric report
that I know they will use once and never look at again (although they will call once
a year asking for the same report to be written again). I don’t like recompiling and
rereleasing the entire application every time a user needs a new report. Instead, I
keep the reports outside the application, stored as separate programs. Then, from
one form in the main application, I make all of those external reports available in a
nice convenient list.

To implement this generic feature, I use a report configuration file, a simple XML file
that contains information on the available reports, and how to run them. I want my
selection list to have indented items so that I can visibly group reports for conve-
nience. To do this, I will make my XML file into an unlimited depth hierarchy, with
each level representing a further level of displayed indent. For instance, let’s say I
wanted the following outline of reports (with report group titles in bold):

 Detail Reports

 Daily Report

 Monthly Reports

 Monthly Value

 Monthly Inventory

 Summary Reports

 Inventory Summary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

380 | Chapter 13: XML

The XML configuration would follow this structure:

<Group name="Detail Reports">
 <Item name="Daily Report"/>
 <Group name="Monthly Reports">
 <Item name="Monthly Value"/>
 <Item name="Monthly Inventory"/>
 </Group>
</Group>
<Group name="SummaryReports">
 <Item name="Inventory Summary"/>
</Group>

Of course, this is greatly simplified (not to mention noncompliant) XML. In addi-
tion to the hierarchy, I also want to include support for a variety of reporting meth-
ods. To keep things simple, the Library Project will include three types of reports:

Built-in reports
The application includes a limited number of reports that are permanently built
into the main application (assembly). The reports are numbered, starting from 1,
and at this time I have five reports in mind. The designer of the XML configura-
tion file can choose to include these in the display of reports or not by simply
including or not including them in the file. In the absence of a configuration file,
these reports will appear in the list by default. In addition to the report number
(1 to 5), each entry has a display text and a long description.

Application reports
These reports are separate and distinct EXE files, and are started via standard
application initiation methods. Each entry includes a display text, the full path
to the application, optional arguments, a flag to pass the identity of the user ini-
tiating the report, and a long description.

URL reports
These reports are simple calls to web pages, or any other valid URL. For
instance, you could include a report entry that does a “mailto:” to the local orga-
nization’s help desk. Each entry includes the display text, the URL itself, and a
long description.

The project activities in this chapter involve both coding and documentation of the
new external resource (the XML file format).

PROJECT ACCESS

Load the Chapter 13 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 13 (After) Code instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 381

Update Technical Documentation
First, let’s add clear documentation on the structure of the XML configuration file.
There is no easy way to communicate the structure of an XML file to an ordinary
user. Although such documentation is a requirement, hopefully the application will
also include a tool to let an administrator build the configuration file. Such a pro-
gram, sadly, is not included in this book’s project. It is left as an exercise for the
reader. (I always wanted to say that.)

Report Configuration File

The library application can be configured to run any number of reports through
the Reports form. The list of available reports is managed through an XML
report configuration file, a file containing “groups” and “items.” All items are
reports, and appear within a group. You can nest groups within groups to any
depth, and the list of reports displayed in the Library program will indent each
subordinate group to help the user see the organization of the reports. There is
no limit to the nesting of groups.

The root element of the XML file must be named <reportList>, and it may con-
tain any number of <reportGroup> and <reportItem> data elements:

• <reportItem>: Represents a single report entry. This entry has one required
attribute, and up to five subordinate data elements depending on the setting of
the attribute:

— type (attribute): Set to one of the following values:

• built-in: Run one of the built-in programs. This type of report uses the
<displayText>, <reportPath>, and <description> data elements.

• program: Runs a separate EXE program. This type of report uses the
<displayText>, <reportPath>, <reportArgs>, <reportFlags>, and
<description> data elements.

• url: Starts a URL, such as a web page or a “mailto” email to a recipient
address. This type of report uses the <displayText>, <reportPath>, and
<description> data elements.

— <displayText>: A short name or description for this report, as it will appear
in the list of report choices. This element is required for all types of reports.

— <reportPath>: The full path, URL, or number of the report, depending on the
type of report. For program (EXE) reports, this is the full UNC or driver letter-
based path to the report, without additional arguments. For built-in reports,
this is a report number, from 1 to 5 (values and their meanings are listed
later in this section). For URL reports, this is the actual URL, as in “http://
mysite.com/myreport.aspx” or “mailto:helpdesk@mysite.com.” This element
is required for all types of reports.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

382 | Chapter 13: XML

— <reportArgs>: For program (EXE) reports, this entry includes any command-
line arguments to be included when running the program. This element is
valid only for program (EXE) reports, and is always optional.

— <reportFlags>: For program (EXE) reports, this entry indicates the optional
flags that should be appended to the application command as arguments. At
this time, the only flag is the U flag. When this element is set to U, the argu-
ment -u userid is appended to the command string (where userid is the
user’s login ID, from the database field UserName.LoginID). This element is
valid only for program (EXE) reports, and is always optional.

— <description>: This is a longer, verbose description of the report, up to
about 200 characters, which will appear on the Report form when the user
selects the report from the list. This description should assist the user in
selecting the right report. This element is valid for all types of reports, but is
always optional.

• <reportGroup>: Represents a category group, used to visibly group and indent
reports in the display list. This element must contain exactly one <displayText>
element, but may contain any number of <reportItem> or <reportGroup> elements:

— <displayText>: A short name or description for this group, as it will appear
in the list of report choices. This element is required.

When using the “built-in” report type, the <reportPath> element is set to one of
the following integer values:

• 1—Items Checked Out Report

• 2—Items Overdue Report

• 3—Items Missing Report

• 4—Fines Owed by Patrons Report

• 5—Library Database Statistics Report

This technical description appears in the Technical Resource Kit document, origi-
nally developed in Chapter 4.

Create Report Entry Class
With .NET’s ability to store whole objects as ListBox items, we can create a custom
class that contains all the information needed to select and run a report from the list
of reports. This class is fairly simple, with nothing but basic public fields, plus an
overridden ToString function, used by the ListBox control to properly display each
list item.

In the Library Project, add a new class file named ReportItem.vb through the Project ➝

Add Class menu command. Add the following enumeration to the file, but add it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 383

outside the Class...End Class boundaries. This enumeration indicates what type of
entry each list item represents.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 1.

Public Enum ReportItemEnum
 ' ----- The type of item in the report select list.
 GroupLabel = 0
 BuiltInCheckedOut = 1
 BuiltInOverdue = 2
 BuiltInMissing = 3
 BuiltInFinesOwed = 4
 BuiltInStatistics = 5
 ExeProgram = 6
 UrlProgram = 7
End Enum

To this same file, add the members of the ReportItem class. This class contains all the
information we need to run reports loaded from the configuration file.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 2.

' ----- Instance of report selection items used
' in the ReportSelect form.
Public ItemType As ReportItemEnum
Public Indent As Integer ' Indent level. Starts with 0.
Public DisplayText As String
Public ReportPath As String ' ExeProgram / UrlProgram only
Public ReportArgs As String ' ExeProgram only
Public Description As String

Public Overrides Function ToString() As String
 ' ----- Display an indented string. Prepend with spaces.
 Return StrDup(Indent * 5, " ") & DisplayText
End Function

Design the Report Form
Librarians and administrators use the Select Report form (see Figure 13-2) to view
reports. The form includes a ListBox control that displays all reports and report
groups, a Run button that starts a report, and a Close button that returns the user to
the main form. A label displays the full description of a report, when available, just
below the ListBox.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

384 | Chapter 13: XML

Add a new form file named ReportSelect.vb through the Project ➝ Add Windows
Form menu command. Add the controls and settings as listed in Table 13-1.

Figure 13-2. The Select Report form

Table 13-1. Controls and settings for the Report form

Control/form Type Settings

LabelReports Label (Name): LabelReports
Location: 8, 8
Text: &Reports

AllReports ListBox (Name): AllReports
Location: 8, 24
Size: 392, 160

LabelDescription Label (Name): LabelDescription
Location: 8, 200
Text: Report Description

FullDescription Label (Name): FullDescription
AutoSize: False
Location: 32, 224
Size: 368, 64
Text: Report not selected.
UseMnemonic: False

ActRun Button (Name): ActRun
DialogResult: None
Location: 232, 304
Size: 80, 24
Text: Run

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 385

Adjust the tab order of the new controls by selecting the form, and then using the
View ➝ Tab Order menu command.

Although the administrator has probably given useful names to each report, the
terseness of each report name may still confuse the user. Each report includes an
optional full description. As the user selects reports from the list, an event handler
updates the FullDescription label just below the main list. Add this event handler
member to the class.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 3.

Private Sub AllReports_SelectedIndexChanged(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles AllReports.SelectedIndexChanged
 ' ----- Display a description of the report, if available.
 Dim reportEntry As Library.ReportItem

 ' ----- Clear any previous description.
 FullDescription.Text = "No report selected."
 If (AllReports.SelectedIndex <> -1) Then
 ' ----- Locate the content and display it.
 reportEntry = CType(AllReports.SelectedItem, _
 Library.ReportItem)
 FullDescription.Text = reportEntry.Description
 End If
End Sub

Populate Reports from Configuration File
The RefreshReportList method loads the data from the report configuration file and
processes the results. Eventually, the location of this file will be recorded in the
application’s configuration file, but we won’t be adding that until a later chapter.

ActClose Button (Name): ActClose
DialogResult: Cancel
Location: 320, 304
Size: 80, 24
Text: Close

ReportSelect Form (Name): ReportSelect
AcceptButton: ActRun
CancelButton: ActClose
ControlBox: False
FormBorderStyle: FixedDialog
StartPosition: CenterScreen
Text: Library Reports

Table 13-1. Controls and settings for the Report form (continued)

Control/form Type Settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

386 | Chapter 13: XML

For now, let’s put in a hardcoded test file location, and mark it for later update. I
opted to use the old-style XML objects for this code because the new-style XML fea-
tures we need to make the code easy to write won’t be introduced until a later chapter.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 4.

Private Sub RefreshReportList()
 ' ----- Load in the list of available reports.
 Dim configFile As String
 Dim configData As Xml.XmlDocument
 Dim reportEntry As ReportItem
 Dim counter As Integer

 On Error GoTo ErrorHandler

 ' ----- Clear the existing list.
 AllReports.Items.Clear()

 ' ----- Get the location of the configuration file.
 ' TODO: Load this from the application's configuration.
 ' For now, just hardcode the value.
 configFile = "c:\ReportConfig.txt"

 ' ----- Load the configuration file.
 If (configFile <> "") Then
 If (System.IO.File.Exists(configFile)) Then
 ' ----- Load in the file.
 configData = New Xml.XmlDocument
 configData.Load(configFile)

 ' ----- Process the configuration file.
 LoadReportGroup(configData.DocumentElement, 0)
 End If
 End If

 ' ----- If the configuration file resulted in no reports
 ' appearing in the list, add the default reports.
 If (AllReports.Items.Count = 0) Then
 For counter = 1 To _
 CInt(ReportItemEnum.BuiltInStatistics)
 ' ----- Build the report entry.
 reportEntry = New ReportItem
 reportEntry.Indent = 0
 reportEntry.ItemType = CType(counter, ReportItemEnum)
 Select Case reportEntry.ItemType
 Case ReportItemEnum.BuiltInCheckedOut
 reportEntry.DisplayText = "Items Checked Out"
 Case ReportItemEnum.BuiltInOverdue
 reportEntry.DisplayText = "Items Overdue"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 387

 Case ReportItemEnum.BuiltInMissing
 reportEntry.DisplayText = "Items Missing"
 Case ReportItemEnum.BuiltInFinesOwed
 reportEntry.DisplayText = "Patron Fines Owed"
 Case ReportItemEnum.BuiltInStatistics
 reportEntry.DisplayText = "Database Statistics"
 End Select

 ' ----- Add the report entry to the list.
 AllReports.Items.Add(reportEntry)
 Next counter
 End If
 Return

ErrorHandler:
 GeneralError("ReportSelect.RefreshReportList", _
 Err.GetException())
 Resume Next
End Sub

Because the report configuration file allows nested report groups to any level, we
need to use a recursive routine to repeatedly descend to each successive level. The
LoadReportGroup routine, called by RefreshReportList, adds all report items and
report groups within a starting report group. It’s initially called from the reference
point of the root <reportList> element. Each time it finds a child <reportGroup> ele-
ment, it calls itself again, but this time starting from the reference point of the child
<reportGroup> element.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 5.

Private Sub LoadReportGroup(ByVal groupNode As Xml.XmlNode, _
 ByVal indentLevel As Integer)
 ' ----- Add the groups and items at this level,
 ' and recurse as needed.
 Dim scanNode As Xml.XmlNode
 Dim detailNode As Xml.XmlNode
 Dim reportEntry As ReportItem

 ' ----- Process each item or group.
 For Each scanNode In groupNode.ChildNodes
 ' ----- Build a content item for the list.
 reportEntry = New ReportItem
 reportEntry.Indent = indentLevel

 ' ----- Get the display name.
 detailNode = scanNode.SelectSingleNode("displayText")
 If (detailNode Is Nothing) Then Continue For
 reportEntry.DisplayText = Trim(detailNode.InnerText)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

388 | Chapter 13: XML

 If (scanNode.Name = "reportGroup") Then
 ' ----- Start a new display group.
 reportEntry.ItemType = ReportItemEnum.GroupLabel
 AllReports.Items.Add(reportEntry)

 ' ----- Recurse to child items.
 LoadReportGroup(scanNode, indentLevel + 1)
 ElseIf (scanNode.Name = "reportItem") Then
 ' ----- This is an item. Record its location.
 detailNode = scanNode.SelectSingleNode("reportPath")
 If Not (detailNode Is Nothing) Then _
 reportEntry.ReportPath = _
 Trim(detailNode.InnerText)

 ' ----- Get any command-line arguments.
 detailNode = scanNode.SelectSingleNode("reportArgs")
 If Not (detailNode Is Nothing) Then _
 reportEntry.ReportArgs = _
 Trim(detailNode.InnerText)

 ' ----- Get any item-specific flags.
 detailNode = scanNode.SelectSingleNode("reportFlags")
 If Not (detailNode Is Nothing) Then
 ' ---- "U" adds "-u loginid" to the command.
 If (InStr(UCase(detailNode.InnerText), "U") > 0) _
 And (LoggedInUserName <> "") Then _
 reportEntry.ReportArgs = _
 Trim(reportEntry.ReportArgs & " -u " & _
 LoggedInUserName)
 End If

 ' ----- Store the full description.
 detailNode = scanNode.SelectSingleNode("description")
 If Not (detailNode Is Nothing) Then _
 reportEntry.Description = _
 Trim(detailNode.InnerText)

 ' ----- So, what type of entry is it?
 If (scanNode.Attributes("type").Value = _
 "built-in") Then
 ' ----- Built-in program. Check for valid ID.
 If (IsNumeric(reportEntry.ReportPath) = False) Or _
 (Val(reportEntry.ReportPath) < 1) Or _
 (Val(reportEntry.ReportPath) > _
 CInt(ReportItemEnum.BuiltInStatistics)) Then _
 Continue For
 reportEntry.ItemType = CType(CInt(_
 reportEntry.ReportPath), ReportItemEnum)
 AllReports.Items.Add(reportEntry)
 ElseIf (scanNode.Attributes("type").Value = _
 "program") Then
 ' ----- EXE program-based report.
 If (reportEntry.ReportPath = "") Then Continue For
 reportEntry.ItemType = ReportItemEnum.ExeProgram

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 389

 AllReports.Items.Add(reportEntry)
 ElseIf (scanNode.Attributes("type").Value = _
 "url") Then
 ' ----- URL-based report.
 If (reportEntry.ReportPath = "") Then Continue For
 reportEntry.ItemType = ReportItemEnum.UrlProgram
 AllReports.Items.Add(reportEntry)
 End If
 End If
 Next scanNode
 Return

ErrorHandler:
 GeneralError("ReportSelect.LoadReportGroup", _
 Err.GetException())
 Resume Next
End Sub

Add the form’s Load event, which loads in the content from the configuration file.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 6.

Private Sub ReportSelect_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Display the list of reports.
 RefreshReportList()
End Sub

Running the Reports
Now that all of the groups and items appear in the list, we have to run the actual
reports. The ActRun button’s Click event handles this duty. For now, we will just add
the framework to support the calling of each report. The built-in reports will be
added in Chapter 21.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 7.

Private Sub ActRun_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActRun.Click
 ' ----- Run the selected report.
 Dim reportEntry As Library.ReportItem

 On Error GoTo ErrorHandler

 ' ----- Make sure a report is selected.
 If (AllReports.SelectedIndex = -1) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

390 | Chapter 13: XML

 MsgBox("Please select a report from the list.", _
 MsgBoxStyle.OKOnly Or MsgBoxStyle.Exclamation, _
 ProgramTitle)
 Return
 End If

 ' ----- Different code for each type of entry.
 reportEntry = CType(AllReports.SelectedItem, _
 Library.ReportItem)
 Me.Cursor = Windows.Forms.Cursors.WaitCursor
 Select Case reportEntry.ItemType
 Case ReportItemEnum.GroupLabel
 ' ----- No report for group entries.
 MsgBox("Please select a report from the list.", _
 MsgBoxStyle.OKOnly Or MsgBoxStyle.Exclamation, _
 ProgramTitle)
 Case ReportItemEnum.BuiltInCheckedOut
 ' ----- Items Checked Out
 ' TODO: Write BasicReportCheckedOut()
 Case ReportItemEnum.BuiltInOverdue
 ' ----- Items Overdue
 ' TODO: Write BasicReportOverdue()
 Case ReportItemEnum.BuiltInMissing
 ' ----- Items Missing
 ' TODO: Write BasicReportMissing()
 Case ReportItemEnum.BuiltInFinesOwed
 ' ----- Fines Owed by Patrons
 ' TODO: Write BasicReportFines()
 Case ReportItemEnum.BuiltInStatistics
 ' ----- Library Database Statistics
 ' TODO: Write BasicReportStatistics()
 Case ReportItemEnum.ExeProgram
 ' ----- Start a program.
 Process.Start("""" & reportEntry.ReportPath & _
 """ " & reportEntry.ReportArgs)
 Case ReportItemEnum.UrlProgram
 ' ----- Start a URL.
 Process.Start(reportEntry.ReportPath)
 End Select
 Me.Cursor = Windows.Forms.Cursors.Default
 Return

ErrorHandler:
 GeneralError("ReportSelect.ActRun_Click", _
 Err.GetException())
 Resume Next
End Sub

For external reports, the event handler calls the Process.Start method. This amaz-
ing method accepts either a standard command-line expression, or any valid URL or
web page address.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 391

Connecting the Select Report Form
To make the reports available to the user, we must enable a link to the report form
from the main form. We included a distinct panel on that form just for printing
reports. The ActDoReports button on that panel triggers a call to the new report selec-
tion form. Create a new event handler for the ActDoReports button and add the fol-
lowing code.

INSERT SNIPPET

Insert Chapter 13, Snippet Item 8.

' ----- Show the reports form.
ReportSelect.ShowDialog()

Now that we have a firm grasp on the world of XML, we’ll let Visual Basic do all the
hard work of manipulating it for application configuration purposes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

392

Chapter 14CHAPTER 14

Application Settings 14

More than seven score years ago, President Abraham Lincoln began his famous Gettys-
burg Address with “Four score and seven years ago...”. Why this poetic reference to
the founding of America 87 years earlier? He could have started the speech with
“Last week, I was talking with members of my cabinet” or even “These three confed-
erate soldiers walked into a bar...”. But he stuck with the decades-old anecdote.

Lincoln understood that his listeners, as humans, had a tie with the past, a fondness
for the familiar, a love of fast sports cars, and a desire to see the stability of a former
era restored. This is how people are. They like peace, not war. They like the status
quo, not change. They like dinner on the table when they return home from a hard
day at the office. They like short lines at the amusement park. They like seeing their
favorite football team win once again.

People like to know that things are configured in a way that makes sense to them, set
up in a way that is familiar and known. They expect this in life, and they expect this
in their software. That’s why Visual Basic includes features that let you maintain
user-specific and application-specific settings, to give the people what they want.

A Short History of Settings
Since that short yet dynamic speech by Lincoln, programmers have sought a conve-
nient way to maintain configurable values in their applications. In the early days of
MS-DOS development, it was a configuration free-for-all; each program provided its
own settings system. Many applications needed no specialized configuration, but
those that did often stored configuration settings together with the application’s
managed data, all in proprietary .dat files.

With the advent of mainstream Windows development, Microsoft introduced file-
based settings management through its application programming interface (API).
The “private profile” API calls (GetPrivateProfileInt, GetPrivateProfileString,
SetPrivateProfileString, and a few others) supplied a standard way to store short
configuration values in an open and easy-to-understand text file format. Microsoft

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Short History of Settings | 393

used these “INI” files (named for their .ini file extension) for its own configuration. A
few of these files still reside in your system’s Windows folder. Here’s the content I
found in my system’s win.ini file:

; for 16-bit app support
[fonts]
[extensions]
[mci extensions]
[files]
[Mail]
MAPI=1
[CDWINSETUP]
AUTOUNLOAD=No
[MSUCE]
Advanced=0
CodePage=Unicode
Font=Arial

The format of an INI file was simple to understand. Each file included named sec-
tions defined within square brackets, as in [fonts]. Each section maintained a set of
key-value pairs in the form “key=value.” The format was simple enough that anyone
could use Notepad to make changes. It wasn’t even that hard for a program to write
its own INI-file management routines, but having them included in the Windows
API made them that much more attractive.

But then came the clutter. With so many programs opting to store their configura-
tion files in a known central location, the Windows folder quickly became the file
equivalent of Grand Central Station at 5:00 p.m. on a Friday. Speed was an issue,
too, since the constant parsing and rewriting of INI files consumed precious CPU
resources.

Microsoft came up with a solution: the registry. This hierarchical database of key-
value pairs cleaned up the filesystem and brought speed improvements to configura-
tion management. It also added new administrator-defined security settings for access to
the registry, and provided support for some limited strongly typed data. But the new
API features weren’t the most intuitive (although Visual Basic did include simple com-
mands, such as GetSetting, that provided limited access to registry keys and values).

The registry threw technology at the configuration values problem, but it wasn’t a
full triumph. With so many vendors stuffing gobs of data in the registry, bloat once
again became an issue. And with the system managing all access to the registry, the
larger the registry, the worse the performance.

.NET’s initial release included application-specific configuration files, a sort-of return to
those days of INI-file yesteryear. In some ways, “app.config” and “web.config” files
were better than INI files since they contained structured XML content. But big
whoop. INI files had structure, and you could update them in Notepad. .NET config
files were notoriously difficult to update, either within a .NET application or exter-
nally in Notepad (due to some weird caching issues). Also, .config files had neither
the security nor the strong data typing available in the registry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

394 | Chapter 14: Application Settings

Configuration settings have been giving programmers at least some level of angst
since Windows first appeared. But a new and improved settings system, first added
to Visual Basic in 2005, seeks to change all that.

Settings in Visual Basic 2008
The settings system in Visual Basic 2008 is a multifile, XML-based, strongly typed,
and easy-to-manage configuration approach. Its file-focused methodology includes
these features and benefits:

• Data is stored in XML format for efficient processing by .NET libraries.
Although it is not free-form text, XML is not overwhelmingly difficult when
manual updates need to be made by mere mortals.

• The data stored in each settings-specific file is strongly typed, reducing errors
from the processing of invalid data.

• Settings are managed on a per-application, per-user, and even per-assembly-
version basis to promote security and reduce conflicts. You can also store multi-
ple sets of settings per application as you require, such as one set of settings per
document opened by your application. (I won’t discuss it in this chapter, but
you can search for “SettingsKey property” in the online help for additional infor-
mation on this feature.)

• Visual Studio includes a user-friendly management tool used to configure set-
tings within an application.

• Visual Basic has its own simple interface to make the use and update of settings
at runtime easier.

But it’s not all fun and games. As a developer, you have to do some of the heavy lifting,
such as coming up with meaningful names for each setting (“MainFormLocation,”
“DatabaseConnection,” etc.), and altering the behavior of your program as needed
based on the stored settings.

The actual settings appear in XML files scattered throughout the filesystem:

• At design time, all the settings you create get stored in a Settings.settings file,
stored in the My Project subdirectory of your source code folder. Here’s the
Settings.settings file as it exists so far in the Library Project:

<?xml version='1.0' encoding='utf-8'?>
<SettingsFile xmlns="http://schemas.microsoft.com/

VisualStudio/2004/01/settings"
 CurrentProfile="(Default)">
 <Profiles>
 <Profile Name="(Default)" />
 </Profiles>
 <Settings />
</SettingsFile>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Settings in Visual Basic 2008 | 395

• At runtime, all user-specific settings appear in a user.config file, typically stored
in C:\Documents and Settings\<user>\Local Settings\Application Data\<company>\
<appdata>\<version>, where <user> is the Windows username, <company> is the
company name recorded in the assembly, <appdata> is a combination of values
that help to differentiate the settings based on use, and <version> is the four-part
version number of the assembly. It seems like a difficult place to store settings,
but it keeps things nice and ordered. (The location of the user.config file is a lit-
tle different if you deploy an application using ClickOnce, a method described in
Chapter 25.)

You’re probably wondering whether this contributes to disk bloat. Yes! Each
time you bump up the version number of your application, .NET creates a new
settings file to go with it. There’s a way to mitigate this somewhat, but with 120
GB hard drives, no one’s really complaining about disk space usage anymore.

• Some settings are application-focused, and apply to all users of the application
on a particular workstation. These are stored in the app.config file that appears
in the same folder as your assembly’s executable. The settings appear in an XML
branch named <applicationSettings> within this file. Application-focused
settings cannot be modified by the application; you must manually update the
app.config file to force a change.

The settings system is a great place to store state, things that you want the program
to remember from the last time it was run, but that shouldn’t be hardcoded into the
source code.

Adding Settings to a Project
The Project Properties window within Visual Studio 2008 provides centralized con-
trol of the settings for an application. The Settings panel of this window, shown in
Figure 14-1, provides access to the application’s custom settings.

To add a setting, type in its Name, select its data Type from the drop-down list,
choose the Scope (User or Application), and enter its Value using whatever value edi-
tor is available for the selected type. The Type list includes many default selections,
including the basic Visual Basic data types, fonts, colors, and drawing-related sizes.
Also included is a “(Connection string)” type that, when selected, enables a Connec-
tion Properties string builder in the Value column.

It’s important that you select the correct type for each stored setting; otherwise, your
workstation will explode. Actually, I think they fixed that in a later beta. It’s really
because all settings are strongly typed. If you set the type to Integer, you won’t be
able to stuff the word None in there as a special flag as you could have done with an
INI file. You can choose any valid .NET type for the data type, although complex
types without their own custom editors will require that you set their value through
code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

396 | Chapter 14: Application Settings

What happens when you add a new setting to your Visual Basic project? Let’s find
out. I’ll add two settings to a new Windows Forms project: an Integer named
WarningLimit, and a System.Drawing.Font named NoticeFont (see Figure 14-2).

As you already know, Visual Studio is just a user-friendly wrapper around .NET
code, and the Settings panel is no different. So, the real changes occur somewhere in
the code, or more correctly, in both code and the related Settings.settings file. If you
“Show All Files” in the Solution Explorer panel, and expand My Project followed by
Settings.settings, you will find that this XML file has its own Visual Basic source code
file, Settings.Designer.vb.

If you open the Settings.Designer.vb file, you find the following partial code:

Namespace My
 Partial Friend NotInheritable Class MySettings
 Inherits Global.System.Configuration. _
 ApplicationSettingsBase

Figure 14-1. The Settings panel with no defined settings

Figure 14-2. The Settings panel with two new settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Settings in Visual Basic 2008 | 397

 <Global.System.Configuration. _
 UserScopedSettingAttribute(), _
 Global.System.Diagnostics. _
 DebuggerNonUserCodeAttribute(), _
 Global.System.Configuration. _
 DefaultSettingValueAttribute("25")> _
 Public Property WarningLimit() As Integer
 Get
 Return CType(Me("WarningLimit"),Integer)
 End Get
 Set
 Me("WarningLimit") = value
 End Set
 End Property

 <Global.System.Configuration. _
 UserScopedSettingAttribute(), _
 Global.System.Diagnostics. _
 DebuggerNonUserCodeAttribute(), _
 Global.System.Configuration. _
 DefaultSettingValueAttribute(_
 "Arial, 14.25pt, style=Bold")> _
 Public Property NoticeFont() _
 As Global.System.Drawing.Font
 Get
 Return CType(Me("NoticeFont"), _
 Global.System.Drawing.Font)
 End Get
 Set
 Me("NoticeFont") = value
 End Set
 End Property
 End Class
End Namespace

I excluded a lot of the extra code. It’s amazing how much code Microsoft loads up in
prewritten attributes, and it’s not really possible to know what goes on inside. I can
guess what the DefaultSettingValueAttribute attribute does for each setting (assigns
the initial default value of the setting), but some of the others are mysteries. Oh well.
Even the ancients didn’t have answers for everything.

But the code that remains is quite clear. Visual Studio generates two properties
within the My.MySettings class, properties named—amazingly enough—
WarningLimit and NoticeFont. Here’s the property entry for NoticeFont:

Public Property NoticeFont() As Global.System.Drawing.Font
 Get
 Return CType(Me("NoticeFont"), _
 Global.System.Drawing.Font)
 End Get
 Set
 Me("NoticeFont") = value
 End Set
End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

398 | Chapter 14: Application Settings

You won’t find any private class members that store the hidden WarningLimit and
NoticeFont values. Instead, somewhere else in this partial class is a default property
(named Item) that gets and sets each defined property value, accessed through
Me("something").

The settings available through this default property are loaded directly from the XML
stored in the Settings.settings file. (This file is compiled into the application; you
don’t have to distribute Settings.settings with the application.) Here’s the content
from that file with our two new configuration values:

<?xml version='1.0' encoding='utf-8'?>
<SettingsFile xmlns="http://schemas.microsoft.com/

VisualStudio/2004/01/settings"
 CurrentProfile="(Default)"
 GeneratedClassNamespace="My"
 GeneratedClassName="MySettings"
 UseMySettingsClassName="true">
 <Profiles />
 <Settings>
 <Setting Name="WarningLimit"
 Type="System.Int32" Scope="User">
 <Value Profile="(Default)">25</Value>
 </Setting>
 <Setting Name="NoticeFont"
 Type="System.Drawing.Font" Scope="User">
 <Value Profile="(Default)">
 Arial, 14.25pt, style=Bold</Value>
 </Setting>
 </Settings>
</SettingsFile>

Each setting contains distinct Name, Type, Scope, and Value attributes or entries,
matching the four columns that appeared in the Visual Studio settings editor.

My.Settings
Visual Basic creates an instance of the My.MySettings class we just saw previously,
and makes it available as My.Settings. As you add settings to your project, they
become strongly typed class members of My.Settings. To access one, simply refer-
ence it directly in your code.

MsgBox("The font for notices is: " & _
 My.Settings.NoticeFont.ToString())

(The output for this code appears in Figure 14-3.) The My.Settings.NoticeFont is an
actual instance of System.Drawing.Font that you can use like any other Font instance.

You can modify the value of any setting scoped as “User,” and have the new value
preserved for your next use of the application (i.e., for the current user’s next use of
the application).

My.Settings.WarningLimit = 30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Settings in Visual Basic 2008 | 399

All changes made to these settings are saved automatically to the user-specific set-
ting files by default. If you don’t want the updates saved automatically, set the My.
Application.SaveMySettingsOnExit flag to False. Then, when you are ready to save
the new settings, use the My.Settings.Save method.

Settings come in three delicious flavors: default, persisted, and current. Default set-
tings are those values defined by the programmer through the Visual Studio settings
editor. Persisted settings include the saved changes to specific settings, and the
default settings for those that have never been altered by the user. Current settings
include any changes made to the settings during the current session, but not yet
saved. You can play with these states using members of the My.Settings object:

• The Save method, as mentioned previously, saves all current settings to a per-
sisted state.

• The Reload method restores any current values with the persisted versions.

• The Reset method wipes out all current and persisted settings, and returns all
configuration entries to their default values.

One of the strangest aspects of settings is that they are version-specific. If you release
your application as version 1.0.0.0, and then later release version 1.1.0.0, each user
will lose all of the previously persisted settings. Actually, they won’t be lost, but they
will be stuck in 1.0.0.0-land. If you always want to have the most up-to-date settings
as modified by the user, you will have to make sure that older settings are
“upgraded” when installing a new version. My.Settings includes an Upgrade method
that does the work for you. But if the user installs a newer version and upgrades the
settings, makes changes to those settings, and then calls Upgrade again, any changes
made since the last upgrade will be lost.

To get around this problem, the code should upgrade settings only when a new ver-
sion appears. The easiest way to do this is to include a setting called something like
SettingsUpgraded and set it to False. Check this flag before calling Upgrade. If it is
still False, it is safe to call Upgrade. Once the code upgrades the settings, change
SettingsUpgraded to True.

Figure 14-3. Be sure to take “notice” of this font

http://lib.ommolketab.ir
http://lib.ommolketab.ir

400 | Chapter 14: Application Settings

If (My.Settings.SettingsUpgraded = False) Then
 My.Settings.Upgrade()
 My.Setttings.SettingsUpgraded = True
End If

This need to upgrade settings whenever even minor version number changes are
made to an assembly seems a bit over the top. But it’s necessary to support .NET’s
goal of side-by-side installation. The user should be able to install two different ver-
sions of your application on the same workstation, and use each one without inter-
ference from the other. Storing version-specific settings helps to achieve this goal.

Bound Settings
Although using and updating your own custom configuration values can be exciting,
even more exciting is that the fields in your Windows Forms and related controls
can interact with the persisted settings automatically. By binding form- and control-
specific properties to the settings system, Visual Basic automatically saves and
restores user-controlled preferences within the user interface.

A typical use for bound settings is to have the application remember where a particu-
lar form appeared on the screen when the program was last run. The form’s Location
property maintains its on-screen position. Recording this value to the settings
requires two steps. First, create a setting of type System.Drawing.Point to hold the
persisted location value. Second, indicate in the form’s properties that its Location
value should persist to the new settings entry.

Perform the first step by adding a new user-scoped System.Drawing.Point setting in
the project properties’ Settings panel. Let’s name it “MainFormPosition,” and leave
the Value field blank for now.

Back in the form editor, select the form object itself, and then access the Properties
panel. Expand the “(ApplicationSettings)” property to locate the “(PropertyBind-
ing)” subproperty. Clicking the “...” button for this entry displays the Application
Settings dialog. This selection process appears in Figure 14-4.

Find the Location entry in the list, and choose “MainFormPosition” for its value.
Now, each time you run the application containing this bound setting, the modified
form will “remember” its previous location.

Summary
As with XML, the .NET settings system is one of those internal, behind-the-scenes,
don’t-let-the-boss-know features that makes your program great to use, but without
all of the whiz-bang showing-off stuff. Personally, I found it a little hard to part with
my precious INI files and all of their simplicity. But the automation attached to the
settings system makes the migration painless.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 401

Project
Of course, we will add settings to the Library Project in this chapter, but we’ll also go
back and start to use some of those settings in code that we previously entered as
hardcoded values.

I really struggled over whether to use application-scoped or user-scoped configura-
tion values for some of the rarely changing settings, such as the database connection
string. I finally decided on the user area so that they could be modified through the
features of the program. Application-scoped settings are read-only and can only be
updated outside the program, so that idea is out. The expectation with application-
scoped settings is that the system administrator will manage them, either by using
Notepad on the XML file, or through some custom administrative tool. Since we
aren’t going to take the time in this book’s project to write a separate administration
tool, we’ll keep everything at the user level and allow modification through the main
Library program.

PROJECT ACCESS

Load the Chapter 14 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 14 (After) Code instead.

Update Technical Documentation
Let’s document the settings used by the application in the project’s Resource Kit.
Add the following content to the Resource Kit word processing file.

Figure 14-4. Bringing up the application settings dialog for a form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

402 | Chapter 14: Application Settings

User settings

The Library Project uses Visual Basic’s settings system to track user-specific state
values maintained between uses of the application. All of these settings are
stored in an XML file in the user’s portion of the C:\Documents and Settings (or
equivalent) directory in a format dictated by .NET. The following is a list of the
settings recognized by the Library program:

DBConnection (String)
A properly formatted connection string that identifies the SQL Server data-
base used by the application. If missing, the application will prompt for the
location of the database on startup.

HelpFile (String)
Indicates the UNC or drive letter-based location of the basic application
online help file, with a .chm extension.

HelpFileAdmin (String)
Indicates the UNC or drive letter-based location of the administrative appli-
cation online help file, with a .chm extension.

HideLogin (Boolean)
Indicates whether the Login button in the upper-right corner of the main
Library form should be hidden from view when in patron (nonadministra-
tive) mode. Use True to hide the button or False to show the button. If this
field is missing, False is assumed.

MainFormPosition (System.Drawing.Point)
The position of the upper-left corner of the main Library form. This value is
updated each time the application closes.

ReceiptPostlude (String)
Any raw character data to send to the receipt printer at the end of each
ticket. This text may include the following special characters:

\n
A newline character (ASCII 10)

\r
A carriage return character (ASCII 13)

\e
An escape character (ASCII 27)

\x??
Any ASCII value, where ?? is a two-character hexadecimal code

\\
The backslash character (“\”)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 403

ReceiptPrinter (String)
The UNC pathname to the receipt printer used by this workstation to print
out patron checkout receipts and payment receipts.

ReceiptWidth (Integer)
The width, in characters, of each line on the receipt printer. If missing or
empty, the program uses a default width of 40 characters.

ReportConfig (String)
Indicates the UNC or drive letter-based location of the XML report configu-
ration file. This file has the XML format described in the “Report Configura-
tion File” section of this document. This file indicates the reports available
in the application.

SettingsUpgraded (Boolean)
When upgrading the application from an older release, this flag indicates
whether the settings associated with that older release have already been
upgraded into this new version. It defaults to False for all new releases.

UseReceipts (Boolean)
Indicates whether printed receipts are to be used at this workstation. If this
field is missing, False is assumed.

This technical description appears in the Technical Resource Kit document, origi-
nally developed in Chapter 4 and updated in subsequent chapters. Some of the con-
tent added here refers to features and technical content that won’t be added until
later chapters, so don’t spend too much time thinking about features that you
thought you already forgot.

Add the Settings
Since we know all of the settings we will add to the application, let’s add them now.
Open the project properties window and select the Settings tab. Add each setting to
the application using Table 14-1 as a guide. If a setting in Table 14-1 has no listed
value, leave the Value field blank as well in the settings editor.

Table 14-1. Default settings for the Library Project

Name Type Scope Value

DBConnection String User

HelpFile String User

HelpFileAdmin String User

HideLogin Boolean User False

MainFormPosition System.Drawing.Point User

ReceiptPostlude String User

ReceiptPrinter String User

http://lib.ommolketab.ir
http://lib.ommolketab.ir

404 | Chapter 14: Application Settings

Make sure you type the settings names as listed. The application will not be able to
match up incorrectly spelled names.

Positioning the Main Form
I showed you how to link a form’s or control’s property value to one of the settings
earlier in this chapter, so let’s do it for real in the project. We’ll link the main form’s
Location property to the MainFormPosition setting. Just to refresh your memory, fol-
low these steps to enable the link:

1. Open MainForm.vb in Design view.

2. Make sure the form itself is selected, not one of its subordinate controls.

3. In the Properties panel, expand the “(ApplicationSettings)” property.

4. Select the “(PropertyBinding)” subproperty, and click on the “...” button in its
value area.

5. Locate the Location property in the binding list.

6. Select the MainFormPosition setting for the Location property’s value. It should
be the only setting available since it is the only one we defined as type System.
Drawing.Point.

7. Click the OK button to enable the link.

Caching and Using Settings
Although all the settings are as close as typing “My.Settings.something” in the code,
some settings may initially be undefined, and using them could involve a lot of repet-
itive code that checks for valid settings. To reduce overall code and CPU cycles, we
will cache some of the settings for easy use throughout the application.

Let’s add three more global variables to cache some of the settings. Open the
General.vb module, and add these three new class members.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 1.

ReceiptWidth Integer User 40

ReportConfig String User

SettingsUpgraded Boolean User False

UseReceipts Boolean User False

Table 14-1. Default settings for the Library Project (continued)

Name Type Scope Value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 405

Public MainHelpFile As String
Public MainAdminHelpFile As String
Public FineGraceDays As Integer

Let’s give these variables initial values in the InitializeSystem method, where the
code already initializes some other values. Add the following statements to that rou-
tine in the General module.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 2.

FineGraceDays = -1

' ----- Locate the online help files.
MainHelpFile = My.Settings.HelpFile & ""
MainAdminHelpFile = My.Settings.HelpFileAdmin & ""

In an earlier chapter, we stored some settings in the SystemValue table that apply to
all workstations that connect to the database. Since we’re caching settings anyway,
we should add some code to cache these database-stored values so that we don’t
have to keep opening and closing the database. Add the LoadDatabaseSettings
method to the General module.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 3.

Public Sub LoadDatabaseSettings()
 ' ----- Get some system-level values from
 ' database storage.
 Dim holdText As String

 On Error Resume Next

 ' ----- Get the default location.
 holdText = GetSystemValue("DefaultLocation")
 If (holdText = "") Then holdText = "-1"
 DefaultItemLocation = CInt(holdText)

 ' ----- Get the maximum number of search matches.
 holdText = GetSystemValue("SearchLimit")
 If (holdText = "") Then holdText = "-1"
 SearchMatchLimit = CInt(holdText)

 ' ----- Get the number of days to wait before
 ' charging fines.
 holdText = GetSystemValue("FineGrace")
 If (holdText = "") Then holdText = "-1"
 FineGraceDays = CInt(holdText)
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

406 | Chapter 14: Application Settings

We will call this routine during application startup, just after we open and confirm
the database. Add the following code to the end of the MyApplication_Startup event
handler. If it’s been awhile, remember that this handler is in the ApplicationEvents.vb
file, one of the files normally hidden from view in the Solution Explorer.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 4.

' ----- Load some settings that reside in the database.
LoadDatabaseSettings()

It’s time to actually use a setting. The My.Settings.HideLogin setting indicates
whether the Login button (ActLogin) on the main Library application form should
appear when running in nonadministrator (nonlibrarian) mode. The administrator
can still bring up the login form through the F12 key, even if the button is hidden. In
an environment where the patrons may be unknown, the system will be slightly more
secure if the temptation of a Login button is removed.

The UpdateDisplayForUser routine in the MainForm class includes code for user mode
(LoggedInUserID = –1) and administrator mode (LoggedInUserID <> –1). In the user
mode block (the first block), replace this line:

ActLogin.Visible = True

with the following code:

INSERT SNIPPET

Insert Chapter 14, Snippet Item 5.

' ----- Show or hide the Login button per the settings.
ActLogin.Visible = Not My.Settings.HideLogin

Adding Configuration Forms
It’s time to add the forms that will manage all of the various application settings,
both those stored locally in the user-focused settings file, and the system-wide set-
tings stored in the database. Most of the settings are pretty simple—just basic
strings, numbers, and Boolean flags—so it shouldn’t overwhelm the administrator to
have them all appear on a single form. But before we get to that form, we’ll add a
form that lets us manage the database connection.

I thought about calling up the connection properties dialog that Visual Studio
uses to establish connection strings. I’m sure it’s possible, but it provides way
more flexibility than we need in this project. For instance, it supports the configu-
ration of non-SQL Server databases, which is of no interest to the Library Project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 407

Instead, we’ll design a simpler form that collects only those data values that we need to
build the Library connection string. The LocateDatabase form appears in Figure 14-5.

I’ve already added the form and its controls to the project. Open the LocateDatabase.vb
file to see the form. Four of the fields on this form are basic text entry fields (one
with a password mask character). The fifth entry field, Authentication, lets the user
select between Microsoft Windows authentication and SQL Server authentication.

Most of the form’s code parallels what we’ve seen in many of the other forms already
in the application. Go ahead and add in all of the form’s code now.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 6.

The significant work in this form occurs in the Load event when the existing connec-
tion string is parsed out into distinct data entry fields, and in the PromptUser routine
where the parts are put back together.

There are many different ways you could chop up the connection string into its base
parts. I took the basic divide-and-conquer approach, extracting out each semicolon-
and equals sign-separated component. Here’s the main block of code from the Load
event handler that does the chopping and extracting:

' ----- Load in the existing data.
connectionString = My.Settings.DBConnection & ""
For counter = 1 To CountSubStr(connectionString, ";") + 1
 ' ----- Each comma-delimited part has the format
 ' "key=value".
 oneKey = GetSubStr(connectionString, ";", counter)
 oneValue = Trim(GetSubStr(oneKey, "=", 2))
 oneKey = Replace(UCase(Trim(GetSubStr(_
 oneKey, "=", 1))), " ", "")

Figure 14-5. The new “Locate Database” form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

408 | Chapter 14: Application Settings

 ' ----- Process each part.
 Select Case oneKey
 Case "DATASOURCE"
 ' ----- Show the server host.
 RecordServer.Text = oneValue
 Case "INITIALCATALOG"
 ' ----- Show the default database name.
 RecordDatabase.Text = oneValue
 Case "INTEGRATEDSECURITY"
 ' ----- Only check for "true". False is assumed.
 If (UCase(oneValue) = "TRUE") Then _
 RecordAuthentication.SelectedIndex = _
 RecordAuthentication.Items.IndexOf(_
 AuthenticationTypeWindows)
 Case "USERID"
 ' ----- A user ID forces SQL authentication.
 RecordAuthentication.SelectedIndex = _
 RecordAuthentication.Items.IndexOf(_
 AuthenticationTypeSQL)
 RecordUser.Text = oneValue
 Case "PASSWORD"
 ' ----- A password forces SQL authentication.
 RecordAuthentication.SelectedIndex = _
 RecordAuthentication.Items.IndexOf(_
 AuthenticationTypeSQL)
 RecordPassword.Text = oneValue
 End Select
Next counter

Putting the parts together is less complicated. Here’s the needed string concatena-
tion code found in the PromptUser routine:

newConnection = "Data Source=" & Trim(RecordServer.Text) & _
 ";Initial Catalog=" & Trim(RecordDatabase.Text)
If (CInt(CType(RecordAuthentication.SelectedItem, _
 ListItemData)) = AuthenticationTypeWindows) Then
 ' ----- Use Windows security.
 newConnection &= ";Integrated Security=true"
Else
 ' ----- Use SQL Server security.
 newConnection &= ";User ID=" & Trim(RecordUser.Text) & _
 ";Password=" & Trim(RecordPassword.Text)
End If

Although the LocateDatabase form does all of the parsing and building of the connec-
tion string, it doesn’t actually update the saved setting. Instead, it returns the newly
built connection string, and depends on the calling code to save it.

Now, back to our single-form configuration editor, Maintenance.vb. This form
does all of the direct modification of the values in both the database and the local
My.Settings items. Figures 14-6 and 14-7 show the two main panels of the Mainte-
nance form. The centralized settings stored in the database are “system-wide,” and
the “workstation-specific” values are those accessed through My.Settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 409

This form begins its work in its Load event handler, Maintenance_Load. This routine
sets up the choices in some drop-down fields, including a list of fonts. The code
loops through the collection of installed fonts made available through the GDI+
object System.Drawing.Text.InstalledFontCollection.

Dim allFonts As New _
 System.Drawing.Text.InstalledFontCollection
RecordFontName.Items.Add(New ListItemData(_
 "<Not Selected>", -1))
For counter = 0 To allFonts.Families.Length - 1
 RecordFontName.Items.Add(New ListItemData(_
 allFonts.Families(counter).Name, counter))
Next counter

The routine also includes similar code to load a list of installed printers.

For Each installedPrinter As String In _
 PrinterSettings.InstalledPrinters
 RecordPrinterLocation.Items.Add(installedPrinter)
Next installedPrinter

Once everything is set up, the PopulateCurrentValues procedure completes the ini-
tialization. Its code retrieves all the current values from both the database and the

Figure 14-6. The new “Maintenance” form showing the “System-Wide” panel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

410 | Chapter 14: Application Settings

My.Settings object, and stores those values in the various on-screen data entry
fields. I’ve already added the database-specific code. Go ahead and add in the settings-
specific code.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 7.

LibraryConnection = My.Settings.DBConnection & ""
RecordDBLocation.Text = GetDBDisplayText(LibraryConnection)
RecordConfigLocation.Text = My.Settings.ReportConfig & ""
RecordBasicHelp.Text = My.Settings.HelpFile & ""
RecordAdminHelp.Text = My.Settings.HelpFileAdmin & ""
EnableReceipts.Checked = My.Settings.UseReceipts
RecordPrinterLocation.Text = My.Settings.ReceiptPrinter & ""
RecordPrinterWidth.Text = CStr(My.Settings.ReceiptWidth)
RecordPostlude.Text = My.Settings.ReceiptPostlude & ""
HideLogin.Checked = My.Settings.HideLogin

Figure 14-7. The new “Maintenance” form showing the “Workstation-Specific” panel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 411

Most of the code in this form deals with basic user interaction while the form is in
use. For example, the ActDBLocation_Click event handler displays the LocateDatabase
form we added earlier. Add the relevant source code to that event handler.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 8.

' ----- Prompt for the database connection details.
Dim newConnection As String

' ----- Prompt the user for the new setting.
newConnection = LocateDatabase.PromptUser()
If (newConnection = "") Then Return

' ----- Store the new value.
LibraryConnection = newConnection
RecordDBLocation.Text = GetDBDisplayText(LibraryConnection)

Several of the settings specify the locations of files used by the application, such as
the online help files. The user can type in the path to the file directly, or use the
Open File dialog to locate the file visually. To display this dialog, I’ve added an
OpenFileDialog control named LocateFile. Using it is a matter of setting the various
file-specific properties and calling the ShowDialog method. Here’s some of the code
already included in the ActBasicHelp_Click event handler used to locate the non-
administrative online help file:

' ----- Set up the file structure.
LocateFile.DefaultExt = "chm"
LocateFile.FileName = RecordBasicHelp.Text
LocateFile.Filter = "Help Files (*.chm)|*.chm|" & _
 "All Files (*.*)|*.*"
LocateFile.FilterIndex = 1
LocateFile.Title = "Locate Help"

' ----- Prompt the user.
If (LocateFile.ShowDialog() <> _
 Windows.Forms.DialogResult.OK) Then Return

' ----- Save the file path.
RecordBasicHelp.Text = LocateFile.FileName

Once the user has made the various setting changes, a click on the OK button saves
each new setting to its storage area. I’ve included the database-focused saving code in
the SaveFormData routine. I’ll let you add the settings-focused code, near the end of
that routine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

412 | Chapter 14: Application Settings

INSERT SNIPPET

Insert Chapter 14, Snippet Item 9.

My.Settings.DBConnection = LibraryConnection
My.Settings.ReportConfig = Trim(RecordConfigLocation.Text)
My.Settings.HelpFile = Trim(RecordBasicHelp.Text)
My.Settings.HelpFileAdmin = Trim(RecordAdminHelp.Text)
My.Settings.HideLogin = HideLogin.Checked
My.Settings.UseReceipts = EnableReceipts.Checked
My.Settings.ReceiptPrinter = Trim(RecordPrinterLocation.Text)
My.Settings.ReceiptPostlude = RecordPostlude.Text

' ----- Save the receipt printer width.
If (Trim(RecordPrinterWidth.Text) = "") Then
 My.Settings.ReceiptWidth = DefaultReceiptPrinterWidth
Else
 My.Settings.ReceiptWidth = CInt(RecordPrinterWidth.Text)
End If

Although the Maintenance form provides a user-friendly interface to the database-
stored settings, you probably remember that we already wrote code to update
SystemValue table records through the SystemValue.vb file. In Chapter 12, we con-
nected that form to the main form, but we’re going to alter that logic. First, we’ll add
the call to the SystemValue form to the Maintenance form’s ActAllValues_Click event
handler.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 10.

' ----- Let the user edit the list of system values.
Dim RecordsForm As Library.ListEditRecords

' ----- Edit the records.
RecordsForm = New Library.ListEditRecords
RecordsForm.ManageRecords(New Library.SystemValue)
RecordsForm = Nothing

' ----- Refresh the display elements.
PopulateCurrentValues()

Then we’ll change the AdminLinkValues_LinkClicked event handler back in
MainForm.vb. Currently, it calls the SystemValue editor directly. Replace that part of
the LinkClicked handler’s code with code that calls the Maintenance form instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 413

INSERT SNIPPET

Insert Chapter 14, Snippet Item 11.

' ----- Access the maintenance portion of the program.
Maintenance.ShowDialog()

Connecting to the Configured Database
The last change in this chapter uses the configured connection string to establish the
connection to the database. When we originally wrote the ConnectDatabase routine in
the General module, we added a hardcoded connection string just to get the pro-
gram working.

' ----- Build the connection string.
' !!! WARNING: Hardcoded for now.
connectionString = "Data Source=MYSYSTEM\SQLEXPRESS;" & _
 "Initial Catalog=Library;Integrated Security=true"

Now that we have a user-configured connection string available, we will use that
instead. The changes we must make to this routine are somewhat extensive, so just
replace the function’s existing content with the updated code.

INSERT SNIPPET

Insert Chapter 14, Snippet Item 12.

' ----- Connect to the database. Return True on success.
Dim connectionString As String
Dim configChanged As Boolean

' ----- Initialize.
HoldTransaction = Nothing
configChanged = False

' ----- Obtain the connection string.
If (Trim(My.Settings.DBConnection & "") = "") Then
 ' ----- Inform the user about the need to configure
 ' the database.
 If (MsgBox("This copy of the application has not " & _
 "been configured to connect to the library " & _
 "database. If you know the database settings, " & _
 "you can configure it now. Would you like to " & _
 "proceed?", MsgBoxStyle.YesNo Or _
 MsgBoxStyle.Question, ProgramTitle) _
 <> MsgBoxResult.Yes) Then Return False

http://lib.ommolketab.ir
http://lib.ommolketab.ir

414 | Chapter 14: Application Settings

 ' ----- Prompt for the new connection details.
 connectionString = LocateDatabase.PromptUser()
 If (connectionString = "") Then Return False
 configChanged = True
Else
 connectionString = My.Settings.DBConnection
End If

TryConnectingAgain:

' ----- Attempt to open the database.
Try
 LibraryDB = New SqlClient.SqlConnection(connectionString)
 LibraryDB.Open()
Catch ex As Exception
 ' ----- Some database failure.
 GeneralError("ConnectDatabase", ex)

 ' ----- Perhaps it is just a configuration issue.
 If (MsgBox("The connection to the database may " & _
 "have failed due to invalid configuration " & _
 "settings. Would you like to change the " & _
 "database configuration at this time?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 ProgramTitle) <> MsgBoxResult.Yes) Then Return False

 ' ----- Prompt for new details.
 connectionString = LocateDatabase.PromptUser()
 If (connectionString = "") Then Return False
 configChanged = True
 GoTo TryConnectingAgain
End Try

' ----- Save the udpated configuration if needed.
If (configChanged = True) Then _
 My.Settings.DBConnection = connectionString

' ----- Success.
Return True

The basic gist of the code involves setting the connectionString variable to the per-
sisted connection string, and using that to open the LibraryDB object. The new code
obtains the connection string from My.Settings.DBConnection. If for any reason the
connection string is missing or fails to generate an open database connection, the
user is prompted to supply or correct the connection string through our new
LocateDatabase form.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 415

The program is back to a condition where you can run it. The first time you run the
program, it will prompt you to supply the database connection information. The val-
ues you supply will match the hardcoded version that used to be in the
ConnectDatabase routine:

• Set Server/Host to “MYSERVER\SQLEXPRESS” or to the name of your actual
SQL Server host.

• Set Database Name to “Library” or any other name you previously assigned to
your library database.

• Set Authentication to “Microsoft Windows” if you use Windows integrated
security. If you need to connect using SQL Server’s security system, set this field
to “SQL Server,” and enter a valid user ID and password.

In the next chapter, we’ll focus on file manipulation techniques. Although we did
update the settings file in this chapter, it was done indirectly through features pro-
vided by the framework. Chapter 15 will discuss more direct approaches to file
manipulation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

416

Chapter 15CHAPTER 15

Files and Directories 15

Software development in the 21st century has really turned programmers into a
bunch of softies (no pun intended). In the old days of computers, developers had to
solder programs into the computer by hand. Complex calculations could take days
to set up, and one misplaced wire meant lead poisoning or worse. The suffering was
real, and older issues of Popular Electronics are riddled with articles by former pro-
grammers who went crazy in their attempt to craft one more ballistics calculation
algorithm.

Life improved tremendously for programmers when John von Neumann and others
suggested that a computer could store internally the logic for an algorithm, and pro-
cess it directly from memory instead of through hard-wired configurations. Engi-
neers were soon putting their programs onto punch cards and paper tapes. The
danger of lead poisoning was quickly replaced by the larger evil of paper cuts.

Punch cards were great—until you dropped your stack that took you hours or days
to assemble. Some programmer somewhere dropped one too many card stacks and
proclaimed, “That’s it! I’m going to invent the hard disk and related technologies
such as IDE and SCSI. Sure I’ll become fabulously wealthy, but at least I won’t have
to deal with these stupid cards anymore.”

And thus was born the filesystem, the structured storage of programs and informa-
tion on a disk surface. Filesystems have been a part of Microsoft technologies since
Bill Gates first wooed IBM. It’s no coincidence that the “DOS” in “MS-DOS” stands
for Disk Operating System. Bill knew how essential filesystems were, and so do you.

In this chapter, we’ll talk about interactions with files and directories, the main units
of storage and organization in the Windows filesystem. We’ll also see some of the
technologies and features .NET provides to manipulate files and their content. Just
make sure you turn the pages carefully; I wouldn’t want you to get a paper cut.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Traditional Visual Basic File Management | 417

Traditional Visual Basic File Management
Visual Basic has included significant file management features since its first release.
In fact, more features in Visual Basic deal with file and directory manipulation than
with pretty much anything else.

Most of the functions that allow you to read and modify file content use a file han-
dle, a numeric identifier that refers to a specific open file. This file handle is gener-
ated with the FreeFile function, and must be obtained before calling any of the
traditional Visual Basic file features.

Dim fileID As Integer
fileID = FreeFile()
FileOpen(fileID, "C:\TestData.txt", OpenMode.Append)
PrintLine(fileID, "Important output to file.")
FileClose(fileID)

File handle-based file manipulation works just fine, but it is so early-’90s. It’s not
really a .NET technology, and is not object-based at all (unless you consider that an
Integer is an object). Therefore, I won’t be covering it in this book, or using it in the
Library Project. Table 15-1 lists the major Visual Basic features that use file handles.
If you need to know about the handle-based features in Visual Basic, or if your work
involves migrating pre-.NET Visual Basic applications, use this table to help you
locate full feature details in the technical documentation supplied with Visual Basic.

Table 15-1. Visual Basic features that use file handles

Feature Description

EOF Returns a Boolean indicating whether the current position in the file is at or past the end
of the file. Use this function to determine when to stop reading existing data from a file.

FileAttr Accesses the file attributes currently set on an open file handle.

FileClose Closes a specific file opened using a file handle.

FileGet Retrieves structured data from a file and stores it in a matching object.

FileGetObject Same as FileGet, but with slightly different data typing support.

FileOpen Opens a file for input or output.

FilePut Writes an object to a file in a structured manner.

FilePutObject Same as FilePut, but with slightly different data typing support.

FileWidth Sets the default line width for formatted text output files.

FreeFile Returns the next available file handle.

Input Retrieves a value previously written to a file using Write or WriteLine.

InputString Retrieves a specific number of characters from an input file.

LineInput Returns a complete line of input from a file.

Loc Returns the current byte or record location in the file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

418 | Chapter 15: Files and Directories

Manipulating Files Through Streams
The .NET Framework includes a new object-oriented approach to reading and writ-
ing files: streams. The abstract Stream object, found at System.IO.Stream, defines a
generic interface to a chunk of data. It doesn’t matter where that data is: in a file, in a
block of memory, in a String variable—if you have a block of data that can be read or
written one byte at a time, you can design a derived stream class to interact with it.

Stream Features
The basic features of a Stream object include the Read and Write methods that let you
read or write bytes. As data is read from or written to a stream, the Stream object
maintains a “current position” within the stream that you can adjust using the Seek
method, or examine using the Position property. The Length property indicates the
size of the readable data. The class also exposes variations of these basic features to
allow as much flexibility as possible.

Not every stream supports all features. Some streams are read-only, forward-only
constructs that don’t support writing or seeking. Other streams support all possible
features. The features available to you depend on the type of stream you use. Since
Stream itself is abstract, you must create an instance of one of its derived classes. .NET
defines several useful streams ready for your use:

FileStream
The FileStream object lets you access the content of a file using the basic meth-
ods of the generic Stream class. FileStream objects support reading, writing, and
seeking, although if you open a read-only file, you won’t be able to write to it.

Lock Locks a file or specific records in a file so that others cannot make changes.

LOF Returns the length of an open file, in bytes.

Print Sends text output to a file.

PrintLine Sends text output to a file, ending it with a line terminator.

Reset Closes all files currently opened with file handles.

Seek Gets or sets the current position in a file.

SPC This function helps format text for output to columnar text files.

TAB This function helps format text for output to columnar text files.

Unlock Removes locks previously set with Lock.

Write Writes data to a file using a consistent format that can be easily read later.

WriteLine Same as Write, but ends the output with a line terminator.

Table 15-1. Visual Basic features that use file handles (continued)

Feature Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Manipulating Files Through Streams | 419

MemoryStream
A stream based on a block of raw memory. You can create a memory stream of
any size, and use it to temporarily store and retrieve any data.

NetworkStream
This class abstracts data coming over a network socket. Whereas most of the
derived stream classes reside in System.IO, this class sits in System.Net.Sockets.

BufferedStream
Adds buffering support to a stream to improve performance on streams with
latency issues. You wrap a BufferedStream object around another stream to use it.

CryptoStream
This stream allows you to attach a cryptographic service provider to it, resulting
in encrypted output from plain input, or vice versa. Chapter 11 includes exam-
ples that use this type of stream.

DeflateStream and GZipStream
Let you use a stream to compress or decompress data as it is processed, all using
standard compression algorithms.

Streams are useful on their own, but you can also combine streams so that an incom-
ing network stream can be immediately encrypted, compressed, and stored in a
block of stream memory.

Using a Stream
Using a stream is simple; first you create it, and then you start reading and writing
bytes left and right. Here’s some sample code I wrote that moves data into and out of
a memory stream. It’s loosely based on the code you’ll find in the MSDN documen-
tation for the MemoryStream class.

' ----- The Stream, or There and Back Again.
Dim position As Integer
Dim memStream As IO.MemoryStream
Dim sourceChars() As Byte
Dim destBytes() As Byte
Dim destChars() As Char
Dim asUnicode As New System.Text.UnicodeEncoding()

' ----- Create a memory stream with room for 100 bytes.
memStream = New IO.MemoryStream(100)

' ----- Convert the text data to a byte array.
sourceChars = asUnicode.GetBytes(_
 "This is a test of the emergency programming system.")

Try
 ' ----- Store the byte-converted data in the stream.
 memStream.Write(sourceChars, 0, sourceChars.Length)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

420 | Chapter 15: Files and Directories

 ' ----- The position is at the end of the written data.
 ' To read it back, we must move the pointer to
 ' the start again.
 memStream.Seek(0, IO.SeekOrigin.Begin)

 ' ----- Read a chunk of the text/bytes at once.
 destBytes = New Byte(CInt(memStream.Length)) {}
 position = memStream.Read(destBytes, 0, 25)

 ' ----- Get the remaining data one byte at a time,
 ' just for fun.
 While (position < memStream.Length)
 destBytes(position) = CByte(memStream.ReadByte())
 position += 1
 End While

 ' ----- Convert the byte array back to a set of characters.
 destChars = New Char(asUnicode.GetCharCount(_
 destBytes, 0, position)) {}
 asUnicode.GetDecoder().GetChars(destBytes, 0, _
 position, destChars, 0)

 ' ----- Prove that the text is back.
 MsgBox(destChars)
Finally
 memStream.Close()
End Try

The comments hopefully make the code clear. After creating a memory stream, I
push a block of text into it, and then read it back out. (The text stays in the stream;
reading it did not remove it.) Actually, the stream code is pretty simple. Most of the
code deals with conversions between bytes and characters. If it looks overly involved,
that’s because it is.

Beyond Stream Bytes
For me, all that converting between bytes and characters is for the birds. When I
write business applications, I typically deal in dates, numbers, and strings: customer
names, order dates, payment amounts, and so on. I rarely have a need to work at the
byte level. I sure wish there was a way to send this byte stuff down a programming
stream of its own so that I wouldn’t have to see it anymore.

Lucky me! .NET makes some wishes come true. Although you can manipulate
streams directly if you really want to or need to, the System.IO namespace also
includes several classes that provide a more programmer-friendly buffer between you
and the stream. These classes—implemented as distinct readers and writers of
stream data—provide simplified methods of storing specific data types, and retriev-
ing them back again.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Manipulating Files Through Streams | 421

The readers and writers are designed for single-direction start-to-finish processing of
data. After creating or accessing a stream, you wrap that stream with either a reader
or a writer, and begin traversing the extent of the stream from the beginning. You
always have access to the underlying stream if you need more fine-tuned control at
any point.

There are three main pairs of readers and writers:

BinaryReader and BinaryWriter
These classes make it easy to write and later read the core Visual Basic data types
to and from a (generally) nontext stream. The BinaryWriter.Write method
includes overloads for writing Bytes, Chars, signed and unsigned integers of vari-
ous sizes, Booleans, Decimals and Doubles, Strings, and arrays and blocks of Bytes
and Chars. Curiously missing is an overload for Date values.

The BinaryReader counterpart includes separate Read methods for each of the
writable data types. The ReadDouble method returns a Double value from the
stream, and there are similar methods for the other data types.

StreamReader and StreamWriter
These classes are typically used to process line-based text files. The StreamReader
class includes a ReadLine method that returns the next text line in the incoming
stream as a standard String. The related StreamWriter.Write method includes all
the overloads of BinaryWriter.Write, and also has a version that lets you format
a string for output. The reader includes features that let you read data one char-
acter at a time, one block at a time, or one entire file at a time.

StringReader and StringWriter
This pair of classes provides the same features as the StreamReader and
StreamWriter pair, but uses a standard String instance for data storage instead of
a file.

One additional pair—TextReader and TextWriter—provides the base class for the other
nonbinary readers and writers. You can’t create instances of them directly, but they do
let you treat the stream and string versions of the readers and writers generically.

With these new tools, it’s easier to process non-Byte data through streams. Here’s a
rewrite of the simple memory stream code I wrote earlier, adjusted to use a
StreamReader and StreamWriter:

' ----- The Stream, or There and Back Again.
Dim memStream As IO.MemoryStream
Dim forWriting As IO.StreamWriter
Dim forReading As IO.StreamReader
Dim finalMessage As String
Dim asUnicode As New System.Text.UnicodeEncoding()

' ----- Create a memory stream with room for 100 bytes.
memStream = New IO.MemoryStream(100)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

422 | Chapter 15: Files and Directories

Try
 ' ----- Wrap the stream with a writer.
 forWriting = New IO.StreamWriter(memStream, asUnicode)

 ' ----- Store the original data in the stream.
 forWriting.WriteLine(_
 "This is a test of the emergency programming system.")
 forWriting.Flush()

 ' ----- The position is at the end of the written data.
 ' To read it back, we must move the pointer to
 ' the start again.
 memStream.Seek(0, IO.SeekOrigin.Begin)

 ' ----- Create a reader to get the data back again.
 forReading = New IO.StreamReader(memStream, asUnicode)

 ' ----- Get the original string.
 finalMessage = forReading.ReadToEnd()

 ' ----- Prove that the text is back.
 MsgBox(finalMessage)
Finally
 memStream.Close()
End Try

That code sure is a lot nicer without all of that conversion code cluttering up the
works. (We could simplify it even more by leaving out all of the optional Unicode
encoding stuff.) Of course, everything is still being converted to bytes under the sur-
face; the memory stream only knows about bytes. But StreamWriter and
StreamReader take that burden away from us, performing all of the messy conver-
sions on our behalf.

Reading a File Via a Stream
Most Stream processing involves files, so let’s use a StreamReader to process a text
file. Although we already decided in Chapter 14 that INI files are a thing of the past,
it might be fun to write a routine that extracts a value from a legacy INI file. Con-
sider a file containing this text:

[Section0]
Key1=abc
Key2=def

[Section1]
Key1=ghi
Key2=jkl

[Section2]
Key1=mno
Key2=pqr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Manipulating Files Through Streams | 423

Now there’s something you don’t see everyday, and with good reason! Still, if we
wanted to get the value for Key2 in section Section1 (the “jkl” value), we would have
to fall back on the GetPrivateProfileString API call from those bad old pre-.NET
programming days. Or, we could implement a StreamReader in a custom function all
our own.

Public Function GetINIValue(ByVal sectionName As String, _
 ByVal keyName As String, ByVal iniFile As String) _
 As String
 ' ----- Given a section and key name for an INI file,
 ' return the matching value entry.
 Dim readINI As IO.StreamReader
 Dim oneLine As String
 Dim compare As String
 Dim found As Boolean

 On Error GoTo ErrorHandler

 ' ----- Open the file.
 If (My.Computer.FileSystem.FileExists(iniFile) = False) _
 Then Return ""
 readINI = New IO.StreamReader(iniFile)

 ' ----- Look for the matching section.
 found = False
 compare = "[" & Trim(UCase(sectionName)) & "]"
 Do While (readINI.EndOfStream = False)
 oneLine = readINI.ReadLine()
 If (Trim(UCase(oneLine)) = compare) Then
 ' ----- Found the matching section.
 found = True
 Exit Do
 End If
 Loop

 ' ----- Exit early if the section name was not found.
 If (found = False) Then
 readINI.Close()
 Return ""
 End If

 ' ----- Look for the matching key.
 compare = Trim(UCase(keyName))
 Do While (readINI.EndOfStream = False)
 ' ----- If we reach another section, then the
 ' key wasn't there.
 oneLine = Trim(readINI.ReadLine())
 If (Len(oneLine) = 0) Then Continue Do
 If (oneLine.Substring(0, 1) = "[") Then Exit Do

 ' ----- Ignore lines without an "=" sign.
 If (InStr(oneLine, "=") = 0) Then Continue Do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

424 | Chapter 15: Files and Directories

 ' ----- See if we found the key. By the way, I'm
 ' using Substring() instead of Left() so
 ' I don't have to worry about conflicts with
 ' Form.Left in case I drop this routine into
 ' a Form class.
 If (Trim(UCase(oneLine.Substring(0, _
 InStr(oneLine, "=") - 1))) = compare) Then
 ' ----- Found the matching key.
 readINI.Close()
 Return Trim(Mid(oneLine, InStr(oneLine, "=") + 1))
 End If
 Loop

 ' ----- If we got this far, then the key was missing.
 readINI.Close()
 Return ""

ErrorHandler:
 ' ----- Return an empty string on any error.
 On Error Resume Next
 If (readINI IsNot Nothing) Then readINI.Close()
 readINI = Nothing
 Return ""
End Function

This routine isn’t an exact replacement for GetPrivateProfileString; it doesn’t sup-
port a default return value, or perform file caching for speed. You could improve the
routine with better error handling. But it does retrieve the value we seek, and it does
it by reading the INI file one line at a time through a StreamReader.

MsgBox(GetINIValue("Section1", "Key2", iniFilePath))
 ' ----- Displays 'jkl'

File Management with the My Namespace
The My namespace includes several file management features in its My.Computer.
FileSystem branch, including features that create streams for reading and writing.

My Namespace Versus Visual Basic Commands
Most of the My.Computer.FileSystem object’s members exist to replace or supple-
ment file management features already present in Visual Basic. Table 15-2 lists some
of the long-standing file and directory interaction features in Visual Basic, and their
equivalents in My.Computer.FileSystem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File Management with the My Namespace | 425

Table 15-2. Two ways to do the same thing

Visual Basic feature Purpose My.Computer.FileSystem equivalent

ChDir Change the current “working” directory
on a specified or default drive.

The FileSystem.CurrentDirectory property
gets and sets the current “working” directory as under-
stood by the application. You set the active directory
through an absolute or relative path string.

ChDrive Change the current “working” drive. The FileSystem.CurrentDirectory property
not only reports or changes the active directory, it also
modifies the active drive.

CurDir Identify the current “working” direc-
tory and drive as a full path string.

Once again, FileSystem.CurrentDirectory is
the substitute for this Visual Basic directory feature.
CurDir does have a little more flexibility: it allows you
to determine the current directory on a drive other than
the current drive. This can’t be done with
FileSystem.CurrentDirectory.

Dir Retrieve files and directories in a par-
ent directory that match a specific
name pattern.

The FileSystem.GetDirectories and
FileSystem.GetFiles methods both support wild-
card patterns when retrieving matching directory and
file names. Dir requires that you call it once for each
entry to return, and it doesn’t work well when process-
ing nested directories. The FileSystem equivalents
return collections of matching items, and can optionally
descend the entire subdirectory tree of a base path.

FileCopy Make a copy of a file. The FileSystem.CopyFile provides a few addi-
tional user-friendly features beyond FileCopy. But
what’s the deal with the reversal of “File” and “Copy”?

FileDateTime Retrieve the creation or modification
date and time of a file.

Use theFileSystem.GetFileInfo method to
retrieve aFileInfo object replete with details about a
file. You’ll probably focus on the FileInfo.
LastWriteTime property, but you can also get the
original creation time and the last access time, features
not available through the lowly and now disgraced
FileDateTime function.

FileLen Retrieve the length, in bytes, of a file. Obtain a FileInfo object through the FileSystem.
GetFileInfo method, and access that object’s
Length property to get the file size in bytes.

GetAttr Retrieve the attributes of a file as a bit
field.

Get details on a file through the FileSystem.
GetFileInfo method, and use the returned
FileInfo object’s Attributes property to examine
your attribute of choice. This object also exposes an
IsReadOnly Boolean value.

Kill Delete a file or empty directory. The FileSystem.DeleteFile and FileSystem.
DeleteDirectory methods replace the Kill proce-
dure, and provide additional options not available with
Kill. Plus, you won’t have the police knocking at your
door asking why you constantly type Kill, Kill, Kill.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

426 | Chapter 15: Files and Directories

Why would Microsoft introduce so many new My features that duplicate existing
Visual Basic features? Perhaps it’s a way to bring consistency to file-based program-
ming practices through a more object-oriented approach. Or maybe it’s yet another
move by Microsoft, the U.S. government, the Knights Templar, Burger King, and
other groups set on world domination by controlling you, your family, and your
community through the “hidden hand” of extra-long source code statements.

Reading and Writing Files Through My
The My.Computer.FileSystem.OpenTextFileReader and parallel OpenTextFileWriter
methods provide shortcuts to the filename-based constructor for StreamReader and
StreamWriter objects. The statement:

Dim inputStream As IO.StreamReader = _
 My.Computer.FileSystem.OpenTextFileReader(_
 fileNamePath)

is identical to:

Dim inputStream As New IO.StreamReader(fileNamePath)

For me, the second version is better due to its terse nature, but it’s between you and
your source code review team as to which one you will use.

If you want to load the entire contents of a file into either a String or a Byte array,
there’s no need to open up a stream now that My includes the My.Computer.
FileSystem.ReadAllText and related ReadAllBytes methods. This statement dumps
the entire contents of a file into a String:

Dim wholeFile As String = _
 My.Computer.FileSystem.ReadAllText(_
 fileNamePath)

MkDir Create a new directory. The FileSystem.CreateDirectory method is a
gentle replacement for MkDir. Anyway, “mkdir” is an
old Unix command, and you’re not programming on
Unix, are you?

Rename Change the name of a file or directory. Rename is replaced by distinct FileSystem.
RenameFile andFileSystem.RenameDirectory
methods.

RmDir Delete a directory, even if it contains
files.

The FileSystem.DeleteDirectory deletes direc-
tories that still contain other files, an action that RmDir
rejected. There’s also an option to send the files to the
Recycle Bin.

SetAttr Modify the attributes of a file using a
bit field.

Same process listed for GetAttr earlier in this table. The
FileInfo object’s Attributes and IsReadOnly
properties are read/write values, assuming you have the
necessary security rights to change attributes.

Table 15-2. Two ways to do the same thing (continued)

Visual Basic feature Purpose My.Computer.FileSystem equivalent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Summary | 427

The My.Computer.FileSystem.WriteAllText and WriteAllBytes methods do the same
thing, but in the opposite direction. There’s an append Boolean argument that lets
you either append or replace the new content relative to any existing content in the
file.

My.Computer.FileSystem.WriteAllText(_
 fileNamePath, dataToWrite, True) ' True=append

One feature that has always been missing from Visual Basic is the ability to conve-
niently scan a delimited file (such as tab-delimited or comma-delimited) or a fixed-
width-field file, and extract the fields on each line without a lot of extra parsing code.
Visual Basic now includes the Microsoft.VisualBasic.FileIO.TextFieldParser object
that simplifies this process. This object lets you indicate either a field delimiter (such
as the tab character) or an array of column sizes. Once you associate it with a file
path, it reads each data line, breaking up the distinct fields for you into a string array.
The My.Computer.FileSystem.OpenTextFieldParser method opens the file and defines
the parsing method in one fell swoop.

Dim dataFields() As String
Dim sourceFile As FileIO.TextFieldParser

' ----- Open the file with tab-delimited fields.
sourceFile = My.Computer.FileSystem.OpenTextFieldParser(_
 sourceFilePath, vbTab)

' ----- Process each line.
Do While Not sourceFile.EndOfData
 dataFields = sourceFile.ReadFields()
 ' ----- dataFields is a simple string array,
 ' so you can examine each field directly.
 If (dataFields(0) = "NEW") Then
 ' ----- and so on...
Loop
sourceFile.Close()

The TextFieldParser object can also detect comment lines and ignore them silently. I
am sure that it’s using a StreamReader secretly hidden inside the object’s black box.
Although the internals are hidden from view, the exposed features of this object
make it a snap to process field-based text files.

Summary
Managing and manipulating files isn’t brain surgery. But with the filesystem as a
major focus of any operating system, tools and methods for reading and updating
files just seem to multiply like rabbits. The .NET Framework uses the Stream as its
primary file interaction method, so this should help make things simpler. Of course,
it piles dozens of wrapper classes on top of the basic stream, but that’s another issue.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

428 | Chapter 15: Files and Directories

As for the management of files and directories, .NET is going in the opposite direc-
tion, giving you more and more language and object features to perform the same
basic tasks. Beyond the traditional Visual Basic and My namespace features I intro-
duced in this chapter, there are additional duplicate features in the .NET class librar-
ies. Use the methods that meet your needs, and “file” the others away for future
reference.

Project
I have some good news and some bad news. The bad news is that the Library Project
does not make direct reads or writes of standard files, and has no need for file
streams. That means we won’t be adding any code to the project in this chapter at
all. The good news is that we still have interesting things to talk about. Besides, I fig-
ured that since you had finished more than half of the book, you could use a break.

PROJECT ACCESS

Chapter 15 does not include any project templates, so don’t bother looking in
Visual Studio for them.

Configuring Log Output
Whenever an error occurs in the Library application, the GeneralError routine first
shows the error message to the user, and then logs it to any configured “log listeners.”

Public Sub GeneralError(ByVal routineName As String, _
 ByVal theError As System.Exception)
 ' ----- Report an error to the user.
 On Error Resume Next

 MsgBox("The following error occurred at location '" & _
 routineName & "':" & vbCrLf & vbCrLf & _
 theError.Message, MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 My.Application.Log.WriteException(theError)
End Sub

So, who’s listening? If you are running the program within Visual Studio, Visual
Basic always configures a log listener that displays the text in the Immediate Win-
dow panel. But that doesn’t do much good in a compiled and deployed application.

You can design your own log listeners, but .NET also includes several predefined
listeners, all of which can be enabled and configured through the application’s
app.config file. If you access the “After” version of Chapter 14’s project, you will find
content in its app.config file that sets up one such listener. Here’s a portion of that
file, showing just the relevant sections:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 429

<system.diagnostics>
 <sources>
 <!-- This section defines the logging configuration
 for My.Application.Log -->
 <source name="DefaultSource" switchName="DefaultSwitch">
 <listeners>
 <add name="FileLog"/>
 </listeners>
 </source>
 </sources>

 <switches>
 <add name="DefaultSwitch" value="Information" />
 </switches>

 <sharedListeners>
 <add name="FileLog" type=

"Microsoft.VisualBasic.Logging.FileLogTraceListener,
Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL"
initializeData="FileLogWriter"/>

 </sharedListeners>
</system.diagnostics>

The <sharedListeners> section defines the details for a particular log listener. In this
case, it’s the FileLogTraceListener listener, a class in the Microsoft.VisualBasic.
Logging namespace. It’s enabled in the <source>/<listeners> section, where it’s
included through an <add> tag. There’s a lot of stuff here that seems bizarre or
extremely picky (such as the public key token). Fortunately, it’s all documented in
MSDN if you ever need the details.

The FileLogTraceListener listener sends relevant logging data to an application-specific
logfile. By default in Windows Vista, the file resides in the following:

C:\Users\username\Application Data\
Company\Product\Version\AppName.log

The username part is replaced by the name of the currently logged-in user. The
Company, Product, and Version parts represent the company name, product name, and
version number of your assembly as defined in its assembly attributes. AppName is the
name of your application with the .exe extension stripped off. On my Windows Vista
system, the logfile for the Library Project appears here:

C:\Users\username\Application Data\
ACME\Library\1.0.0.0\Library.log

If you don’t like that location, you can change the output to any location you
choose. To do it, you’ll need to alter the <add> tag in the <sharedListeners> section,
adding two additional attributes to that tag.

<sharedListeners>
 <add name="FileLog" type=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

430 | Chapter 15: Files and Directories

"Microsoft.VisualBasic.Logging.FileLogTraceListener,
Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL"
initializeData="FileLogWriter"
location="Custom"
customLocation="c:\temp\" />

</sharedListeners>

The new location and customLocation attributes do the trick. Set the customLocation
attribute to the directory where the logfile should go. These attributes link to proper-
ties of the same name in the FileLogTraceListener class. Visual Studio’s documenta-
tion describes these properties and attributes, plus others that are available for you to
configure through app.config.

This app.config change is based on an MSDN article titled “How to: Write Event
Information to a Text File” that you can search for in your online help. (Use the
Search feature, not the Index feature.)

Other Log Output Options
Another MSDN article, “Walkthrough: Changing Where My.Application.Log Writes
Information,” describes how to send log output to more than just a simple text file. It
discusses ways to log application information to the system Event Log, to a delim-
ited file, to an XML-formatted file, and to the console display.

Some of the changes you need to make to the app.config file are, again, mysteri-
ous, so I’ll just list them here for your examination. Add the following content to
the app.config file to define the available listeners:

<add name="EventLog"
 type="System.Diagnostics.EventLogTraceListener,
 System, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"
 initializeData="sample application"/>

<add name="Delimited"
 type="System.Diagnostics.DelimitedListTraceListener,

System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
initializeData="c:\temp\SomeFile.txt"
delimiter=";;;"
traceOutputOptions="DateTime" />

<add name="XmlWriter"
 type="System.Diagnostics.XmlWriterTraceListener,

System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
initializeData="c:\temp\SomeFile.xml" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 431

<add name="Console"
 type="System.Diagnostics.ConsoleTraceListener,

System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
initializeData="true" />

The initializeData attribute in each entry contains the values sent to the arguments
of the relevant class constructor. Other attributes (except for type) modify the prop-
erties of the same name in the class specified through the type attribute. For all the
options available to you for each listener, look up its class entry in the Visual Studio
documentation.

To enable any of these listeners, use an <add> tag in the <source>/<listeners> sec-
tion. The following XML block enables all the listeners defined in this chapter’s
project:

<sources>
 <!-- This section defines the logging configuration
 for My.Application.Log -->
 <source name="DefaultSource" switchName="DefaultSwitch">
 <listeners>
 <add name="FileLog"/>
 <add name="EventLog" />
 <add name="Delimited" />
 <add name="XmlWriter" />
 <add name="Console" />
 </listeners>
 </source>
</sources>

Obtaining a Bar Code Font
Since we have a little time left, let’s talk about obtaining a bar code font. The Library
Project will include bar code printing support, but only if you have a bar code font
installed on your system. It’s no emergency, but you should obtain one before you
reach Chapter 18, where we develop the bar code configuration code.

When you downloaded the code for this book, it didn’t include a bar code font. It’s
all due to licensing issues and the like, you understand. But bar code fonts are easy to
get. You can purchase a professional bar code font if you want to, and if you plan to
deploy this project into an actual library setting, you probably should. But if you’re
only reading this book for the great humor, you can download one of the many free
bar code fonts available on the Internet. I’ve included some links to bar code font
providers on the web site where you obtained the source code for this book. Even if
you don’t plan to use the bar code printing features, I recommend that you down-
load a free bar code font just so that you can try out some of the Chapter 18 features.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

432 | Chapter 15: Files and Directories

Once you’ve installed the font, you will need to tell the Library program to use it.
The settings form we designed in the previous chapter included a selection field for
this font. It’s the Barcode Font Name field on the System-Wide tab of the Mainte-
nance form. You can see it in the middle of Figure 14-6. I made it a system-wide set-
ting because it seemed best to have all administrators in a single library using a
common font.

If your font is a “Code 3 of 9” bar code font (also called “Code 39”), make sure you
select the Barcode is “Code 39” or “Code 3 of 9” field on that same form. (The pro-
vider of the font will let you know whether it is a Code 3 of 9 font or not.) These
fonts require an asterisk before and after the bar code number. Selecting this field
will cause the Library program to add the asterisk characters automatically.

Well, I’m getting tired of talking about files, be they fonts or config files. In the next
chapter, we’ll go back into the world of code and its fraternal twin, data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

433

Chapter 16 CHAPTER 16

Generics16

When I was in high school, my family sometimes shopped at a local grocery ware-
house named Fedmart. Signs on the window clearly stated that there was “no con-
nection between Fedmart and the federal government,” but people continued to
shop there anyway. They had these small $1 frozen cheese pizzas that my mom
would buy in bulk for me and my friends, teenage boys who didn’t care much about
what went down the esophagus.

Most of the store stocked the typical grocery products, but there was one aisle near
the south border of the store that sold only “generic” products. Walking into this
section was like walking into a black-and-white television; all of the product labels
were plain clear or white, with simple black lettering. And they were cheap. They did
the job, but just barely. You would never want to run out of name-brand ketchup in
the middle of a celebratory barbeque with your friends, and offer up a bottle of
generic ketchup as a replacement. Somehow I remember clearly reading the black
lettering on the white label of that watery ketchup substitute, about how it met the
federal ketchup standards. At that moment I had an epiphany, a sudden realization
that would change the way I thought about life in these United States forever: the
government has a federal ketchup standard!

Sadly, Fedmart closed down before I finished my senior year, leaving a vacuum in the
generic ketchup and aluminum foil marketplace. But as a Visual Basic programmer,
you can still gain access to generics, through .NET’s generics technology. Generics—
the ability to use placeholders for data types—first appeared in Visual Basic 2005
and the related .NET Framework 2.0. This chapter provides you with the “specifics”
on generics.

What Are Generics?
In .NET, “generics” is a technology that lets you define data type placeholders within
types or methods. Let’s say you needed to define a class to track customer data, but
you didn’t want to enforce a specific format on the customer “ID” value. Part of your
code needs to interact with customer objects using an Integer ID value, while

http://lib.ommolketab.ir
http://lib.ommolketab.ir

434 | Chapter 16: Generics

another part of the code will use an alphanumeric key for the customer. You might
ask, “Why don’t you just include both types of identifiers as distinct fields in your
customer record?” That wouldn’t work because I am trying to come up with a rea-
sonably simple example and answering that question would just distract me. So,
here’s the numeric version of the class:

Class CustomerWithNumberID
 Public ID As Integer
 Public FullName As String
End Class

Here’s the variation that uses a string ID:

Class CustomerWithStringID
 Public ID As String
 Public FullName As String
End Class

Of course, you could define ID as System.Object, and stick anything you wanted in
that field. But System.Object is considered “weakly typed,” and there is nothing to
stop you from mixing in Integer and String ID values for different instances in an
array of customer objects.

What you want is a system that lets you define the class generically, and hold off on
specifying the data type of ID until you actually create an instance of the class, or a
complete collection of related class instances. With such a system, you could define a
general-purpose version of the customer class.

Class CustomerWithSomeID
 Public ID As <DatatypePlaceholder>
 Public FullName As String
End Class

Later, when it was time to create an instance, you could tell the language which data
type to use for the placeholder.

Dim oneCustomer As CustomerWithSomeID(replacing _
 <DatatypePlaceholder> with Integer)

This is what generics let you do. Here’s the actual Visual Basic syntax that defines
the nonspecific customer class:

Class CustomerWithSomeID(Of T)
 Public ID As T
 Public FullName As String
End Class

The general placeholder, T, appears in a special Of clause, just after the class name.
(You don’t have to name the placeholder T, but it’s become a tradition when pre-
senting sample code using generics.) As a data type, T can be used anywhere within
the class definition where you don’t want to define the data type upfront. The class,
and its ID member, are now ready for instantiation with an actual replacement data
type for T. To create a new instance, try this code:

Dim numberCustomer As CustomerWithSomeID(Of Integer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Are Generics? | 435

When (Of Integer) is attached to the end of the class definition, Visual Basic acts as
though you actually declared a variable for a class that had an Integer member named
ID. In fact, you did. When you create an instance of a generic class, the compiler defines
a separate class that looks like a non-generic class with all of the placeholders replaced.

Dim customer1 As New CustomerWithSomeID(Of Integer)
Dim customer2 As New CustomerWithSomeID(Of Integer)
Dim customer3 As New CustomerWithSomeID(Of String)

These lines define two instances of CustomerWithSomeID(Of Integer), and one
instance of CustomerWithSomeID(Of String). customer1 and customer2 are truly
instances of the same data type, but customer3 is an instance of a completely differ-
ent data type. Assignments between customer1 and customer2 will work, but you
can’t mix either of them with customer3 without performing an explicit conversion.

' ----- This works just fine.
customer1 = customer2

' ----- This will not compile.
customer3 = customer1

As true compile-time data types generated automatically by the compiler, they exhibit
all of the personality of other non-generic classes. Even Visual Studio’s IntelliSense prop-
erly detects the substituted data type. Figure 16-1 includes a tool tip, just to the right of
the instance member selection list, that properly identifies the customer1.ID member as
Integer.

Within the class definition, the T placeholder can appear anywhere, even within
argument lists and local variable declarations.

Class SomeClass(Of T)
 Public Function TransformData(ByVal sourceData As T) As T
 ' ----- Add generic transormation code here.
 Dim workData As T
 ...
 End Function
End Class

Figure 16-1. Congratulations, Mr. and Mrs. Generic: it’s an Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

436 | Chapter 16: Generics

Generics work with structures and interfaces as well.

Structure SomeStructure(Of T)
 Public GenericMember As T
End Structure

Interface ISomeInterface(Of T)
 Sub DoWorkWithData(ByVal theData As T)
End Interface

Variations of Generic Declaration
If there were a minimum federal government data type placeholder requirement, the
implementation of generics just described would certainly meet it. It’s kind of nice to
postpone the definition of data types until the last minute. But .NET generics don’t
stop there.

Multiple Placeholders
Generic placeholders—also known as type parameters—are like those knives you
buy on late-night TV. You don’t get one; you get more! As many as you need, it turns
out. Each generic class can include multiple placeholders by adding them to the ini-
tial Of clause.

Class MultiTypes(Of T1, T2)
 Public Member1 As T1
 Public Member2 As T2
End Class

As before, you aren’t required to use the boring names T1 and T2. Whatever names
you choose, include them as a comma-separated list just after the Of keyword. When
you’re ready to create an instance, replicate the comma-delimited list in the same
order, but using actual types. In this statement, Integer replaces T1, and String
replaces T2:

Dim useInstance As MultiTypes(Of Integer, String)

Data Type and Interface Constraints
The type parameters you include in a generic, such as T, accept any valid data type,
including Integer, String, System.Windows.Forms.Form, or your own custom types.
That is, T can be replaced by anything that derives from System.Object, which is
everything. You can even imagine the statement:

Class SomeClass(Of T)

being replaced by:

Class SomeClass(Of T As System.Object)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variations of Generic Declaration | 437

adding the As clause to make it look like other Visual Basic declarations. Well, you
can stop imagining and start acting: placeholders support the As clause. If you don’t
include an As clause, Visual Basic assumes you mean As System.Object, but you can
follow As with any type you want.

Class FormOnlyClass(Of T As System.Windows.Forms.Form)

By adding a specific class with the As clause, you enforce a constraint on the generic
type, a limitation that must be met to use the type. In this case, the constraint says, “You
may supply any class value for T as long as it is or it derives from System.Windows.Forms.
Form.” This means you can create an instance of FormOnlyClass using one of your appli-
cation’s forms, but not using non-Form classes.

' ----- This works.
Dim usingForm As FormOnlyClass(Of Form1)

' ----- This doesn't work.
Dim usingForm As FormOnlyClass(Of Integer)

When you add a constraint to a type parameter, it impacts the features you can use
with that type parameter. Consider this generic class destined to work with forms,
but not declared that way:

Class WorkWithForms(Of T)
 Public Sub ChangeCaption(ByVal whichForm As T, _
 ByVal newCaption As String)
 ' ----- The following line will not compile.
 whichForm.Text = newCaption
 End Sub
End Class

In this class, the assignment to whichForm.Text will fail because the WorkWithForms
class does not know that you plan to use it with forms. It only knows that you plan
to use T, and T is, by default, of type System.Object. There’s no Text property in the
System.Object class; I checked.

If we change the definition of WorkWithForms to accept Form objects, the outlook for
compiling this code changes dramatically.

Class WorkWithForms(Of T As Windows.Forms.Form)
 Public Sub ChangeCaption(ByVal whichForm As T, _
 ByVal newCaption As String)
 ' ----- Yes! It now compiles.
 whichForm.Text = newCaption
 End Sub
End Class

Since T has to be a Form type or something derived from Form, Visual Basic knows
that all the members of the Form class, including Text, are available to all things T.
Therefore, the assignment to whichForm.Text works.

In addition to classes, you can also use interfaces to constrain your generic types.

Class ThrowAwayClass(Of T As IDisposable)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

438 | Chapter 16: Generics

Instances of ThrowAwayClass can be created as needed, but only if the type supplied
with the declaration implements the IDisposable interface.

' ----- This works. Pens use IDisposable.
Dim disposablePen As ThrowAwayClass(Of System.Drawing.Pen)

' ----- This doesn't work, since the Integer data type
' doesn't implement IDisposable.
Dim disposableNumber As ThrowAwayClass(Of Integer)

But wait, there’s more! See, I told you it was like shopping for knives on TV. Besides
your run-of-the-mill types and interfaces, you can also follow the As clause on the
generic placeholder with the New keyword.

Class SomeClass(Of T As New)

The As New clause says to the generic type, “Accept any type for T, but only if that
type includes a constructor that requires no arguments.” That is, T must include a
default constructor. Once defined, you’ll be able to create new instances of T—what-
ever type it actually turns out to be—in your generic type.

Class SomeClass(Of T As New)
 Public Sub SomeSub()
 Dim someVariable As New T
 End Sub
End Class

If your generic class includes multiple type parameters, each parameter can include
its own As class with a distinct type or interface constraint.

Simultaneous Constraints
It’s nice that each of those knives you purchased can slice a watermelon, but what if
you want to chop wood with that same knife, or use it to upgrade that electrical
work you’ve been postponing? You’re looking for a multifunctional tool, just like
you find in each generic placeholder. If you need one placeholder to include a con-
straint for a specific class, an interface, and “New” all at once, you can do it. After
the As keyword, include the multiple constraints in curly braces.

Class SomeClass(Of T As {Windows.Forms.Form, _
 IDisposable, New})

Now, any type you supply in the Of clause when creating an instance of this class
must meet all of the constraints, not just one of them. And here’s something new: you
can include more than one interface constraint at a time.

Class SomeClass(Of T As {ISerializable, IDisposable})

And you can still include a class constraint and the New constraint, even with those
multiple interfaces. (You can’t include more than one class constraint for a single
placeholder.) If your generic type includes multiple type parameters, each of them
can have its own multiple constraints set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variations of Generic Declaration | 439

Nesting Generic Types
Generic types can include their own nested types.

Class Level1(Of T1)
 Public Level1Member As T1
 Class Level2(Of T2)
 Public Level2Member1 As T1
 Public Level2Member2 As T2
 End Class
End Class

You can nest the generics as deeply as you need.

Non-Generic Types with Generic Members
If generic types seem a little scary or overwhelming, don’t fret. You don’t have to cre-
ate a full generic type to use the new generic features. You can add generic support to
just a single method within an otherwise normal class.

Class SomeClass
 ' ----- The class itself does not have the generic
 ' Of clause, so it's not generic. But...

 Public Shared Sub ReverseValues(Of T) _
 (ByRef first As T, ByRef second As T)
 ' ----- This method is generic with its own Of clause.

 ' ----- Reverse the contents of two variables.
 Dim holdFirst As T

 holdFirst = first
 first = second
 second = holdFirst
 End Sub
End Class

Generic methods are useful when you need to have a local variable of the place-
holder’s type within the method (as is done with holdFirst here), but you don’t
know the type in advance. Using this shared ReverseValues method works like any
other method, with the extra Of clause stuck in.

Dim x As Integer = 5
Dim y As Integer = 10
SomeClass.ReverseValues(Of Integer)(x, y)
MsgBox(x) ' Displays 10

If you will be using the placeholder for one or more of the method arguments, Visual
Basic will infer the type based on the passed value. If Visual Basic is able to guess the
type in this way, you don’t even need the Of clause when calling the generic method.

SomeClass.ReverseValues(x, y)

As with generic types, generic methods allow you to add constraints to the placeholders.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

440 | Chapter 16: Generics

Overloading Generic Types and Members
Earlier I mentioned how the compiler essentially creates separate classes for each
instance variation of a generic class that you create. This means that these two
instances actually use completely different and generally unrelated classes:

Dim numberVersion As SomeClass(Of Integer)
Dim textVersion As SomeClass(Of String)

So, SomeClass(Of Integer) and SomeClass(Of String) are completely different classes,
even though they have the same base name. In a way, Visual Basic is overloading the
class name for you, letting you use it in two (or more) different ways.

Generics also let you get involved in the class-overloading game. Normally, you can
only create a single class with a given name—inside a particular namespace, that is.
But with generics, you can reuse a class name, as long as the placeholders used
among the classes are different enough, either in their number or in their applied
constraints.

Class SomeClass(Of T1)
 ' ----- This is a generic class with one placeholder.
End Class

Class SomeClass(Of T1, T2)
 ' ----- This is a completely different generic
 ' class with two placeholders.
End Class

Visual Basic will figure out which version to use based on the Of clause you include
with the instance declaration.

Dim simpleVersion As SomeClass(Integer)
Dim complexVersion As SomeClass(Integer, String)

Generics and Collections
Generics really shine in the area of collections. The initial release of .NET had,
among the thousands of possibly useful classes, a set of “collection” classes, all in the
System.Collections namespace. Each collection lets you stuff as many other object
instances as you want inside that collection, and retrieve them later. The collections
differ in how you stuff and retrieve, but they all allow you to stick any type of object
in the collection.

One of the collection classes is the System.Collections.Stack class. Stacks let you
store objects like pancakes: the first object you add to the stack goes on the bottom,
and each one you add goes on top of the previous object. When you’re ready to eat a
pancake—I mean, remove an item—it comes off the top. (This “last in, first out” sys-
tem is sometimes called “LIFO.”) The Push and Pop methods manage the addition
and removal of objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variations of Generic Declaration | 441

Dim numberStack As New Collections.Stack
numberStack.Push(10)
numberStack.Push(20)
numberStack.Push(30)
MsgBox(numberStack.Pop()) ' Displays 30
MsgBox(numberStack.Pop()) ' Displays 20
MsgBox(numberStack.Pop()) ' Displays 10

There is also a Peek method that looks at the topmost item, but doesn’t remove it
from the stack. The thing with stacks (and other similar collections) is that you don’t
have to put just one type of object into the stack. You can mix any ol’ types of
objects you want.

Dim numberStack As New Collections.Stack
numberStack.Push(10) ' Integer
numberStack.Push("I'm sneaking in.") ' String
numberStack.Push(Me.Button1) ' Control

The stack doesn’t care, since it’s just treating everything as System.Object. But what
if you needed to ensure that only integers were put into the stack? What if you
wanted to limit a stack to any specific data type, but didn’t want to write separate
stack classes for each possible type?

This sure sounds like a job for generics to me. It sounded that way to Microsoft, too.
So, it added a bunch of new generic collections to the framework. They appear in the
System.Collections.Generic namespace. There are a few different classes in this
namespace, including classes for linked lists, queues, chocolate chip cookies, and
dictionaries. And hey, there’s a class called Stack(Of T). That’s just what we need.

Dim numberStack As New Collections.Generic.Stack(Of Integer)
numberStack.Push(10)
numberStack.Push(20)
numberStack.Push(30)

Now, if we try to add anything other than an Integer to numberStack, an error occurs.

' ----- This won't work.
numberStack.Push("I'll try again.")

Generic Nullable Types
Back in Chapter 6, I introduced nullable types, a way to allow Nothing to be used
with value types.

Dim numberOrNothing As Integer?

Although you can’t tell from that source code line, nullable types are actually imple-
mented using generics. The full version of numberOrNothing’s declaration is:

Dim numberOrNothing As Nullable(Of Integer)

Visual Basic simply provided a shortcut for this syntax through the ? suffix. You can
use either syntax to declare your nullable instances.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

442 | Chapter 16: Generics

Summary
Having generics available for .NET development really makes Visual Basic even more
flexible and useful than all the hype you heard about it. You always had the ability to
use placeholders for data—they’re called variables. Generics provide that same place-
holder functionality, but with data types instead of just plain data.

When you control all development aspects of an application, you might think that
generics aren’t for you. After all, you’re not going to let an Integer variable slip into a
collection of dates. But they are quite handy for enforcing standards within your
code, which is always good.

Project
When a patron checks out a book or other library item, the due date is automati-
cally calculated based on a number of days stored in the CodeMediaType.CheckoutDays
database field. But what happens if that calculated date is a holiday, and the library is
closed? The patron might not be able to return the book until the next day, and
would incur a fine. This fine, though small, could start a chain reaction in the
patron’s life that would lead to poverty, despair, and an addiction to soap operas.
Fortunately, this can all be avoided by adding a list of holidays to the project. If an
item’s return date falls on a documented holiday, the program adjusts the date for-
ward until it finds a non-holiday date.

PROJECT ACCESS

Load the Chapter 16 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 16 (After) Code instead.

Managing Holidays
As a small, standalone application that fully manages its own data, there isn’t neces-
sarily a pressing need for generics in the Library application. However, generics pro-
vide more advantages than just limiting the types of data stored in a class or
collection. They also enhance data conversion and IntelliSense support, since Visual
Basic can tell immediately, for instance, what type of data will appear in a collection.

We’ll store all holidays managed by the Library Project in the Holiday database table.
The contents of this table will seldom change, and will be frequently accessed during
the checkout process. To speed things up, we’ll cache the data inside the applica-
tion. And to simplify management of that cache, we’ll store the holidays in a generic
collection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 443

First, let’s create the class that holds a single holiday entry. Add a new class to the
project through the Project ➝ Add Class menu command, and give it the name
HolidaySet.vb. The familiar structure of an empty class appears.

Public Class HolidaySet

End Class

The Holiday database table includes two main fields used in calculating holidays:
EntryType and EntryDetail. Let’s store these as members of the class, and add a flag
that ensures the entry is valid.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 1.

Private HolidayType As String
Private HolidayDetail As String
Private IsValid As Boolean

We’ll populate these private members through the class constructor.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 2.

Public Sub New(ByVal entryType As String, _
 ByVal entryDetail As String)
 ' ----- Create a new holiday entry instance.
 HolidayType = Left(Trim(UCase(entryType)), 1)
 HolidayDetail = entryDetail

 ' ----- See if the details are valid.
 IsValid = True
 Select Case HolidayType
 Case "A"
 ' ----- The detail should be in mm/dd format.
 IsValid = IsDate(entryDetail & "/2004")
 Case "E"
 ' ----- The detail is a number from 1 to 7.
 If (Val(entryDetail) < 1) Or _
 (Val(entryDetail) > 7) Then IsValid = False
 Case "O"
 ' ----- The detail should be a valid date.
 IsValid = IsDate(entryDetail)
 Case Else
 ' ---- Invalid. This should never happen.
 IsValid = False
 End Select
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

444 | Chapter 16: Generics

Clearly, the holiday entries have a coding system all their own, and it wouldn’t be
fair to force code elsewhere in the application to deal with all the complexities of hol-
iday date comparisons. So, let’s add a public method to the class that indicates
whether a given date matches the holiday stored in an instance.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 3.

Public Function IsHoliday(ByVal whatDate As Date) As Boolean
 ' ----- Given a date, see if it matches the entry
 ' type in this instance.
 Dim buildDate As String

 ' ----- If this record is invalid, then it is never a
 ' holiday match.
 If (IsValid = False) Then Return False

 Select Case HolidayType
 Case "A"
 ' ----- Annual.
 buildDate = HolidayDetail & "/" & Year(whatDate)
 If (IsDate(buildDate)) Then
 Return CBool(CDate(buildDate) = whatDate)
 Else
 ' ----- Must be 2/29 on a non-leap-year.
 Return False
 End If
 Case "E"
 ' ----- Day of the week.
 Return CBool(Val(HolidayDetail) = _
 Weekday(whatDate, FirstDayOfWeek.Sunday))
 Case "O"
 ' ----- See if this is an exact one-time match.
 Return CBool(CDate(HolidayDetail) = whatDate)
 End Select
End Function

We’re done with that class. Now we just need a place to keep our cached holiday
records. The System.Collections.Generic namespace includes a few different collec-
tion classes that we could use. Since the only thing we really need to do with the hol-
idays once they are in the collection is scan through them, looking for matches, the
standard no-frills list seems best. Its class name is List(Of T), and its primary fea-
ture, according to the .NET documentation, is that it lets you access members by
index. That’s fine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 445

Open the General.vb file and find where the global variables appear, somewhere near
the top. Then add a definition for the global collection that will store all the holidays.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 4.

Public AllHolidays As Collections.Generic.List(_
 Of Library.HolidaySet)

There it is! There it is! The Of clause. This is a generic collection. Yeah! OK, party’s
over; let’s move on.

Locate the InitializeSystem method, still in the General.vb file, and add the code
that will initialize the global holiday cache.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 5.

AllHolidays = New Collections.Generic.List(Of HolidaySet)

That’s it for infrastructure. Let’s add some routines that access this generic list. We
need a routine that will tell us, True or False, whether a given date (the planned due
date of a library item) matches any of the holidays or not. Add the function
IsHolidayDate to General.vb.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 6.

Public Function IsHolidayDate(ByVal whatDate As Date) _
 As Boolean
 ' ----- See if the given date is a holiday.
 Dim oneHoliday As Library.HolidaySet

 ' ----- Scan through the holidays, looking for a match.
 For Each oneHoliday In AllHolidays
 If (oneHoliday.IsHoliday(whatDate)) Then Return True
 Next oneHoliday

 ' ----- Not a holiday.
 Return False
End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

446 | Chapter 16: Generics

This routine, IsHolidayDate, shows where generics really come in handy. It’s all in
the For Each statement that the magic occurs. In a normal collection, we wouldn’t be
sure what type of items were stored in the collection, be they HolidaySet or String or
Integer. Well, we would know since we are the developer, but Visual Basic plays
dumb in this area, and assumes you mixed up the data types in one collection.

But because we tied the AllHolidays collection to the HolidaySet class using the Of
HolidaySet clause, Visual Basic now understands that we are only going to store
items of HolidaySet in the AllHolidays collection. That means we don’t have to
explicitly convert items retrieved from the collection to the HolidaySet data type. If
we weren’t using a generic class, the code would look something like this:

Dim scanHoliday As System.Object
Dim oneHoliday As Library.HolidaySet

For Each scanHoliday In AllHolidays
 oneHoliday = CType(scanHoliday, Library.HolidaySet)
 If (oneHoliday.IsHoliday(whatDate)) Then Return True
Loop

Since non-generic collections boil everything down to System.Object, we would have
to explicitly convert each collection object to HolidaySet using CType or a similar con-
version function. But with a generic collection, Visual Basic takes care of it for us.

We still need to cache the holidays from the database, so add a RefreshHolidays
method to General.vb that does this.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 7.

Public Sub RefreshHolidays()
 ' ----- Load in the list of holidays.
 Dim sqlText As String
 Dim dbInfo As SqlClient.SqlDataReader
 Dim newHoliday As Library.HolidaySet

 On Error GoTo ErrorHandler

 ' ----- Clear the current list of holidays.
 AllHolidays.Clear()

 ' ----- Get the holidays from the database.
 sqlText = "SELECT * FROM Holiday"
 dbInfo = CreateReader(sqlText)
 Do While dbInfo.Read
 newHoliday = New Library.HolidaySet(_
 CStr(dbInfo!EntryType), CStr(dbInfo!EntryDetail))
 AllHolidays.Add(newHoliday)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 447

 Loop
 dbInfo.Close()
 Return

ErrorHandler:
 GeneralError("RefreshHolidays", Err.GetException())
 On Error Resume Next
 If Not (dbInfo Is Nothing) Then _
 dbInfo.Close() : dbInfo = Nothing
 Return
End Sub

You’ve seen a lot of code like this already, code that loads records from a database
table into the program. I won’t sport with your intelligence by explaining it to you
line by line.

There are two places where we need to call RefreshHolidays: when the program first
starts up, and later whenever changes are made to the list of holidays. We won’t
worry about other users changing the list; we’ll just focus on when the local applica-
tion updates the list. First, open the sometimes-hidden ApplicationEvents.vb file, and
add this code to the MyApplication_Startup event handler, just after the existing call
to LoadDatabaseSettings().

INSERT SNIPPET

Insert Chapter 16, Snippet Item 8.

RefreshHolidays()

One down, and one to go. Open the MainForm.vb file, and locate the
AdminLinkHolidays_LinkClicked event handler. This is the handler that lets the user edit
the list of holidays. Add the same RefreshHolidays() line to the end of this routine.

INSERT SNIPPET

Insert Chapter 16, Snippet Item 9.

' ----- Reload the holidays if they changed.
RefreshHolidays()

As you can see right in this routine, we already added the editor to manage the list of
holidays. The only thing left to do is to actually access the holiday list when check-
ing out items. We’ll do that in a future chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

448

Chapter 17CHAPTER 17

LINQ 17

Many years ago my TV’s remote control died. I had received this TV secondhand
from a college-student friend of mine—that should tell you about the quality of the
set—and it was already a few years old. But I could still watch Gilligan’s Island, so
why complain? But when I contacted the manufacturer to get a replacement remote,
they told me it was going to cost 75 bucks! The TV didn’t cost anywhere near that,
and I’m sure Gilligan’s Island cost even less to produce.

The TV was pretty much useless without a remote control, so I went out and bought
a universal remote control. These handy devices have the infrared codes for most
common television manufacturers built right into the circuitry. Simply scan through
all of the codes to find your TV set, and in a matter of minutes—and this demon-
strates the modern miracle that is electronics—you will still not have the functional-
ity you had with your original remote. I did lose all use of the closed-captioning
system, but the power, channel, and volume buttons seemed to work.

Despite its deficiencies, the universal remote could control a TV, a VCR, and a DVD
player, all through a common set of buttons. Imagine a universal remote control for
your Visual Basic development. Well, stop imagining and start grabbing that TV
Guide: Visual Basic is now empowered with LINQ, a new feature in Visual Basic
2008 that lets you query unrelated data sources using a common syntax.

What Is LINQ?
LINQ, short for Language Integrated Query, is not just one, but somewhere around
a million new Visual Basic and .NET technologies all working in tandem to make
your programming life easier. Well, not easier in every case. As with any new whiz-
bang technology, there’s good and bad.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What Is LINQ? | 449

The Good
LINQ exists because some weary programmers at Microsoft were tired of accessing
data in their databases differently than they did their file-based data, or their in-
memory object data, or their XML data. With LINQ, a single syntax lets you access
all of these flavors of data, and more. The syntax itself is similar to SQL, the data-
base query language already familiar to you, your programming associates, and a
team of hackers at the FBI.

Visual Basic 2008 includes LINQ support for SQL Server database tables and objects
(“LINQ to SQL”), ADO.NET data sets (“LINQ to ADO.NET” and “LINQ to
DataSet”), in-memory object collections such as arrays or Generic collections
(“LINQ to Objects”), and XML (“LINQ to XML”). Soon after the official Visual Stu-
dio 2008 release, Microsoft released the ADO.NET Entity Framework (“LINQ to
Entities”), which provides enhanced LINQ support to SQL Server, Oracle, DB2, and
other database platforms. That’s a great start, but the good news doesn’t end there.

LINQ is extensible. That means you can enhance LINQ so that it can query any type
of data you specify. LINQ to Spreadsheet, LINQ to Tab-Delimited-File, and LINQ to
DVD-Chapter-Content are all possible. Is that a universal remote control I see in your
programming language? As exciting as those possibilities are, I don’t have space in this
book to show you how to develop them, and that’s where the bad news comes in.

The Bad
LINQ is a swell system for querying data—once you have established the connec-
tion between the query statements and the data. For some of the LINQ flavors, espe-
cially LINQ to Objects, there’s not much to connect, so the querying is a snap. For
other LINQ varieties, especially of the database sort, you must create go-between
classes that join your requests to the data. LINQ is a generic technology that can
interact with any data once you provide the glue. And that glue can sometimes get
very sticky.

As an example, consider LINQ to SQL. This LINQ implementation needs a class
that represents the tables and records that you will query through LINQ. These
classes aren’t hard to create, and they look a lot like the original database tables.
However, if you modify the structure of your table, you will need to modify the go-
between class to take advantage of the table changes. It’s a task that you would have
needed to do anyway, even without LINQ, but it’s something to keep in mind when
considering the way that some programmers go gaga over LINQ.

The go-between nature of LINQ also means that some data processing may be
slower when compared to accomplishing the same task without LINQ. Extra layers
of data and code mean extra things for your computer to do. But that’s already life in
the world of the .NET Framework, so I wouldn’t avoid LINQ because of it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

450 | Chapter 17: LINQ

Supporting Technologies
LINQ is a big deal for Microsoft and for the .NET Framework. Most of the new fea-
tures added to Visual Basic’s 2008 edition were introduced primarily to support
LINQ. Before we get into using LINQ, let’s take a quick look at the technologies
involved in making LINQ possible.

• Query expressions, the heart of data access through LINQ. This chapter dis-
cusses query expressions in detail.

• Lambda expressions, discussed in Chapter 9.

• Extension methods, covered in Chapter 12.

• Local type inference, discussed in Chapter 6.

• Anonymous types, something that is new to Visual Basic in 2008, but also some-
thing that I haven’t discussed yet. I’ll give you the details just after this list.

• Relaxed delegates, a feature that lets Visual Basic make educated guesses as to
whether a method and a delegate are a match or not. It’s similar to type infer-
ence, but for delegates instead of plain types.

• XML Literals, XML axis properties, embedded XML expressions, and XML
namespace support within your source code. You probably remember all about
these features from the discussion in Chapter 13.

• Nullable types, discussed in Chapter 6, with some extended discussion appear-
ing in the Generics chapter, Chapter 16.

• Partial methods, first appearing in Chapter 8.

• Object initializers, demonstrated in Chapter 9.

• Other new language and compiler features that must not have been important
enough since they didn’t get their own new cool-sounding names.

Anonymous Types
Anonymous types are a new feature included in Visual Basic to support LINQ, but
you can use them in your own code as well. They are exactly what the name states:
types without names. Well, that’s not fully accurate. The types do have names, but
they are generated automatically by the Visual Basic compiler, and they never show
up directly in your source code.

Consider a typical class designed to hold information on sushi selections.

Class Sushi
 Public FishName As String
 Public ServingCost As Decimal
End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LINQ to Objects | 451

Creating an instance of this class is straightforward.

Dim tastyFood As New Sushi
tastyFood.FishName = "maguro"
tastyFood.ServingCost = 3.5@

Or, using the object initializer syntax I talked about back in Chapter 9, you can cre-
ate the instance and fill in its fields, all in one statement.

Dim tastyFood As New Sushi With { _
 .FishName = "maguro", .ServingCost = 3.5@}

Anonymous types take this terse syntax one step further by leaving out the class
name altogether.

Dim tastyFood = New With { _
 .FishName = "maguro", .ServingCost = 3.5@}

The tastyFood instance is now an instance of a class with two members, a string
named FishName and a decimal value named ServingCost. The only thing it doesn’t
have is a class name that is known to you. But Visual Basic knows what it is.

Just for fun I compiled that last block of code and looked up the name of the gener-
ated type. Here it is:

VB$AnonymousType_0`2<T0,T1>

Hmm. I still think sushi tastes better. What’s really interesting is that Visual Basic
created a generic type with two type parameter placeholders: T0 (probably linked to
the FishName string member) and T1 (probably the decimal ServingCost).

Anonymous types are major users of type inference. Visual Basic is guessing the data
type of each member based on the data you supply with each name. In the sushi
instances, the ServingCost member is of type Decimal based on the decimal literal
supplied with the instance definition.

LINQ to Objects
LINQ lets you query data from many different sources of data, and each LINQ-to-
data interaction is managed by a LINQ provider. I listed the providers included with
Visual Basic 2008 a little earlier; they all have the name “LINQ to something.” For
me, the most straightforward of the providers is LINQ to Objects, designed to inter-
act with sets of in-memory objects. LINQ to Objects lets you process queries based
on object collections, Visual Basic arrays, and any object that supports .NET’s
IEnumerable or IEnumerable(Of T) interfaces, including your own custom collections.
(Various objects within the world of ADO.NET support these interfaces, but those
types fall under the LINQ to DataSet provider, discussed a little later.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

452 | Chapter 17: LINQ

When you run LINQ to Objects queries, the output of the query is a new set of
objects that contains a subset of the original source object data. This lets you run
queries by saying things like, “Hey LINQ, from this list of employees and their prop-
erties, give me just the names of those employees who were hired in the past 90 days.”
This results set, a collection based on IEnumerable, can be further queried or used as
you would any other collection in your Visual Basic code.

Although LINQ has a finite number of operators and keywords, they
can be used in a rich variety of combinations, only some of which I
will introduce in this chapter. For additional examples and syntax
descriptions, see the LINQ section of the MSDN documentation
included with your copy of Visual Studio.

Before we get into some of the more complex LINQ providers, let’s discover the syn-
tax of LINQ queries using LINQ to Objects. In the next few sections, I’ll use two
small in-memory collections of books as my query source data. Here’s the class defi-
nition for each book that includes a few reasonable members:

Class Book
 Public Title As String
 Public AuthorID As String
 Public Pages As Integer
End Class

Authors appear in a separate class. Book and Author instances match up through the
common AuthorID field.

Class Author
 Public AuthorID As String
 Public FullName As String
End Class

I’ll create two small collections to manage the authors and books.

Dim Writers As New Generic.List(Of Author)
Dim Library As New Generic.List(Of Book)

Writers.Add(New Author With _
 {.AuthorID = "LT", .FullName = "Tolstoy, Leo"})
Writers.Add(New Author With _
 {.AuthorID = "LW", .FullName = "Wallace, Lew"})
Writers.Add(New Author With _
 {.AuthorID = "JB", .FullName = "Barrie, J. M."})

Library.Add(New Book With _
 {.Title = "War and Peace", _
 .AuthorID = "LT", .Pages = 1424})
Library.Add(New Book With _
 {.Title = "Anna Karenina", _
 .AuthorID = "LT", .Pages = 976})

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Basic Query Expressions | 453

Library.Add(New Book With _
 {.Title = "Ben-Hur", _
 .AuthorID = "LW", .Pages = 544})
Library.Add(New Book With _
 {.Title = "Peter Pan", _
 .AuthorID = "JB", .Pages = 192})

To make our understanding of the output for each query easier, let’s pretend that
I’ve written a method that displays the results of any query in table form. I’ll call the
routine ShowResults.

Basic Query Expressions
LINQ expressions are built from query clauses that have the same feel as clauses in
SQL statements at the database level. With the exception of the From clause, which
must appear first, the other clauses can generally appear in any order within the
query.

The From Clause
Every basic LINQ query begins with the From keyword.

Dim bookBag = From bk In Library
ShowResults(bookBag)
' Results --> War and Peace LT 1424
' Anna Karenina LT 976
' Ben-Hur LW 544
' Peter Pan JB 192

This four-word query is pretty much the shortest LINQ query you can write. I stored
the results of the query in the bookBag variable (with its data type inferred by the
query), but the query can also be used directly as an expression.

ShowResults(From bk In Library)

The bk variable included in the query is known as a range variable or iteration vari-
able. (You don’t have to use “bk”; I just chose that name at random. It’s a variable,
so give it any name you wish.) This variable provides a way to identify objects and
object members from the source data within the query. Since Library is a collection,
it wouldn’t make sense to say Library.Title when referring to the title of just one
book. Instead, you refer to bk.Title.

Personally, I find this variable In source syntax a little indirect. I much prefer the
table-alias syntax used in SQL queries.

SELECT * FROM Library AS bk

The SQL AS keyword performs much the same function as the LINQ In keyword. Yet
despite my internal tension, the In syntax prevails; you cannot use the AS syntax in
LINQ since the As keyword in Visual Basic is used for data type assignment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

454 | Chapter 17: LINQ

The Select Clause
If you use only the From clause in your query, it returns all data from the original
object set, including all object members. If you want to limit the results so that only
some of the members are included, use the Select clause to identify the fields to
include.

Dim bookBag = From bk In Library _
Select bk.AuthorID, bk.Title

ShowResults(bookBag)
' Results --> LT War and Peace
' LT Anna Karenina
' LW Ben-Hur
' JB Peter Pan

The results set of this new query omits the page count found in the original data.
That’s because the LINQ query requested only the AuthorID and Title fields; the
Pages member did not make it through the Select clause. Also, notice that I reversed
the order of the AuthorID and Title fields from the original class definition. This
reversal is reflected in the printed results.

Behind the scenes, LINQ is creating a new anonymous type that includes two mem-
bers: a string AuthorID field and a string Title field. One instance of this anonymous
type is created for each resultant query record. These instances are then bundled up
in a new collection that is based on IEnumerable(Of T). This lets you use the query
results in a new query, or in any code that would normally interact with a collection
of results, such as a For Each statement.

Dim bookBag = From bk In Library _
Select bk.AuthorID, bk.Title

For Each oneResult In bookBag
 MsgBox(oneResult.Title)
Next oneResult
' The Loop Displays --> War and Peace
' Anna Karenina
' Ben-Hur
' Peter Pan

In addition to migrating fields from the original objects over to the results set, you
can use operators and functions to modify the results. This next example uses the
StrReverse function to alter the title name before compiling the results:

Dim backward = From bk In Library _
Select StrReverse(bk.Title)

ShowResults(backward)
' Results --> ecaeP dna raW
' anineraK annA
' ruH-neB
' naP reteP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Basic Query Expressions | 455

Although we’re still pretty early into our discussion of LINQ, you
should know now that working with LINQ requires lots of experimen-
tation. Despite its goal of consistency, LINQ is full of surprises. For
instance, the previous example didn’t create the anonymous type col-
lection that I expected. Instead, it discerned that the results set con-
tained only strings, and created a simple string set instead of a
collection of types with a string member. Be on your guard against lit-
tle shocks like this when writing LINQ queries.

The Distinct Clause
By default, the Select clause returns all records from the source. Getting complete
information is a good thing, but sometimes it’s too much of a good thing, especially
when the information contains duplicates. For instance, this query returns just the
author IDs for each available book:

Dim justIDs = From bk In Library _
 Select bk.AuthorID
ShowResults(justIDs)
' Results --> LT
' LT
' LW
' JB

The results are complete, but “LT” appeared twice. Depending on your needs, that
might be a bad thing. By adding the Distinct clause, you can weed out the unneeded
duplication.

Dim justIDs = From bk In Library _
 Select bk.AuthorID _
 Distinct
ShowResults(justIDs)
' Results --> LT
' LW
' JB

The Distinct keyword looks at entire records for duplicates. A record is excluded
only if all fields in that record exactly match all fields in another record.

The Where Clause
Whereas the Select clause lets you weed out unwanted fields, the Where clause lets
you eliminate entire objects based on criteria you specify.

Dim bigBooks = From bk In Library _
 Where bk.Pages >= 1000
ShowResults(bigBooks)
' Results --> War and Peace LT 1424

http://lib.ommolketab.ir
http://lib.ommolketab.ir

456 | Chapter 17: LINQ

This query examines all incoming source records in the Library collection and
includes a source object in the results only if it has a page count of 1,000 or more.
Where clauses can be complex, with multiple criteria joined with And and Or key-
words, and grouped with parentheses.

Dim choices = From bk In Library _
 Where bk.Pages >= 1000 _
 Or (bk.Pages < 1000 _
 And InStr(bk.Title, "-") > 0) _
 Select bk.Title
ShowResults(bigBooks)
' Results --> War and Peace
' Ben-Hur

That last query also showed how you can include non-LINQ features, such as the
InStr function, in your criteria, allowing you to restrict the results based on calcu-
lated results.

The Order By Clause
LINQ results, depending on the source of the data, are not guaranteed to appear in
any particular order. To generate query results in a specific order, use the Order By
clause. The Order By keywords precede one or more source fields or calculated val-
ues, delimited by commas, and you can optionally include the Ascending or
Descending keyword to reverse the sort order of each sorting field. (Ascending is the
default for each field.)

Dim bookBag = From bk In Library _
 Select bk.Pages, bk.Title _

Order By Pages Descending
ShowResults(bookBag)
' Results --> 1424 War and Peace
' 976 Anna Karenina
' 544 Ben-Hur
' 192 Peter Pan

Fields included in the Order By clause must be present in the Select clause; leave off
the range variable prefix (bk in this case). If you use a From clause without a Select
clause, you must include the range variable prefix in your Order By fields.

Joining Sources
If you were only ever going to query data from a single data collection or source, you
probably would not have needed something like LINQ in the first place. When it
does come time for you to merge results from different tables, LINQ again provides a
SQL-like syntax for joining the tables. Actually, it provides two variations, parallel-
ing the syntax variations supported by different SQL vendors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Basic Query Expressions | 457

The first syntax uses the Join keyword to specify a field-specific link. The following
query “inner joins” the Library and Writers tables at the expected AuthorID connec-
tion point.

Dim bookBag = From bk In Library _
Join au In Writers _
On bk.AuthorID Equals au.AuthorID _

 Select bk.Title, au.FullName _
 Order By bk.Title
ShowResults(bookBag)
' Results --> Anna Karenina Tolstoy, Leo
' Ben-Hur Wallace, Lew
' Peter Pan Barrie, J. M.
' War and Peace Tolstoy, Leo

The special On and Equals keywords assist in the join syntax. If your join involves
multiple keys, you can use the And keyword to specify the different key links.

Dim results = From t1 In Table1 _
Join t2 In Table2 _
On t1.Key1 Equals t2.Key1 _
And t1.Key2 Equals t2.Key2

The second join syntax lets you use the Where clause to indicate the field links.

Dim bookBag = From bk In Library, _
 au In Writers _

Where bk.AuthorID = au.AuthorID _
 Select bk.Title, au.FullName _
 Order By bk.Title
' Same results as before

LINQ includes another join variation that generates hierarchical query results. In
such queries, one of the fields in each resultant record will be a collection that con-
tains multiple results. This syntax allows LINQ to return a list of all authors, one
author per row, where each author record includes a “books” field, possibly with
multiple values.

Dim authorBooks = From au In Writers _
Group Join bk In Library _

 On au.AuthorID Equals bk.AuthorID _
Into Published = Group _

 Select au.FullName, Published _
 Order By FullName
ShowResults(authorBooks)
' Results --> Barrie, J. M. Peter Pan
' Tolstoy, Leo War and Peace
' Anna Karenina
 Wallace, Lew Ben-Hur

This query has a somewhat strange syntax, but it successfully creates a results set
with two columns: FullName (for the author name) and Published (for the collection
of books published by a specific author). For each returned record, the Published
member is a subordinate collection that can be processed like any other collection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

458 | Chapter 17: LINQ

Skip and Take
The Skip clause lets you skip over the first x records in the results set, effectively
throwing them in the trash, like unwanted banana peels. The Take clause does just
the opposite, keeping only the first few records in the generated results. The follow-
ing query skips over the first two records in the original data collection, returning
just those records following the ignored values:

Dim someBooks = From bk In Library _
 Select bk.AuthorID, bk.Title _

Skip 2
ShowResults(someBooks)
' Results --> LW Ben-Hur
' JB Peter Pan

Related Skip While and Take While clauses let you use a Boolean expression instead of
a number to indicate when to continue skipping or taking records.

Skip and Take are useful for paging results, as when showing just one “page” of
results at a time from a larger set of queried results. Logic similar to the following
could be used to show just the records destined for CurrentPage:

Dim onePageWorth = From bk In Library _
 Select bk.AuthorID, bk.Title _

Skip ItemsPerPage * CurrentPage _
Take ItemsPerPage

One word of warning about Skip and Take: it does make a difference where you put
them in your query. (I’ll explain the technical reason why this is in the “Deferred
Execution” section, later in this chapter.) For instance, consider this query based on
our original book data:

Dim someBooks = From bk In Library _
 Order By bk.Title _

Take 2

This query returns Anna Karenina followed by Ben-Hur, as you would expect. But if
you move the Take clause earlier, you get a different result.

Dim someBooks = From bk In Library _
Take 2 _

 Order By bk.Title

This time, the query returns Anna Karenina followed by War and Peace. In the first
query, the contents of Library were sorted by Title before the two records were
taken. In the second query, the two records were taken first, before any sorting had
been applied.

It’s not just Take and Skip that are impacted by this ordering. All clauses in your
query are affected. Thinking through the logic of your query is essential, since a mis-
placed clause can give you unexpected results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Aggregate Queries | 459

Converting Results to Other Forms
Because the results of any LINQ query conform to the IEnumerable(Of T) interface,
they are immediately ready to be used in other queries or in enumerable scans. If you
need to access the records in a more traditional form for other purposes, LINQ pro-
vides a few conversion features that quickly move the results into either an array or a
generic collection.

Each query result includes three methods that perform these conversions: ToArray,
ToDictionary, and ToList. ToArray converts the results into a standard Visual Basic
array, with one result record stored in each array element.

Dim queryResults = From ...
Dim arrayVersion = queryResults.ToArray()

ToList performs a similar operation, creating a new Generic.List collection based on
the results of the query. ToDictionary creates a Generic.Dictionary collection, but
you must provide a function to ToDictionary that extracts the key. In most cases, a
lambda expression that identifies the key field will suffice.

Dim authors = From au In Writers _
 Order By au.FullName
Dim authorDict = authors.ToDictionary(Function(x) x.AuthorID)
MsgBox(authorDict("LW").FullName)
' Results --> Wallace, Lew

Aggregate Queries
Aggregate queries let you “sum up” information from a larger query into a con-
densed or single result. Instead of starting with the From keyword, pure aggregate
queries begin with the Aggregate keyword. Each aggregate query uses one or more of
the aggregate functions, such as the Sum function in the following query:

Dim numBooks = Aggregate bk In Library _
Into Sum(bk.Pages)

MsgBox(numBooks) ' Displays: 3136

LINQ includes eight standard aggregate functions, shown in Table 17-1. Each func-
tion accepts an expression that indicates what should be aggregated during the
query.

Table 17-1. Standard aggregate functions

Function Description

All Returns a Boolean value indicating whether the expression passed to it is true for all records. The
clause All(bk.Pages > 1000) would return False since only one book has more than 1,000
pages.

Any Similar to All, but returns True if just one of the records matches the supplied criteria expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

460 | Chapter 17: LINQ

If you include more than one aggregate function in the query, the results set is a single
record that includes multiple named fields. Use an alias before the aggregate function
to give it a name. (Aliases are allowed in all query types, not just aggregates.)

Dim numBooks = Aggregate bk In Library _
 Into TotalPages = Sum(bk.Pages), _

AvgPages = Average(bk.Pages)
MsgBox(numBooks.AvgPages) ' Displays: 784

You can also include aggregate expressions in standard non-aggregate queries. The
following query returns a count of books written by each author, using the Count
aggregate function to add up the results for each author:

Dim authorBooks = From au In Writers _
 Group Join bk In Library _
 On au.AuthorID Equals bk.AuthorID _
 Into NumBooks = Count(True) _
 Select au.FullName, NumBooks _
 Order By FullName
ShowResults(authorBooks)
' Results --> Barrie, J. M. 1
' Tolstoy, Leo 2
' Wallace, Lew 1

Advanced Query Expressions
You’ve probably been wondering when some of the new technology features such as
lambda expressions and extension methods will show up in my examples. Well, in a
way, they already did. When you create LINQ queries using query expressions, the
Visual Basic compiler converts what you type into code that uses extension methods
and lambda expressions. You might remember from Chapter 9 that lambda expres-
sions are themselves updated by the compiler into something simpler. Once your
queries are broken down into subatomic particles, the CPU is ready to act.

But you don’t have to start with full queries. You can create your own queries using
extension methods and lambda expressions. The extended methods in question are

Average Returns the average of whatever expression is passed to it.

Count Returns a count of records with True expression results. To return a count of all records in a query,
use Count(True).

LongCount Same as Count, but returns a Long instead of an Integer.

Max Returns the maximum numeric expression from the set of records.

Min Returns the minimum numeric expression from the set of records.

Sum Returns the sum of the numeric expressions from the set of records.

Table 17-1. Standard aggregate functions (continued)

Function Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LINQ to XML | 461

attached to the IEnumerable interface. This means that anything that looks like a col-
lection or array can be involved in extension-method-based queries, using lambda
expressions as the arguments.

Let’s convert one of our earlier queries into its extension method counterpart.

Dim bigBooks = From bk In Library _
 Where bk.Pages >= 1000

It’s the query that returns only big books. The same query using extension methods
looks like this:

Dim bigBooks = Library.Where(Function(bk) bk.Pages >= 1000)

In this example, the Where method is actually an extension method of the
IEnumerable interface, which also includes Select, OrderBy, Join, GroupJoin, Count,
Max, Min, and other methods that correspond to operators within the LINQ query
language. As I discussed in Chapter 12, you can add your own extension methods to
the IEnumerable interface, giving you even more ways to customize your LINQ queries.

LINQ to XML
In Chapter 13, I introduced XML Literals, XML content that is embedded right into
your Visual Basic source code. When you bring LINQ into the picture, you suddenly
have a way to generate large XML documents by merging a set of records with an
XML Literal template.

The following block of code creates an XML document using our Library and
Writers collections, intermixing LINQ and XML in a way that actually makes my
head hurt:

Dim bookXML As XDocument = _
 <?xml version="1.0"?>
 <booklist>
 <%= From bk In Library _
 Join au In Writers _
 On bk.AuthorID Equals au.AuthorID _
 Order By bk.Title _
 Select _
 <book>
 <title><%= bk.Title %></title>
 <author><%= au.FullName %></author>
 <pages><%= bk.Pages %></pages>
 </book> _
 %>
 </booklist>

bookXML.Save("books.xml")

Notice how you must put line continuation characters in the LINQ portions of the
code, but not in the XML portion? Yeah, I hate it, too. But it does generate nice

http://lib.ommolketab.ir
http://lib.ommolketab.ir

462 | Chapter 17: LINQ

XML. If you look at the books.xml file generated by this code, it contains success-
fully merged content from the XML and our original collections. It’s also nicely
indented.

<?xml version="1.0" encoding="utf-8"?>
<booklist>
 <book>
 <title>Anna Karenina</title>
 <author>Tolstoy, Leo</author>
 <pages>976</pages>
 </book>
 <book>
 <title>Ben-Hur</title>
 <author>Wallace, Lew</author>
 <pages>544</pages>
 </book>
 <book>
 <title>Peter Pan</title>
 <author>Barrie, J. M.</author>
 <pages>192</pages>
 </book>
 <book>
 <title>War and Peace</title>
 <author>Tolstoy, Leo</author>
 <pages>1424</pages>
 </book>
</booklist>

The key to intermixing XML and LINQ is correctly placing the <%= and %> markers
around the LINQ-specific code. If you look at the sample carefully, you will see that
there are two sets of markers, one inside the other.

<%= From ...
 <title><%= bk.Title %></title>
 ... %>

The outer set of markers surrounds the entire LINQ query, whereas each inner set of
markers identifies a replacement variable to include in the XML content.

As easy as it is to generate XML using LINQ, it’s just as easy to query data from
existing XML documents. Reloading the XML we just saved allows us to query a list
of book titles by intermixing LINQ with XML axis properties.

Dim bookXML As XDocument = _
 XDocument.Load("books.xml")
Dim fromXML = From bx In bookXML...<book> _
 Select bx.<title>.Value
ShowResults(fromXML)
' Results --> Anna Karenina
' Ben-Hur
' Peter Pan
' War and Peace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LINQ for ADO.NET-Related Data | 463

LINQ for ADO.NET-Related Data
With ADO.NET’s focus on querying data, it’s understandable that ADO.NET has
declared all-out war on its new enemy, LINQ. Oh wait, a truce was called in Beta 1.
ADO.NET and LINQ now work very well together. In fact, ADO.NET sports three
LINQ providers.

LINQ to Entities
Soon after the launch of Visual Studio 2008, Microsoft released the ADO.NET Entity
Framework. This interface between your programming code and a database will let
you define a logical view of your system. For instance, you can create an entity called
Order that includes your customer, vendor, order header, order detail, and product
tables, all in one logical view. Related stored procedures can also be part of the package.

The framework does all of this magic by creating a set of go-between classes and
related XML structural content that manage the link between the logical and physi-
cal views of the data. Those classes can then be used in LINQ queries, and the
author of the queries need not be concerned with trivial matters such as database
connections and foreign key references. In reality, programmers have been writing
code like this for years, abstracting the physical data model into a logical view that is
easier to program against. The Entity Framework simply makes this process quicker
and easier to set up.

The framework includes several tools that help you build the entities from the source
database structures. One key tool is the ADO.NET Entity Data Model Designer, a
visual drag-and-drop tool that makes creating entities as easy as creating Visual Basic
forms.

Because the ADO.NET Entity Framework comes out after Visual Studio 2008, I will
not be demonstrating the framework in this book.

LINQ to DataSet
LINQ supports queries of records within ADO.NET data tables. ADO.NET
DataTable objects do not directly support the IEnumerable interface, and fields within
these tables are, by default, untyped, which really makes LINQ angry. The new
LINQ to DataSet functionality overcomes both of these limitations so that querying
of data sets works.

Earlier in this chapter, we saw LINQ examples that used a Book class. Let’s keep that
sample data, but pretend that the data now appears in an ADO.NET DataTable
instance. The table will have four records (for the four books in our sample) and
three columns: Title, AuthorID, and Pages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

464 | Chapter 17: LINQ

Class Book
 Public Title As String
 Public AuthorID As String
 Public Pages As Integer
End Class

Instead of issuing a LINQ to Objects query like this:

Dim choices = From bk In Library _
 Where bk.Field(Of Integer)!Pages >= 1000 _
 Or (bk.Pages < 1000 _
 And InStr(bk.Title, "-") > 0) _
 Select bk.Title

LINQ to DataSet uses dataset-object-specific methods that coerce the ADO.NET
objects into something that LINQ can interact with, and in a strongly typed fashion.

Dim choices = _
 From bk In bookTable.AsEnumerable() _
 Where bk.Field(Of Integer)("Pages") >= 1000 _
 Or (bk.Field(Of Integer)("Pages") < 1000 _
 And InStr(bk.Field(Of String)("Title"), "-") > 0) _

Select New With _
 {.Title = bk.Field(Of String)("Title")}

It looks really different, but it is the same query. The bookTable DataTable instance is
first forced to look like an IEnumerable instance through its AsEnumerable method.
Then, as each field is involved in the query, its data type is declared through generic
Of clauses, followed by the name of the field in quotes. Finally, because the query
doesn’t have direct access to field names, the results set is created using the object
initializer syntax. It’s much more roundabout than LINQ to Objects. But if you
already have data sitting in ADO.NET in-memory objects, LINQ to DataSet is the
way to go.

LINQ to DataSet also includes support for “typed” data sets, data sets that include
the necessary metadata to fully describe the data type of each field. With typed data
sets, you don’t need to constantly hold LINQ’s hand through Of datatype clauses;
LINQ will figure out the field types on its own. For information about creating typed
data sets, see the MSDN documentation that comes with Visual Studio.

LINQ to SQL
LINQ to SQL is the provider that lets LINQ queries interact with SQL Server data-
bases. Since the Library Project uses SQL Server, we will spend a little more time on this
technology. As with LINQ to Entities, LINQ to SQL works through go-between classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LINQ for ADO.NET-Related Data | 465

Although you could provide a different logical view of your physical data tables using
LINQ to SQL, there is more of an expectation that your LINQ to SQL objects will
more closely resemble the underlying database tables.

LINQ to SQL includes a tool, the Object Relational (O/R) Designer, which will assist
us in creating the go-between classes. You can take a quick peek at Figure 17-2 to see
what it looks like, but I warn you, it’s no Rembrandt. Still, it does a respectable job
at making the needed database link. The O/R Designer is drag-and-drop simple, and
is suitable for databases that aren’t too terribly large. If you need to create the link
classes for a database that has, say, hundreds of tables, you should read up on the
SqlMetal.exe tool that comes with Visual Studio. You’ll find full details in the MSDN
documentation that comes with Visual Studio.

Using LINQ to SQL is done in five easy steps. You can follow along in a new Win-
dows Forms project if you want:

1. Add a new “dbml” file. This file—actually, a few files that Visual Studio displays
as one—describes your data context, the master class that contains link code for
each database table that you will use in your application. To create this file from
a Visual Studio project, use the Project ➝ Add New Item menu command to dis-
play the Add New Item form. From the Data category, select the LINQ to SQL
Classes template, change the name of the file to Library.dbml from the default,
and click the Add button (see Figure 17-1).

A new Library.dbml item appears in your project, which opens the O/R
Designer, shown in Figure 17-2. If you examine its properties, you’ll see that its
name is LibraryDataContext.

Figure 17-1. Adding a new dbml class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

466 | Chapter 17: LINQ

2. Add tables to the O/R Designer. Open the Server Explorer in Visual Studio.
(Select the View ➝ Server Explorer menu command to find it.) You should
already see a link to the Library database in the Data Connections portion of the
Server Explorer tree, since we created it in an earlier chapter. It will be called
something like myserver\sqlexpress.Library.dbo. Expand that branch of the tree,
and then the Tables branch below it. All of the tables in the Library database
should appear.

Drag and drop the Activity table from the Server Explorer to the left half of the
O/R Designer. Sooner or later, an image of the table should appear on-screen
(see Figure 17-3).

Figure 17-2. The O/R Designer; not much to look at right now

Figure 17-3. The familiar Activity table and its fields (properties)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LINQ for ADO.NET-Related Data | 467

3. Build your application. I’ve found that this step is necessary in some installs of
Visual Studio, but not in others. It refreshes Visual Basic’s view of the new
LibraryDataContext classes. To build the application, select the Build ➝ Build
WindowsApplication1 menu command.

4. Open your custom data context. The code generated by the O/R Designer defines
the interaction between your program and the database, but you should still
specify the database connection when you run your application, just in case any-
thing changes down the road. Add a new Button control to Form1, then add the
following code to that button’s Click event handler:

Dim LibraryDB As New SqlClient.SqlConnection(_
 "Data Source=myserver\sqlexpress;" & _
 "Initial Catalog=Library;Integrated Security=true")
Dim libraryLink = New LibraryDataContext(LibraryDB)

Replace myserver in the code with the name of your own system, and update the
security settings if you use SQL Server authentication.

5. Write queries. You’re ready to design your LINQ queries. Here’s some code that
gets the first five activities from the Activity table and sorts them:

Dim activities = From act In libraryLink.Activities _
 Where act.ID <= 5 _
 Order By act.FullName
For Each oneItem In activities
 MsgBox(oneItem.ID & ": " & oneItem.FullName)
Next oneItem
' Messages --> 2: Manage author and name types
' 1: Manage authors and names
' 3: Manage copy status codes
' 4: Manage media types
' 5: Manage series

If you click the Show All Files button in the Solution Explorer, you can access the .dbml
file’s underlying designer file, Library.designer.vb. This file contains the generated
go-between classes used by LINQ to SQL. As far as using the Activity table in our
LINQ queries, here are the relevant parts of the auto-generated source code:

<System.Data.Linq.Mapping.DatabaseAttribute(Name:="Library")> _
Partial Public Class LibraryDataContext
 Inherits System.Data.Linq.DataContext

 Public ReadOnly Property Activities() _
 As System.Data.Linq.Table(Of Activity)
 Get
 Return Me.GetTable(Of Activity)
 End Get
 End Property
End Class

<Table(Name:="dbo.Activity")> _
Partial Public Class Activity
 Private _ID As Long
 Private _FullName As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

468 | Chapter 17: LINQ

 <Column(Storage:="_ID", DbType:="BigInt NOT NULL", _
 IsPrimaryKey:=true)> _
 Public Property ID() As Long
 Get
 Return Me._ID
 End Get
 End Property

 <Column(Storage:="_FullName", _
 DbType:="VarChar(50) NOT NULL", CanBeNull:=false)> _
 Public Property FullName() As String
 Get
 Return Me._FullName
 End Get
 End Property
End Class

The LibraryDataContext class implements a custom LINQ data context class that
looks like, well, a mini version of my database. It contains references to those tables
that I chose to include in the linkup; all of the Library tables would have appeared in
this class if I had selected them. So, when I referenced libraryLink.Activities in the
sample LINQ query, it was referencing the public Activities member from the data
context.

The Activity table exposes distinct properties that match up with the underlying
database fields. So really, it’s no surprise that I’m able to query these classes through
LINQ just like I do with any LINQ to Objects-type class. But there is that strange
part about how the class actually gets the data from the database. That’s the hidden
LINQ to SQL part, handled through the base DataContext class and the associated
attributes from the System.Data.Linq.Mapping namespace.

Behind the scenes, LINQ to SQL is regularly generating SQL state-
ments to query and even update records in the actual database tables.
You can examine these generated queries using the SQL Query Debug
Visualizer tool. It doesn’t come with Visual Studio, but you can down-
load it from Microsoft’s MSDN web site.

Deferred Execution
When you build a LINQ query, Visual Basic does not process the query immedi-
ately. Instead, it defers execution, running the query only when you request a record
from the results. This allows you to build up a query in parts, and not have it con-
sume CPU cycles until you actually need the final data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Summary | 469

' WARNING: Simplistic example.
Dim someBooks = From bk In Library _
 Select bk.Title, bk.Pages
Dim orderedTitles = From bk In someBooks _
 Order By bk.Title

In this code, the ordering of the records doesn’t happen until the second statement.
But that doesn’t matter since nothing was actually processed by the first statement.
Remember that LINQ is really just converting your queries into extension methods
and lambda expressions. The assignment of someBooks is doing something like this:

someBooks = Library.Select("Title, Pages")

The assignment of orderedTitles simply extends someBooks:

orderedTitles = _
 Library.Select("Title, Pages").OrderBy("Title")

Actual processing occurs when you request a record from orderedTitles. By “process-
ing” I mean that each extension method is executed on the original Library data source
in order, from left to right. For orderedTitles, the original Library data is reduced
through the Select method, and then further modified by the OrderBy method.

Having methods processed from left to right explains why the order of clauses such
as Skip and Take is so important. The expression

Library.Take(2).Skip(2)

is different from

Library.Skip(2).Take(2)

Summary
That was a fast overview of LINQ with some of its first-release permutations. It
seems like a lot, but I covered only the basics. Besides querying data, you can also
update the underlying data store through specially crafted LINQ statements. And the
ability to craft your own LINQ provider means that the types of data stores that
LINQ can process are unlimited.

The major downside of LINQ is that, especially for LINQ to SQL, the SQL state-
ments and MSIL code that LINQ ultimately generates based on your query will prob-
ably not be as efficient as those that you could craft on your own. Some of your
LINQ queries may run so slowly that you have no choice but to replace them with
pre-LINQ alternatives. But for most common querying purposes, especially across
divergent data sources, LINQ is a giant step forward.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

470 | Chapter 17: LINQ

Project
This chapter finally adds what many consider to be the heart of a library system: the
lookup of books and other library items by patrons.

PROJECT ACCESS

Load the Chapter 17 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 17 (After) Code instead.

Looking Up Library Items
When we built the main Library form back in Chapter 7, we included fields that
allowed a patron to search for library items. But that’s about all we did; we didn’t
enable the fields or make them usable. We also didn’t include any place to display a
list of matching items. Let’s complete those components in this chapter. We’ll start
with the matching items list.

I’ve added a form to the project named ItemLookup.vb that displays the results of a
search for library items. It includes a few buttons at the top of the form, and three
main display panels:

PanelMatches
Contains a large listbox that displays non-item matches. For instance, it displays
a list of matching author or publisher names as searched for by the patron.
When this panel appears, the patron selects a match from the MatchingGeneral
list, and clicks the Lookup button to display items tied to that selected author,
publisher, or other entry.

PanelItem
Contains a large listbox that displays items from the NamedItem database table.
That is, it displays a list of library items matching some criteria. Selecting an item
from the MatchingItems list and clicking the Lookup button displays the details
of that item.

PanelOneItem
Contains a WebBrowser control that displays details about a single library item.
The detail content is built using standard HTML, and may contain links that
return you to the PanelItems panel with a new set of matching items displayed.
For instance, if you are viewing the details of an award-winning (one can hope)
Visual Basic 2008 programming book and click on the publisher name for that
item, the PanelItems panel appears, listing all items made by that publisher.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 471

The form also includes a set of Back buttons (in the upper-left corner) that work like
the Back button in your web browser, a Close button that returns to the main form,
and a menu (BackMenu), used to support the Back button feature. Figure 17-4 shows
the form with the PanelItems panel out in front, since it looks a little more interest-
ing than the other two panels.

The associated source code weighs in at around 1,000 lines, much of it focused on
filling in the two listboxes and the HTML detail content. The search performed on
the main form calls into this lookup form through the InitiateSearch method. The
actual database search for matching items occurs in the PerformLookup method,
which is called by InitiateSearch. PerformLookup includes LINQ queries that travel
to the Library database and back via the LINQ to SQL provider. Queries for all dif-
ferent types of searches are included: title, author, subject, keyword, publisher,
series, bar code, and some ID number searches, mostly for internal use. The type of
search performed determines which of the three panels gets displayed (via the
resultType variable). An author search displays PanelMatches with a list of matching
author names; a title lookup displays matching items on the PanelItems panel.

Before we look at that LINQ code, we need to set some things up in the rest of the
application to support these new LINQ queries. I’ve disabled the ItemLookup.vb file
from compiling for now since it would just generate gobs of errors.

As amazing as LINQ to SQL is, it still requires the human touch (that’s you) to help
it locate the SQL Server database tables. We’ll use the Object Relational Designer
that we played with earlier in this chapter. Select the Project ➝ Add New Item com-
mand from the Visual Studio menus. On the Add New Item form, select Data from the
Categories list, select LINQ to SQL Classes from the Templates field, and set the
Name field to “Library.dbml” before clicking the Add button. A blank O/R Designer
window appears.

Figure 17-4. The panel of matching items, with column headings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

472 | Chapter 17: LINQ

Open the Server Explorer and browse down to the Library database. From the
Tables branch, drag and drop the following tables onto the left half of the O/R
Designer window:

• Author

• CodeMediaType

• CodeSeries

• ItemAuthor

• ItemCopy

• ItemKeyword

• ItemSubject

• Keyword

• NamedItem

• Publisher

• Subject

The designer will correctly analyze the relationships between the tables and show
link lines between foreign references. You can rearrange the tables as needed to bet-
ter see the tables, or keep them in a heap if you like; I’m not your mother. But we do
have to do a little renaming of the tables. The O/R Designer tries to be really smart,
changing any plural table names it finds into their singular equivalent. (By tradition,
singular names are preferred when designing database tables.) Unfortunately, it
botched the conversion of the CodeSeries table, changing it to CodeSery. It’s cute, but
meaningless. Select that table and change its Name property to CodeSeries in the
Properties panel.

That resets the table names to their roots, but it’s still no good. The problem is that
we used some of those table names for form names in the Library application. The
conflicting classes are in different namespaces, so the code could compile, but we’d
have to type a lot of namespaces when identifying these classes, and I’m just too lazy
for that. To eliminate the conflicts, I arbitrarily decided to add the letter Q to the
start of each LINQ to SQL table name. In the designer, select each table and rename
them, adding a Q to the start. CodeSeries becomes QCodeSeries; ItemAuthor becomes
QItemAuthor, and so on. When you are finished, you should have a designer view that
looks something like Figure 17-5.

Despite working so hard to ensure that all the names avoid conflicts and that they
are singular, when we use the library data context in our LINQ queries, we’ll find
that all of the class names for these LINQ-to-SQL-generated tables are somehow plu-
ralized (QPublishers instead of QPublisher). Amazing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 473

Back in the project code for Chapter 12, we added an extension method to the
SqlClient.SqlDataReader class that formats an author name from a database query.

<System.Runtime.CompilerServices.Extension()> _
Public Function FormatAuthorName(_
 ByRef dbInfo As SqlClient.SqlDataReader) As String

Figure 17-5. Why aren’t they standing in a queue?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

474 | Chapter 17: LINQ

Unfortunately, this routine is usable only with SqlDataReader objects. In the
PerformLookup routine we’re about to add, we’ll need to format author names from a
LINQ query of QAuthor table records. I guess we’ll need another extension method
for that type of object. Open the General.vb source code file and add a new
FormatAuthorName method to the General module. Some of the code appears here.

INSERT SNIPPET

Insert Chapter 17, Snippet Item 1.

<System.Runtime.CompilerServices.Extension()> _
Public Function FormatAuthorName(_
 ByVal author As QAuthor) As String
 ' ----- Given an author record, return the formatted name.
 Dim authorName As String

 On Error Resume Next

 ' ----- Format the name.
 authorName = CStr(author.LastName)
 If (author.FirstName IsNot Nothing) Then
 authorName &= ", " & author.FirstName
 If (author.MiddleName IsNot Nothing) Then _
 authorName &= " " & author.MiddleName
 End If
 If (author.Suffix IsNot Nothing) Then _
 authorName &= ", " & author.Suffix

...some code omitted for brevity...

 ' ----- Finished.
 Return authorName
End Function

If you compare this source code to the SqlDataReader version, you’ll find that this
version is much cleaner since it references class members instead of database fields
through a reader. Thanks LINQ!

That’s it for the LINQ support changes. Enable the ItemLookup.vb file by selecting it
in the Solution Explorer panel and changing its Build Action property from None to
Compile. Now let’s return to the code in that file.

The PerformLookup routine consists mostly of a giant If statement, with different
conditions for most of the different types of searches. The last Else clause handles all
of the searches that will fill in the list on the form’s PanelItems panel. That’s the list
that shows actual items. It’s got a lot of If statements, too. But what’s really cool is
its LINQ query. Instead of just being a simple query, it’s a complex query that is
built up little by little. The query starts with the basics, requesting matching records
from the database’s NamedItem table. (The libraryDC variable is the opened data con-
text for the Library database.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 475

Dim itemQuery = From ni In libraryDC.QNamedItems

Next, if the user requested items of a specific media type (“just show me matching
DVDs, not books”), the query is updated with the appropriate Where clause.

If (LimitByMedia <> -1) Then
 ' ----- Limit to a specific media type.
 itemQuery = From ni In itemQuery _
 Where ni.MediaType = LimitByMedia
End If

The type of search also adjusts the query. For instance, a keyword search adds user-
specified keywords as the criteria.

keywordSet = New Generic.List(Of String)
keywordSet.AddRange(Split(searchText.ToUpper, ","))
itemQuery = From ni In itemQuery _
 Let keySet = (Aggregate ik In ni.QItemKeywords _
 Into Any(keywordSet.Contains(_
 ik.QKeyword.FullName.ToUpper))) _
 Where keySet = True _
 Select ni

That addition used an Aggregate subquery within the main query. The Let keyword,
part of LINQ, assigns a subquery or other type of result to a temporary variable
within the query (keySet in this case) so that it can be referenced elsewhere in the
query.

Once the Where clauses have been added, the entire query is sorted and used.

itemQuery = From ni In itemQuery _
 Order By ni.Title, ni.Subtitle

Some of the LINQ queries in the PerformLookup routine are very straightforward.
Here’s the code that does a publisher-name search:

' ----- Prepare the query for a publisher lookup.
holdText = Trim(searchText)
If (InStr(holdText, "*") = 0) Then holdText &= "*"
Dim publisherQuery = From pb In libraryDC.QPublishers _
 Where pb.FullName Like holdText _
 Order By pb.FullName

It doesn’t look that different from what you would expect in a SQL query. One nice
thing is that wildcards use the * character instead of the SQL standard % character.

After processing this query, the LINQ results are scanned, and records are moved
into the MatchingGeneral list.

For Each publishItem In publisherQuery
 MatchingGeneral.Items.Add(New ListItemData(_
 publishItem.FullName, CInt(publishItem.ID)))
 matches += 1
Next publishItem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

476 | Chapter 17: LINQ

This is just more of the same code you’ve seen in previous chapters. It loads the
ListBox control with ListItemData objects, each containing a display name and an ID
number from the database. That’s fine for a list with simple display requirements.
But if you look back at Figure 17-4, it’s clear we want something a little more inter-
esting for the list of matching items. We want columns, and columns require reason-
able data.

To store this data, we’ll make up a new class, called MatchingItemData, which works
just like ListItemData, but has more data fields.

Private Class MatchingItemData
 Public ItemID As Integer ' NamedItem.ID
 Public Title As String
 Public Subtitle As String
 Public Author As String
 Public MediaType As String
 Public CallNumber As String

 Public Overrides Function ToString() As String
 ' ----- Build a simple display string.
 If (Subtitle = "") Then
 Return Title & ", by " & Author
 Else
 Return Title & ": " & Subtitle & ", by " & Author
 End If
 End Function
End Class

Since this class will be used only to display matching items on this form, I’ve made it
a subordinate class within the larger ItemLookup form class. The ToString method
outputs the text that appears in the list. We won’t generate the actual columnar out-
put until the next chapter. For now, we’ll just display the title and author.

The PanelMatches and PanelItems panels each include a Lookup button that initiates
a new call to PerformLookup based on the item selected in the list. The Lookup but-
ton on the PanelItems panel retrieves the selected MatchingItemData object from the
list, and performs the new search.

Private Sub ActItemLookup_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ActItemLookup.Click
 ' ----- Look up the item with the selected ID.
 Dim itemID As Integer

 ' ----- Ignore if no match is selected.
 If (MatchingItems.SelectedIndex = -1) Then Return
 itemID = CType(MatchingItems.SelectedItem, _

MatchingItemData).ItemID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 477

 ' ----- Perform the lookup.
 If (PerformLookup(LookupMethods.ByDatabaseID, _
 CStr(itemID), False) = False) Then Return

 ' ----- Store the history.
 AddLookupHistory(LookupMethods.ByDatabaseID, CStr(itemID))
End Sub

The call to PerformLookup starts the process all over again.

Maintaining Search History
Let’s say you have a patron with a lot of time on his hands, and he wants to look up
the book War and Peace.

• Starting from InitiateSearch and moving on to the PerformLookup code, the ini-
tial title search (“War and Peace”) displays a list of matching titles on the
PanelItems panel.

• The patron locates the book in this list, and clicks the Lookup button, which
calls the ActItemLookup_Click event handler.

• This event handler in turn calls PerformLookup again, this time doing a precise
lookup based on a database ID within the NamedItem table.

• The detail of the item appears on the PanelOneItem panel. (I’ll discuss how it’s
done later in this chapter.)

• The detail includes a link to “Tolstoy, Leo,” the long-suffering author of the
book. When the patron clicks on this link, it initiates another call to
PerformLookup, this time by author ID.

• We’re back to the PanelItems panel, viewing a list of books and other items by
Tolstoy, assuming he had time to write anything else.

So, the patron now has an experience with three search panels: (1) a “general” list of
titles matching the name “War and Peace”; (2) the “detail” display for the selected
“War and Peace” item; and (3) an “items” list of books written by Leo Tolstoy. The
history feature included in this form lets the patron return to any previous search
page, just like the feature in your web browser.

It’s possible that some of the searches performed could return hundreds of results.
We don’t want to store all of that content in memory, since it’s possible the patron
will never use the Back button. Instead, we will do just what your web browser does:
store the minimum information needed to perform the query again. Your web
browser maintains just the name and URL of visited paths in its “back” list. (File and
image caching is not part of the history feature.) The ItemLookup.vb form needs to
store only those values that PerformLookup needs to do the search again: the type of
search, and the numeric or text criteria used in the search.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

478 | Chapter 17: LINQ

Patron history is accessed on a “last-in, first-out” basis. The most recent page viewed
is the one the patron wants to see first when using the Back button. We discussed
just such a last-in, first-out, or “LIFO,” structure in Chapter 16: the stack. Each time
the user views a panel, we’ll make note of it, pushing just those values we will need
later onto the stack. When the user wants to view history, we will pop the most
recent lookup content off the stack and update the display.

The ItemLookupHistory class, another subordinate class within the ItemLookup class,
stores the values we need to manage history in the stack.

Private Class ItemLookupHistory
 Public HistoryDisplay As String
 Public LookupType As Library.LookupMethods
 Public LookupData As String
End Class

HistoryDisplay provides a short display name to help the user scan through history.
LookupType and LookupData are the values that get passed to PerformLookup. It’s all
nice and neat. To make things even neater, we’ll use a generic stack for actual stor-
age. It’s declared as a field of the ItemLookup class.

Private LookupHistorySet As _
 Collections.Generic.Stack(Of ItemLookupHistory)

As the patron visits each panel, calls to the AddLookupHistory method populate the
stack with each new visited item.

Private Sub AddLookupHistory(_
 ByVal searchType As Library.LookupMethods, _
 ByVal searchText As String)
 ' ----- Add an item to the lookup history.
 Dim newHistory As ItemLookupHistory
 Dim displayText As String

 ' ----- Build the text for display in the new item.
 displayText = BuildDisplayText(searchType, searchText)

 ' ----- Build the new history item.
 newHistory = New ItemLookupHistory
 newHistory.LookupType = searchType
 newHistory.LookupData = searchText
 newHistory.HistoryDisplay = displayText
 LookupHistorySet.Push(newHistory)

 ' ----- Update the back button.
 RefreshBackButtons()
End Sub

Later, when the patron clicks one of the Back buttons, the BackMenuItems_Click event
handler examines the history stack, and calls PerformLookup as needed. And because we
stored the ItemLookupHistory objects in a generic stack, we don’t have to specifically
convert them from System.Object; the program just knows what data type they are.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 479

Private Sub BackMenuItems_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles BackMenu1.Click, ..., BackMenu10.Click
 ' ----- One of the back menu items was clicked.
 Dim whichItem As Integer
 Dim counter As Integer
 Dim scanHistory As ItemLookupHistory

 ' ----- Determine the clicked item.
 whichItem = CInt(DigitsOnly(CType(sender, _
 System.Windows.Forms.ToolStripMenuItem).Name))
 If (whichItem >= LookupHistorySet.Count) Then Return

 ' ----- Get rid of the in-between items.
 For counter = 1 To whichItem
 LookupHistorySet.Pop()
 Next counter

 ' ----- Perform a lookup as requested.
 scanHistory = LookupHistorySet.Peek
 If (PerformLookup(scanHistory.LookupType, _
 scanHistory.LookupData, False) = False) Then Return
 RefreshBackButtons()
End Sub

Showing Item Detail
The BuildHTMLAndLinks function builds the HTML content that appears on the
PanelOneItem panel. This panel includes SingleItemDetail, a WebBrowser control
included with .NET. It’s basically a version of Internet Explorer that you embed in
your applications. Normally, you supply it with a URL to display, but you can also
provide custom content through the control’s DocumentText property. The
ByDatabaseID and ByBarcode lookup methods within the PerformLookup routine assign
this property with content returned from BuildHTMLAndLinks.

SingleItemDetail.DocumentText = _
 BuildHTMLAndLinks(CInt(idQuery.ToArray(0)))

The content supplied by this routine is standard HTML, but with some specially
crafted links that let the library program perform additional lookups based on the
details of the displayed library item.

Most of the HTML is boilerplate, and it seems a shame to waste brain cells doing
string concatenation just to include it. So instead, I stored much of the HTML as a
text file resource through the Resources panel of the project properties. On that
panel, I clicked the Add Resource button, clicked the Add New Text File menu item,
and entered “ItemLookupBody” as the name for the new text file (see Figure 17-6).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

480 | Chapter 17: LINQ

In the text editor window that appeared, I added the following HTML content:

<html>
<head>
<style type="text/css">
body { font-family: "Arial"; }
h1 { font-family: "Arial"; margin-top: 0px;
 margin-bottom: 0px; font-size: 18pt; font-weight: bold; }
h2 { font-family: "Arial"; margin-top: 20px;
 margin-bottom: 0px; font-size: 15pt; font-weight: normal; }
h3 { font-family: "Arial"; margin-top: 0px;
 margin-bottom: 0px; font-size: 15pt; font-weight: normal;
 font-style: italic; }
p { margin-top: 2px; margin-bottom: 2px;
 margin-left: 15px; font-family: "Arial"; font-size: 12pt; }
table { border: solid black 1px; margin-left: 15px; }
th { border: solid black 1px; background-color: black;
 color: white; white-space: nowrap; text-align: left; }
td { border: solid black 1px; white-space: nowrap; }
a:visited { color: blue; }
</style>
</head>
<body>

If you’re familiar with HTML, you’ll recognize most of the content as an embedded
Cascading Style Sheet (CSS). Its various formatting rules will bring a specific and
consistent look and feel to the browser content that appears within the item lookup
form. This is not a book on CSS, but there are some good books at your local book-
store that can talk you through the rules and syntax if you’re interested.

You can find the HTML content portion in the Solution Explorer, within the
Resources branch. You’ve probably already noticed that the closing </body> and
</html> tags aren’t included. We’ll attach those in the BuildHTMLAndLinks method.
Since string concatenation is notoriously slow, I chose to use a StringBuilder class, a
special string-like class that is custom-designed for speed when repeatedly adding

Figure 17-6. Adding a new text file resource

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 481

content to a base string. You attach content to the end of the StringBuilder using its
Append and AppendLine methods, and retrieve the entire string through the standard
ToString method.

We’ll begin the content with the boilerplate HTML listed previously. Since we added it
as a resource, it already appears in the My.Resources object under the name we gave it.

Dim detailBody As New System.Text.StringBuilder
detailBody.Append(My.Resources.ItemLookupBody)

Most of the code adds plain text to the detailBody string builder using its AppendLine
method. Here’s the code that adds the main book title:

sqlText = "SELECT Title, Subtitle FROM NamedItem " & _
 "WHERE ID = " & itemID
dbInfo = CreateReader(sqlText)
dbInfo.Read()
detailBody.AppendLine("<h1>" & _
 HTMLEncode(CStr(dbInfo!Title)) & "</h1>")

The HTMLEncode function, called in this block, is included in the ItemLookup class. It
does some simple modification of special characters as required by HTML. It’s called
repeatedly throughout BuildHTMLAndLinks.

So, that’s the HTML, but what about the links? If I put a standard link to, say, http://
www.microsoft.com, the embedded browser will jump to that page when the link is
clicked. But that doesn’t help me do database lookups. The WebBrowser control
doesn’t really expose a “link clicked” event, but it has a Navigating event that is
close. This event fires whenever the browser is about to move to a new page. Fortu-
nately, one of the data values passed to the event handler is the target URL. So, all
we have to do is build a link that contains the information we need to perform the
database lookup.

I decided to store the relevant database lookup details as a collection (similar to the
history stack), and create fake URL-like links that indicate which item in the collec-
tion to use. After a lot of thought and contemplation, I decided on the format of my
fake URL links:

library://x

where x gets replaced by an index into the collection of links. It’s simple, and it
works. The collection of search details is a generic dictionary stored as a field within
the form class.

Private Class SingleItemLink
 Public LinkType As Library.LookupMethods
 Public LinkID As Integer
End Class

Private ItemLinkSet As Collections.Generic.Dictionary(_
 Of Integer, SingleItemLink)

http://www.microsoft.com
http://www.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

482 | Chapter 17: LINQ

Then back in the HTML-building code, I add fake URLs and SingleItemLink objects
in tandem. Here’s some of the code used to add in author links, given a data reader
with author name fields. (The entryID value supplies the x in library://x.)

Do While dbInfo.Read
 ' ----- Add in this one author name.
 holdText = FormatAuthorName(dbInfo)
 entryID += 1
 detailBody.AppendLine("<p><a href=""library://" & _
 entryID & """>" & HTMLEncode(holdText & " [" & _
 CStr(dbInfo!AuthorTypeName) & "]") & "</p>")

 ' ----- Add in an author link.
 newLink = New SingleItemLink
 newLink.LinkType = General.LookupMethods.ByAuthorID
 newLink.LinkID = CInt(dbInfo!ID)
 ItemLinkSet.Add(entryID, newLink)
Loop

When the user clicks on a link in the embedded web browser, it triggers the
Navigating event handler.

Private Sub SingleItemDetail_Navigating(_
 ByVal sender As Object, ByVal e As System.Windows. _
 Forms.WebBrowserNavigatingEventArgs) _
 Handles SingleItemDetail.Navigating
 ' ----- Follow the clicked link.
 If (e.Url.Scheme = "library") Then _
 FollowItemLink(CInt(e.Url.Host()))
End Sub

The e.Url.Scheme property returns the portion of the URL before the :// characters,
while e.Url.Host returns the first slash-delimited component just after these characters.
That’s where we stored the index into the ItemLinkSet dictionary. The FollowItemLink
method extracts the lookup details from ItemLinkSet, and calls our trusty PerformLookup
method, resulting in a new search that gets stored in the search history.

Private Sub FollowItemLink(ByVal entryID As Integer)
 ' ----- Given a character position in the single item
 ' text panel, follow the link indicated by that item.
 Dim scanLink As SingleItemLink

 ' ----- Access the link.
 scanLink = ItemLinkSet.Item(entryID)
 If (scanLink Is Nothing) Then Return

 ' ----- Perform a lookup as requested.
 If (PerformLookup(scanLink.LinkType, _
 CStr(scanLink.LinkID), False) = False) _
 Then Return

 ' ----- Store the history.
 AddLookupHistory(scanLink.LinkType, CStr(scanLink.LinkID))
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 483

Enabling the Search Features
The ItemLookup form is ready to use. We just need to call it from the search fields on
the main form. The PanelLibraryItem panel in MainForm.vb includes several
ComboBox selection controls, but there is no code to fill them in. Let’s add that code
now. Access the source code for MainForm.vb, and locate the MainForm_Load event.
There’s already some code there that adjusts the form elements. Append the new list-
filling code to the end of this routine.

INSERT SNIPPET

Insert Chapter 17, Snippet Item 2.

Here’s the portion of that new code that fills in the list of search methods:

' ----- Load in the list of search types.
SearchType.Items.Add(New ListItemData(_
 "Lookup By Title", LookupMethods.ByTitle))
SearchType.SelectedIndex = 0
SearchType.Items.Add(New ListItemData(_
 "Lookup By Author", LookupMethods.ByAuthor))
SearchType.Items.Add(New ListItemData(_
 "Lookup By Subject", LookupMethods.BySubject))
SearchType.Items.Add(New ListItemData(_
 "Lookup By Keyword (Match Any)", _
 LookupMethods.ByKeywordAny))
SearchType.Items.Add(New ListItemData(_
 "Lookup By Keyword (Match All)", _
 LookupMethods.ByKeywordAll))
SearchType.Items.Add(New ListItemData(_
 "Lookup By Publisher", LookupMethods.ByPublisher))
SearchType.Items.Add(New ListItemData(_
 "Lookup By Series Name", LookupMethods.BySeries))
SearchType.Items.Add(New ListItemData(_
 "Lookup By Barcode", LookupMethods.ByBarcode))

The Clear button on the search panel resets all of the search fields and prepares them
for a new search. Add a new ActSearchClear_Click event handler either by using the
method selection fields just above the code editor window, or by double-clicking on
the Clear button on the form itself. Then add the following code to the handler.

INSERT SNIPPET

Insert Chapter 17, Snippet Item 3.

' ----- Clear the current search criteria.
SearchType.SelectedIndex = SearchType.Items.IndexOf(_
 CInt(LookupMethods.ByTitle))
SearchText.Text = ""
SearchMediaType.SelectedIndex = _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

484 | Chapter 17: LINQ

 SearchMediaType.Items.IndexOf(-1)
SearchLocation.SelectedIndex = _
 SearchLocation.Items.IndexOf(-1)

Since the Library application will probably be used by many different patrons through-
out the day, we should assume that a different person is using the program each time
the form returns to the search panel. Let’s simulate a click on the Clear button when-
ever the user views the search panel. Locate the existing TaskLibraryItem method, and
add the following code to the end of the routine, just before the SearchText.Focus()
statement.

INSERT SNIPPET

Insert Chapter 17, Snippet Item 4.

ActSearchClear.PerformClick()
If (ActSearchLimits.Top = LabelMoreLimitsTop.Top) Then _
 ActSearchLimits.PerformClick()

In the interest of being as user-friendly as possible, let’s add some “help text” to the
search panel that varies based on the search type selected in the Search Type drop-
down list. Add a new SearchType_SelectedIndexChanged event handler, and then add
its code.

INSERT SNIPPET

Insert Chapter 17, Snippet Item 5.

I won’t list it all here since it’s rather repetitive. The code simply examines the cur-
rent selection in the SearchType control, and sets the LabelSearchHintsData label to
some helpful descriptive text.

We’re getting close. The only thing left to do is to perform the search when the user
clicks the Lookup button. Add an event handler for ActSearch_Click, and then add
its code.

INSERT SNIPPET

Insert Chapter 17, Snippet Item 6.

Most of this routine checks for valid input before calling the ItemLookup form
through its InitiateSearch public method.

Call (New ItemLookup).InitiateSearch(_
 CType(searchMethod, Library.LookupMethods), _
 Trim(SearchText.Text), mediaLimit, locationLimit)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 485

You’ve done it, doctor. You’ve added a heart to the patient. The program is ready to
run and use for item lookups! If you’ve already added some named items, you can
locate them using any of the relevant search methods. Try doing a title search, using
just the * wildcard character for the search criteria.

Although the search feature works, you will find that some of the display elements
on the ItemLookup form don’t work perfectly. We never did get those columns work-
ing on the item results panel. Improvements are coming soon. With the next chap-
ter’s focus on user interface techniques, we’ll soon be able to customize the display
to our heart’s content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

486

Chapter 18CHAPTER 18

User Interface 18

A picture is worth a thousand words—or several thousand lines of source code, if
you’re generating a bitmap image of it. Writing code to manipulate images of vary-
ing color depths, or to trace out multilayer vector art, can be a nightmare of geomet-
ric contortions and linear algebra. It makes one yearn for those days of prescreen
computers. The first programming class I took used a DECWriter, a printer-based
terminal that had no screen, and included the graphics capabilities of a jellyfish. It
was perfect for me. I couldn’t draw a straight line anyway, and I didn’t need some
fancy schmancy “video display terminal” reminding me of it.

The graphics included in early display systems weren’t much better. “Dumb termi-
nals,” such as the popular VT100, included some simple character graphics that dis-
played basic lines and blocks. Each graphic part was exactly one character in size,
and any images you sought to display had to fit in a clunky 80 × 24 grid.

Fortunately for art aficionados everywhere, computers have come a long way in the
graphics department. GDI+, the standard .NET drawing system, includes complex
drawing features that would make a DECWriter cry. Built upon the older Windows
“Graphics Device Interface” (GDI) technology, GDI+ includes commands for draw-
ing lines, text, and images in the Picasso-enhanced world of 2D graphics.

Beyond GDI+, .NET also provides support for the newer Windows Presentation
Foundation (WPF), a rich user interface and multimedia presentation system based in
part on XML. WPF includes display and interaction features that go way beyond
GDI+, although there are a few GDI+ features absent from WPF. Although I will
give a brief overview of WPF in this chapter, most of the chapter (and all of the
Library Project’s user interface code) will focus on GDI+.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Overview of GDI+ | 487

Overview of GDI+
Before .NET, Windows programmers depended on the GDI system to draw pretty
much anything on the screen, even if they didn’t know that GDI existed. In addition
to bitmap images, all controls, labels, window borders, and icons appeared on the
screen thanks to GDI. It was a giant step forward from character graphics. GDI pre-
sented a basic set of drawing features from which you could potentially output any
type of complex image. But it wasn’t easy. The graphics primitives were—well—
primitive, and you had to build up complex systems from the parts. Most program-
mers weren’t into making things beautiful, so they tried to avoid the complexities of
GDI. But sometimes you had to draw a line or a circle, and there was no way around it.

GDI+, new with .NET, builds on GDI, providing the basic primitives of GDI, but
also supplying some more complex groupings of graphics features into easy-to-use
functions. This simplicity has brought about a renaissance of programmer-initiated
graphics work. Take a look at Figure 18-1, which shows an image that was drawn
using the older GDI, and that same image generated with just a few quick com-
mands in GDI+.

The GDI+ system makes its home in the System.Drawing namespace, and includes
multitudes of classes that represent the drawing objects, surfaces, and embellish-
ment features that enable display graphics. But it’s not just about display. GDI+ gen-
eralizes bitmap and vector drawing on all available output surfaces: bitmaps or line
drawings on the screen (including form and control surfaces), report output on a
printer, graffiti on the back wall of your local supermarket, image content destined
for a JPEG file—they are all the same to GDI+. All destinations use the same draw-
ing methods and objects, making it easier for you to generalize your drawing code.

Figure 18-1. The marvel that is GDI+

GDI+GDI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

488 | Chapter 18: User Interface

GDI+’s features include surfaces, drawing inks, drawing elements, and transformations.

• GDI+ generalizes drawing surfaces through the System.Drawing.Graphics class.
This object represents a drawing canvas, with attributes for color depth and size
(width and height). The canvas may link to a region of the workstation screen,
an internal holding area for final output to the printer, or a general graphics can-
vas for manipulating content in-memory before outputting it to a display or a
file. Another type of surface, the path (System.Drawing.Drawing2D.GraphicsPath),
is like a macro recorder for vector (line) graphics. Drawing done within a path
can be “replayed” on a standard drawing surface, or used to supply boundaries
for other drawing commands.

• Colors and inks appear in the form of colors (opaque or semitransparent color
values), brushes (bitmap-based pseudo-pens used for fills and tiling), and pens
(colored line-drawing objects with a specific thickness).

• Drawing elements include rectangles, ellipses, lines, and other standard or custom-
edge shapes. They also include fonts, both bitmapped and outline-based versions.

• Transformations let you resize, rotate, and skew drawings as you generate them.
When a transformation is applied to a surface, you can draw objects as though
there were no transformation applied, and the changes will happen in real time.

The Windows Forms controls that you use in desktop applications generally take
care of their own display features. However, some controls let you take over some or
all of the drawing responsibilities. For instance, the ListBox control displays simple
single-color text for each list item. However, you can override the drawing of each
list item, providing your own custom content, which may include multicolor text or
graphics. This ability to supply some of the drawing code to a control is known as
owner draw, and it works through the same generalized Graphics object used for
other drawing. We’ll include some owner draw code in the Library Project.

In the interest of full disclosure, you should know that this chapter will cover proba-
bly only 1% of the available GDI+ features, if even that. GDI+ is complex and vast,
and you could spend years delving into every little feature, just in time for your even-
tual switch over to WPF. I’ll give you a brief overview of the GDI+ system so that
you get a feel for some of the basics. If you need to manipulate images and text
beyond what is listed here (and you probably will), try the MSDN documentation or
another resource dedicated to deciphering GDI+.

Selecting a Canvas
Most drawing in .NET occurs in the context of a Graphics object. (For those famil-
iar with pre-.NET development in Windows, this is similar to a device context.)
Graphics objects provide a canvas on which you draw lines, shapes, bitmap
images, and prerecorded drawing macros. Graphics object do not contain the
graphics surface itself; they are simply generic conduits to the actual canvas.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Selecting a Canvas | 489

There is always some surface behind the Graphics object, whether it is a portion of
the screen, a Bitmap object, or the simulated surface of a printed page. Any drawing
that is done to the Graphics object immediately impacts the underlying surface.

The Graphics object includes dozens of methods that let you draw shapes and images
on the graphics surface, and perform other magical 2D activities. We’ll cover many
of them in this chapter.

Obtaining and Creating Graphics Objects
Getting a Graphics object for an on-screen form or control is as easy as calling the
form’s or control’s CreateGraphics method.

Dim wholeFormGraphics As Graphics = _
 Me.CreateGraphics()
Dim buttonOnlyGraphics As Graphics = _
 Button1.CreateGraphics()

Some events, most notably the Paint event for forms and controls, provide access to
a Graphics object through the event arguments.

Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 Dim paintCanvas As Graphics = e.Graphics
End Sub

You can also create a Graphics object that is unrelated to any existing display area by
associating it to a bitmap.

Dim trueBitmap As New Bitmap(50, 50)
Dim canvas = Graphics.FromImage(trueBitmap)

Remember, all changes made to the canvas instance will impact the trueBitmap
image.

Disposing of Graphics Objects Properly
When you are finished with a Graphics object that you create, you must dispose of it
by calling its Dispose method. (This rule is true for many different GDI+ objects.)
Don’t keep it around for a rainy day because it won’t be valid later. You must, must,
must dispose of it when you are finished with it. If you don’t, it could result in image
corruption, memory usage issues, or worse yet, international armed conflict. So,
please dispose of all Graphics objects properly.

canvas.Dispose()

If you create a Graphics object within an event, you really need to dispose of it before
exiting that event handler. There is no guarantee that the Graphics object will still be
valid in a later event. Besides, it’s easy to re-create another Graphics object at any
time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

490 | Chapter 18: User Interface

If you use a Graphics object that is passed to you from another part of the program
(like that e.Graphics reference in the preceding Paint event handler), you should not
dispose of it. Each creator is responsible for disposing of its own objects.

Choosing Pens and Brushes
A lot of graphics work involves drawing primitives: using lines, ellipses, rectangles,
and other regular and irregular shapes to build up a final display. As in real life, you
draw these primitives using a Pen object. For those primitives that result in a fillable
or semifillable shape, a Brush object specifies the color or pattern to use in that filled
area. GDI+ includes many predefined pens and brushes, or you can create your own.

Pens
Pens are line-drawing tools used with the drawing commands of a Graphics object. A
basic pen has a solid color and a thickness.

' ----- A red pen five units wide.
Dim redPen As New Pen(Color.Red, 5)

As with Graphics objects, any Pen you create using the New keyword must be disposed
of properly when you are finished with it.

redPen.Dispose()

Several predefined pens are made available through the System.Drawing.Pens class, all
named by their color, as in Pens.Red. If you use one of these pens, you don’t have to
dispose of it.

You can create a lot of interesting pens that vary by line styles, end decorations, and
color variations. The following code generates the image displayed in Figure 18-2:

Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 ' ----- Draw some fancy lines.
 Dim usePen As Pen

 ' ----- Blank out the background.
 e.Graphics.Clear(Color.White)

 ' ----- Draw a basic 1-pixel line using the title
 ' bar color.
 usePen = New Pen(SystemColors.ActiveCaption, 1)
 e.Graphics.DrawLine(usePen, 10, 10, 200, 10)
 usePen.Dispose()

 ' ----- Draw a thicker dashed line with arrow and ball
 ' end caps. Each dashed segment has a triangle end.
 usePen = New Pen(Color.FromName("Red"), 5)
 usePen.DashCap = Drawing2D.DashCap.Triangle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choosing Pens and Brushes | 491

 usePen.StartCap = Drawing2D.LineCap.ArrowAnchor
 usePen.EndCap = Drawing2D.LineCap.RoundAnchor
 usePen.DashStyle = Drawing2D.DashStyle.Dash
 e.Graphics.DrawLine(usePen, 10, 30, 200, 30)
 usePen.Dispose()

 ' ----- A semitransparent black pen with three line
 ' parts, two thin and one thick.
 usePen = New Pen(Color.FromArgb(128, 0, 0, 0), 10)
 usePen.CompoundArray = _
 New Single() {0.0, 0.1, 0.4, 0.5, 0.8, 1.0}
 e.Graphics.DrawLine(usePen, 10, 55, 200, 55)
 usePen.Dispose()
End Sub

The code shows that there are a few different ways to specify a color, by either its
predefined name (Color.White and SystemColors.ActiveCaption), a string name
(using Color.FromName), or its Alpha-Red-Green-Blue value (Color.FromArgb). That
last version lets you supply distinct values for the “alpha blend” (which sets the
transparency level, from 0 for fully transparent to 255 for fully opaque), red, green,
and blue components of the full color.

Most of the pen-specific properties I demonstrated here are somewhat self-explanatory.
As with most of GDI+, the mind-numbing amount of available features makes it
impossible to completely document in a small chapter, let alone provide a good
night’s sleep for authors designing such chapters. I will simply refer you to the online
documentation for the Pen class to get all of the luscious details.

Brushes
Brushes are used for filling in spaces between drawn lines, even if you make those
lines fully invisible. GDI+ includes a variety of brush types, including solid brushes
(your basic single-color brush), hatch brushes (pattern brushes that are pleasant but
general), texture brushes (where a custom bitmap is used for the brush), and gradient
brushes (which slowly fade from one color to another across the brush). The System.
Drawing.Brushes class includes some predefined solid brushes based on color name.
As with pens, you must dispose of brushes that you create, but not the solid system-
defined brushes.

Figure 18-2. Yes sir, yes sir, three lines full

http://lib.ommolketab.ir
http://lib.ommolketab.ir

492 | Chapter 18: User Interface

The following block of code draws some simple rectangles with a variety of brush
styles. The results appear in Figure 18-3.

Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 ' ----- Draw some fancy rectangles.
 Dim useBrush As Brush

 e.Graphics.Clear(Color.White)

 ' ---- Draw a filled rectangle with a solid color.
 e.Graphics.FillRectangle(Brushes.Cyan, 10, 10, 150, 50)

 ' ----- Draw a hatched rectangle. Use black for the
 ' background, and white for the pattern foreground.
 useBrush = New Drawing2D.HatchBrush(_
 Drawing2D.HatchStyle.LargeConfetti, _
 Color.White, Color.Black)
 e.Graphics.FillRectangle(useBrush, 10, 70, 150, 50)
 useBrush.Dispose()

 ' ----- Draw a left-to-right linear gradient rectangle.
 ' The gradient's own rectangle determines the
 ' starting offset, based on the Graphics surface
 ' origin.
 useBrush = New Drawing2D.LinearGradientBrush(_
 New Rectangle(200, 10, 75, 25), Color.Blue, _
 Color.Yellow, Drawing2D.LinearGradientMode.Horizontal)
 e.Graphics.FillRectangle(useBrush, 200, 10, 150, 50)
 useBrush.Dispose()

 ' ----- Use an image for the brush. I'm using the
 ' "LookupItem.bmp" graphic used in the Library
 ' Project.
 useBrush = New TextureBrush(Image.FromFile(_
 "LookupItem.bmp"))
 e.Graphics.FillRectangle(useBrush, 200, 70, 150, 50)
 useBrush.Dispose()
End Sub

Figure 18-3. Kind of square, if you ask me

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flowing Text from the Font | 493

Flowing Text from the Font
Circles and squares are OK, but they don’t always communicate much, unless you
are Joan Miró. Most of us depend on text to say what we mean. Fortunately, GDI+
has features galore that place text on your graphics surface.

Before graphical user interfaces were all the rage, text wasn’t really an issue; either
you used the characters built into the system, or you used nothing. On the screen,
each letter of the alphabet was designed into the hardware of the computer or
monitor, and any particular character could appear only within each square of the
predefined 80 × 24 grid. Printers were a little better, since you could backspace and
retype over previously typed positions to generate either bold or underscore text.
Still, you were generally limited to one font, or just a small handful of basic fonts
embedded in the printer’s memory.

Such limitations are a thing of the past. All text in Microsoft Windows appears cour-
tesy of fonts, descriptions of character shapes that can be resized or stretched or
emphasized to meet any text need. And because the user can add fonts to the system
at any time, and from any third-party source, the variety of these fonts is amazing.
But you already know all this. Let’s get on to the code.

To gain access to a font for use in your graphics, create an instance of the System.
Drawing.Font class, passing it at least the font name and point size, and an optional
style reference:

Dim basicFont As New Font("Arial", 14, FontStyle.Italic)

Naturally, the list of available fonts varies by system; if you’re going to go beyond the
basic preinstalled fonts supplied with Windows, you should confirm that a named
font is really available, and have a fallback option if it is not. You can get a list of all
fonts by asking GDI+ nicely. All fonts appear in “families,” where each named fam-
ily may have bold, italic, and other variations installed as separate font files. The fol-
lowing code block adds a list of all installed font families to a ListBox control:

Dim allFonts As New Drawing.Text.InstalledFontCollection()
For Each oneFamily As Drawing.FontFamily In allFonts.Families
 ListBox1.Items.Add(oneFamily.Name)
Next oneFamily

If the font you need isn’t available and you aren’t sure what to use, let GDI+ choose
for you. It includes a few generic fonts for emergency use.

Drawing.FontFamily.GenericMonospace
Drawing.FontFamily.GenericSansSerif
Drawing.FontFamily.GenericSerif

Getting back to using fonts in actual drawing, the Graphics object includes a
DrawString method that blasts out some text to the canvas.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

494 | Chapter 18: User Interface

Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 Dim basicFont As New Font("Arial", 14, FontStyle.Italic)
 e.Graphics.DrawString("This is a test", basicFont, _
 Brushes.Black, 0, 0)
 basicFont.Dispose()
End Sub

Figure 18-4 shows the output for this code block. In most of the sample code in this
chapter, I’ll be outputting content to a PictureBox control named PictureBox1 that
I’ve placed on the form of a new Windows Forms application. I’ve also set that con-
trol’s BorderStyle property to FixedSingle, and its BackColor property to White so
that I can visualize the edges of the canvas. Drawing occurs in the Paint event hand-
ler, which gets called whenever the picture box needs to be refreshed, as when
another window obscures it and then goes away. In the remaining code examples, I
won’t be including the Sub PictureBox1_Paint method definition, just the code that
goes inside it.

Of course, you can mix and match fonts on a single output canvas. This code
includes text using Arial 14 and Arial 18:

Dim basicFont As New Font("Arial", 14)
Dim strongFont As New Font("Arial", 18, FontStyle.Bold)
Dim offset As Single = 0.0
Dim showText As String
Dim textSize As Drawing.SizeF

showText = "This is some "
textSize = e.Graphics.MeasureString(showText, basicFont)
e.Graphics.DrawString(showText, basicFont, _
 Brushes.Black, offset, 0)
offset += textSize.Width

showText = "strong"
textSize = e.Graphics.MeasureString(showText, strongFont)
e.Graphics.DrawString(showText, strongFont, _
 Brushes.Black, offset, 0)
offset += textSize.Width

Figure 18-4. This is a test for sure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flowing Text from the Font | 495

showText = "text."
textSize = e.Graphics.MeasureString(showText, basicFont)
e.Graphics.DrawString(showText, basicFont, _
 Brushes.Black, offset, 0)
offset += textSize.Width

strongFont.Dispose()
basicFont.Dispose()

The output of this code appears in the top box of Figure 18-5, and it’s OK. But I
want the bottom edges of the main body parts of each text block—that is, the base-
lines of each block—to line up properly, as shown in the lower box of Figure 18-5.

Doing all of the fancy font-lining-up stuff is kind of a pain in the neck. You have to
do all sorts of measuring based on the original font design as extrapolated onto the
pixel-based screen device. Then you connect the knee bone to the thigh bone, and so
on. Here’s the code I used to generate the second lined-up image:

Dim basicFont As New Font("Arial", 14)
Dim strongFont As New Font("Arial", 18, FontStyle.Bold)
Dim offset As Single = 0.0
Dim showText As String
Dim textSize As Drawing.SizeF
Dim basicTop As Single
Dim strongTop As Single
Dim strongFactor As Single
Dim basicFactor As Single

' ----- The Font Family uses design units, probably
' specified by the original designer of the font.
' Map these units to display units (points).
strongFactor = strongFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular) / strongFont.Height
basicFactor = basicFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular) / basicFont.Height

Figure 18-5. The good and the bad; both ugly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

496 | Chapter 18: User Interface

' ----- Determine the location of each font's baseline.
strongTop = (strongFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular) - strongFont.FontFamily.GetCellDescent(_
 FontStyle.Regular)) / strongFactor
basicTop = (basicFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular) - basicFont.FontFamily.GetCellDescent(_
 FontStyle.Regular)) / basicFactor

' ----- Draw a line that proves the text lines up.
e.Graphics.DrawLine(Pens.Red, 0, strongTop, _
 e.ClipRectangle.Width, strongTop)

' ----- Show each part of the text.
showText = "This is some "
textSize = e.Graphics.MeasureString(showText, basicFont)
e.Graphics.DrawString(showText, basicFont, _
 Brushes.Black, offset, strongTop - basicTop)
offset += textSize.Width

showText = "strong"
textSize = e.Graphics.MeasureString(showText, strongFont)
e.Graphics.DrawString(showText, strongFont, _
 Brushes.Black, offset, 0)
offset += textSize.Width

showText = "text."
textSize = e.Graphics.MeasureString(showText, basicFont)
e.Graphics.DrawString(showText, basicFont, _
 Brushes.Black, offset, strongTop - basicTop)
offset += textSize.Width

strongFont.Dispose()
basicFont.Dispose()

There’s a lot more calculating going on in that code. And I didn’t even try to tackle
things like kerning, ligatures, or anything else having to do with typography. Any-
way, if you need to perform complex font manipulation, GDI+ does expose all of the
details so that you can do it properly. If you just want to output line after line of text
using the same font, call the font’s GetHeight method for each line displayed:

verticalOffset += useFont.GetHeight(e.Graphics)

Enough of that complex stuff. There are easy and cool things to do with text, too.
Did you notice that text output uses brushes and not pens? This means you can draw
text using any brush you can create. This block of code uses the Library Project’s
LookupItem bitmap brush to display some bitmap-based text.

Dim useBrush As Brush = New TextureBrush(_
 Image.FromFile("LookupItem.bmp"))
Dim useFont As New Font("Arial", 60, FontStyle.Bold)
e.Graphics.DrawString("Wow!", useFont, useBrush, 0, 0)
useFont.Dispose()
useBrush.Dispose()

The output appears in Figure 18-6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imagining Images | 497

Imagining Images
Probably more than anything else, the Internet has fueled the average computer
user’s need for visual stimuli. Web sites are awash with GIF, JPG, TIFF, and a vari-
ety of other image formats. Even if you deal with non-web applications, it’s likely
that you, as a programmer, will come into more frequent contact with graphical
images. Fortunately, GDI+ includes features that let you manage and manipulate
these images with ease.

The “BMP” file format is the native bitmap format included in Microsoft Windows,
but it’s not all that common in the web world. But none of that matters to GDI+. It
can load and manage files using the following graphics formats:

• Windows “BMP” bitmap files of any color depth and size.

• CompuServe Graphics Interchange Format (“GIF”) files, commonly used for
non-photo images on the Internet.

• Joint Photographic Experts Group (“JPEG”) files, commonly used for photos
and other images on the Internet. JPEG files are compressed internally to reduce
file size, but with the possible loss of image quality.

• Exchangeable Image File (“EXIF”) files, a variation of JPEG that stores profes-
sional photographs.

• Portable Network Graphics (“PNG”) files, which are similar to GIF files, but
with some enhanced features.

• Tag Image File Format (“TIFF”) files, which are kind of a combination of all
other file formats. Some government organizations store scanned images using
TIFF.

• Metafiles, which store vector line art instead of bitmap images.

• Icon (“ICO”) files, which are used for standard Microsoft Windows icons. You
can load them as bitmaps, but there is also a distinct Icon class that lets you treat
them in more icon-like ways.

Three primary classes are used for images: Image (an abstract base class for the other
two classes), Bitmap, and Metafile. I’ll discuss the Metafile class a little later.

Figure 18-6. The merger of text and graphics

http://lib.ommolketab.ir
http://lib.ommolketab.ir

498 | Chapter 18: User Interface

Bitmaps represent an image as drawn on a grid of bits. When a bit in the grid is on,
that grid cell is visible or filled. When the bit is off, the grid cell is invisible or empty.
Figure 18-7 shows a simple image using such a bitmap grid.

Since a bit can support only two states, “1-bit bitmap files” are monochrome, dis-
playing images using only black and white. To include more colors, bitmaps add
additional “planes.” The planes are stacked on each other so that a cell in one plane
matches up with that same position cell in all other planes. A set of eight planes
results in an “8-bit bitmap image,” and supports 256 colors per cell (because 2planes =
28 = 256). Some images include as many as 32 or even 64 bits (planes), although
some of these bits may be reserved for “alpha blending,” which makes perceived
transparency possible.

Unless you are a hardcore graphics junkie, manipulating all of those bits is a chore.
Fortunately, you don’t have to worry about it since it’s all done for you by the Bitmap
class. You just need to worry about loading and saving bitmaps (using simple Bitmap
methods, of course), using a bitmap as a brush or drawing object (as we did in some
sample code in this chapter already), or writing on the bitmap surface itself by
attaching a Graphics object to it.

If you have a bitmap in a file, you can load it via the Bitmap class constructor.

Dim niceImage As New Bitmap("LookupItem.bmp")

To save a bitmap object to a file, use its Save method.

niceImage.Save("LookupItem.jpg", Imaging.ImageFormat.Jpeg)

Another constructor lets you create new bitmaps in a variety of formats.

' ---- Create a 50-50 pixel bitmap, using 32 bit-planes
' (eight each for the amounts of red, green, and blue
' in each pixel, and eight bits for the level of
' transparency of each pixel, from 0 to 255).
Dim niceImage As New Bitmap(50, 50, _
 Drawing.Imaging.PixelFormat.Format32bppArgb)

To draw a bitmap on a graphics surface, use the Graphics object’s DrawImage method.

e.Graphics.DrawImage(niceImage, leftOffset, topOffset)

Figure 18-7. An 8 × 8 monochrome bitmap containing great art

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exposing Your True Artist | 499

That statement draws the image to the graphics surface as is, but that’s kind of bor-
ing. You can stretch and crop the image as you draw it, or even generate a thumb-
nail. I’ll try all these methods using the image from the Library Project’s “splash”
welcome form (SplashImage.jpg).

Dim splashImage As New Bitmap("SplashImage.jpg")

' ----- Draw it at half width and height.
e.Graphics.DrawImage(splashImage, New RectangleF(10, 50, _
 splashImage.Width / 2, splashImage.Height / 2))

' ----- Stretch it with fun!
e.Graphics.DrawImage(splashImage, New RectangleF(200, 10, _
 splashImage.Width * 1.25, splashImage.Height / 4))

' ----- Draw the middle portion.
e.Graphics.DrawImage(splashImage, 200, 100, New RectangleF(_
 0, splashImage.Height / 3, splashImage.Width, _
 splashImage.Height / 2), GraphicsUnit.Pixel)

Figure 18-8 shows the output for the previous block of code. But that’s not all the
drawing you can do. The DrawImage method includes 30 overloads. That would keep
me busy for 37 minutes at least!

Exposing Your True Artist
OK, we’ve covered most of the basic GDI+ features used to draw images. Now it’s all
just a matter of issuing the drawing commands for shapes, images, and text on a
graphics surface. Most of the time, you’ll stick with the methods included on the
Graphics object, all 12 bazillion of them. Perhaps I overcounted, but there are quite a
few. Here’s just a sampling:

Figure 18-8. Three views of a reader: a masterpiece by the author

http://lib.ommolketab.ir
http://lib.ommolketab.ir

500 | Chapter 18: User Interface

• Clear method. Clear the background with a specific color.

• CopyFromScreen method. If the Prnt Scrn button on your keyboard falls off, this is
the method for you.

• DrawArc method. Draw a portion of an arc along the edge of an ellipse. Zero
degrees starts at three o’clock. Positive arc sweep values move in a clockwise
direction; use negative sweep values to move counterclockwise.

• DrawBezier and DrawBeziers methods. Draw a Bézier spline, a formula-based
curve that uses a set of points, plus directionals that guide the curve through the
points.

• DrawCurve, DrawClosedCurve, and FillClosedCurve methods. Draw “cardinal”
curves (where points define the path of the curve), with an optional brush fill.

• DrawEllipse and FillEllipse methods. Draw an ellipse or a circle (which is a
variation of an ellipse).

• DrawIcon, DrawIconUnstretched, DrawImage, DrawImageUnscaled, and
DrawImageUnscaledAndClipped methods. Different ways of drawing images and
icons.

• DrawLine and DrawLines methods. Draw one or more lines with lots of options
for making the lines snazzy.

• DrawPath and FillPath methods. I’ll discuss “graphic paths” a little later.

• DrawPie and FillPie methods. Draw a pie slice border along the edge of an
ellipse.

• DrawPolygon and FillPolygon methods. Draw a regular or irregular geometric
shape based on a set of points.

• DrawRectangle, DrawRectangles, FillRectangle, and FillRectangles methods.
Draw squares and rectangles.

• DrawString method. We used this before to output text to the canvas.

• FillRegion method. I’ll discuss regions later in the chapter.

Here’s some sample drawing code:

' ----- Line from (10, 10) to (40, 40).
e.Graphics.DrawLine(Pens.Black, 10, 10, 40, 40)

' ----- 90degree clockwise arc for 40-pixel diameter circle.
e.Graphics.DrawArc(Pens.Black, 50, 10, 40, 40, 0, -90)

' ----- Filled 40x40 rectangle with a dashed line.
e.Graphics.FillRectangle(Brushes.Honeydew, 120, 10, 40, 40)
Using dashedPen As New Pen(Color.Black, 2)
 dashedPen.DashStyle = Drawing2D.DashStyle.Dash
 e.Graphics.DrawRectangle(dashedPen, 120, 10, 40, 40)
End Using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Paths: Drawings on Macro-Vision | 501

' ----- A slice of elliptical pie.
e.Graphics.FillPie(Brushes.BurlyWood, 180, 10, 80, 40, _
 180, 120)

And so on. You get the idea. Figure 18-9 shows the output for this code.

Paths: Drawings on Macro-Vision
The GraphicsPath class lets you collect several of the more primitive drawing objects
(such as lines and arcs, and even rectangles) into a single grouped unit. This full path
can then be replayed onto a graphics surface as a macro.

Using thePath As New Drawing2D.GraphicsPath
 thePath.AddEllipse(0, 0, 50, 50)
 thePath.AddArc(10, 30, 30, 10, 10, 160)
 thePath.AddRectangle(New Rectangle(15, 15, 5, 5))
 thePath.AddRectangle(New Rectangle(30, 15, 5, 5))

 e.Graphics.DrawPath(Pens.Black, thePath)
End Using

This code block draws a smiley face on the canvas (see Figure 18-10).

That’s cute. Fortunately, there are other uses for graphics paths, some of which I’ll
discuss in the next section.

Figure 18-9. Some simple drawings

Figure 18-10. Drawing with a GraphicsPath object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

502 | Chapter 18: User Interface

Keeping It Regional
Usually, when you draw images, you have the entire visible canvas to work with.
(You can draw images and shapes off the edge of the canvas if you want, but if a tree
draws an image in the forest and no one is there to admire it, does it appear?) But
there are times when you may want only a portion of what you draw to appear. Win-
dows uses this method itself to save time. When you obscure a window with another
one, and then expose the hidden window, the application has to redraw everything
that appeared on the form or window. But if only a portion of that background win-
dow was hidden and then made visible again, why should the program go through
the trouble of drawing everything again? It really has to redraw only the part that was
hidden, the part that was in the hidden region.

A region specifies an area to be drawn on a surface. And regions aren’t limited to boring
rectangular shapes. You can design a region based on simple shapes, or you can com-
bine existing regions into more complex regions. For instance, if you have two rectangu-
lar regions, you can overlap them and request a new combined region that contains
(1) all of the original two regions; (2) the original regions but without the overlapped
parts; or (3) just the overlapped parts. Figure 18-11 shows these combinations.

During drawing operations, regions are sometimes referred to as “clipping regions”
because any content drawn outside the region is clipped off and thrown away. The
following code draws an image, but masks out an ellipse in the middle by using (ta-
da!) a graphics path to establish a custom clipping region:

' ----- Load the image. We'll show it smaller than normal.
Dim splashImage As New Bitmap("SplashImage.jpg")
Dim thePath As New Drawing2D.GraphicsPath()

' ----- Create an elliptical path that is the size of the
' output image.
thePath.AddEllipse(20, 20, splashImage.Width \ 2, _
 splashImage.Height \ 2)

' ----- Replace the original clipping region that covers
' the entire canvas with just the rectangular region.
e.Graphics.SetClip(thePath, Drawing2D.CombineMode.Replace)

Figure 18-11. Different combinations of regions

Original regions Union Xor (XOR) Intersect (AND)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Twisting and Turning with Transformations | 503

' ----- Draw the image, which will be clipped.
e.Graphics.DrawImage(splashImage, 20, 20, _
 splashImage.Width \ 2, splashImage.Height \ 2)

' ----- Clean up.
thePath.Dispose()

The output for this code appears in Figure 18-12.

Regions are also useful for “hit testing.” If you draw a non-rectangular image on a
form, and you want to know when the user clicks on the image, but not on any pixel
just off the image, you can use a region that is the exact shape of the image to test for
mouse clicks.

Twisting and Turning with Transformations
Normally, anything you draw on the graphics canvas is laid down directly on the bit-
map surface. It’s like a giant grid, and your drawing commands are basically drop-
ping colored inks directly into each grid cell. The Graphics object also gives you the
ability to pass your drawing commands through a geometric transformation before
their output goes to the canvas surface. For instance, a rotation transformation
would rotate your lines, shapes, and text by the amount you specify (in degrees), and
then apply the result to the surface. Figure 18-13 displays the results of the following
code, which applies two translations: (1) moving the (0, 0) origin right by 100 pixels
and down by 75 pixels; and (2) adding a clockwise rotation of 270 degrees.

e.Graphics.DrawString("Normal", _
 SystemFonts.DefaultFont, Brushes.Black, 10, 10)
e.Graphics.TranslateTransform(100, 75)
e.Graphics.RotateTransform(270)
e.Graphics.DrawString("Rotated", _
 SystemFonts.DefaultFont, Brushes.Black, 10, 10)
e.Graphics.ResetTransform()

Figure 18-12. Ready to hang in your portrait gallery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

504 | Chapter 18: User Interface

Transformations are cumulative; if you apply multiple transformations to the can-
vas, any drawing commands will pass through all of the transformations before arriv-
ing at the canvas. The order in which transformations occur is important. If the code
we just ran had reversed the TranslateTransform and RotateTransform statements, the
rotation would have altered the x, y coordinates for the entire canvas world. The
subsequent translation of (100, 75) would have moved up the origin 100 pixels and
then to the right 75 pixels.

The Graphics class includes these methods that let you apply transformations to the
“world view” of the canvas during drawing:

RotateTransform
Rotates the world view in clockwise degrees, from 0 to 359. The rotation can be
positive or negative.

ScaleTransform
Sets a scaling factor for all drawing. Basically, this increases or decreases the size
of the canvas grid when drawing. Changing the scale impacts the width of pens.
If you scale the world by a factor of two, not only do distances appear to be
twice as far apart, but all pens draw twice as thick as when unscaled.

TranslateTransform
Repositions the origin based on an x and y offset.

MultiplyTransform
A sort of master transformation method that lets you apply transforms through a
Matrix object. It has more options than just the standard transforms included in
the Graphics object. For instance, you can apply a shearing transformation that
skews all output in a rectangle-to-parallelogram type of change.

ResetTransform
Removes all applied transformations from a canvas.

Figure 18-13. Normal and rotated text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enhancing Controls Through Owner Draw | 505

Save
Saves the current state of the transformed (or untransformed) graphics surface to
an object for later restoration. This allows you to apply some transformations,
save them, apply some more, and then restore the saved set, wiping out any
transformations applied since that set was saved.

Restore
Restores a saved set of transformations.

Enhancing Controls Through Owner Draw
A lot more GDI+ drawing features are included in .NET, but what we’ve seen here
should be enough to whet your appetite. You can do a lot of fancy drawing with
GDI+, but let’s face it: you and I are programmers, not artists. If we were artists,
we’d be raking in six figures using a floor mop to draw traditional abstract cubist
Italian landscapes with Bauhausian accents.

Fortunately, there are practical semi-artistic things you can do with GDI+. One
important drawing feature is owner draw, a sharing of drawing responsibilities
between a control and you, the programmer. (You are the “owner.”) The ComboBox
control supports owner drawing of the individual items in the drop-down portion of
the list. Let’s create a ComboBox control that displays color names, including a small
sample of the color to the left of the name. Create a new Windows Forms applica-
tion, and add a ComboBox control named ComboBox1 to Form1. Make these changes to
ComboBox1:

1. Change its DropDownStyle property to DropDownList.

2. Change its DrawMode property to OwnerDrawFixed.

3. Alter its Items property, adding multiple color names as distinct text lines in the
String Collection Editor window. I added Red, Green, and Blue.

Now, add the following code to the source code area of Form1’s class:

Private Sub ComboBox1_DrawItem(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DrawItemEventArgs) _
 Handles ComboBox1.DrawItem
 ' ----- Ignore the unselelected state.
 If (e.Index = -1) Then Return

 ' ----- Create a brush for the display color, based on
 ' the name of the item.
 Dim colorBrush As New SolidBrush(Color.FromName(_
 CStr(ComboBox1.Items(e.Index))))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

506 | Chapter 18: User Interface

 ' ----- Create a text brush. The color varies based on
 ' whether this item is selected or not.
 Dim textBrush As Brush
 If ((e.State And DrawItemState.Selected) = _
 DrawItemState.Selected) Or _
 ((e.State And DrawItemState.HotLight) = _
 DrawItemState.HotLight) Then
 textBrush = New SolidBrush(SystemColors.HighlightText)
 Else
 textBrush = New SolidBrush(SystemColors.ControlText)
 End If

 ' ----- Get the shape of the color display area.
 Dim colorBox As New Rectangle(e.Bounds.Left + 4, _
 e.Bounds.Top + 2, (e.Bounds.Height - 4) * 2, _
 e.Bounds.Height - 4)

 ' ----- Draw the selected or unselected background.
 e.DrawBackground()

 ' ----- Draw the custom color area.
 e.Graphics.FillRectangle(colorBrush, colorBox)
 e.Graphics.DrawRectangle(Pens.Black, colorBox)

 ' ----- Draw the name of the color to the right of
 ' the color.
 e.Graphics.DrawString(CStr(ComboBox1.Items(e.Index)), _
 ComboBox1.Font, textBrush, 8 + colorBox.Width, _
 e.Bounds.Top + ((e.Bounds.Height - _
 ComboBox1.Font.Height) / 2))

 ' ----- Draw a selected rectangle around the item,
 ' if needed.
 e.DrawFocusRectangle()

 ' ----- Clean up.
 textBrush.Dispose()
 colorBrush.Dispose()
End Sub

Run the code and play with the combo box, as shown in Figure 18-14.

Figure 18-14. Our custom color combo box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows Presentation Foundation | 507

Windows Presentation Foundation
Graphical user interfaces are a relatively new phenomenon. The first programmers
didn’t have all of the glitzy bling-bling that adorns many a modern UI. They had to
make do with naval semaphore flags and Morse code. Here in the 21st century, hav-
ing passed through the epochs of text-based and stick-figure interfaces, computers
are finally able to present information in a way that totally confuses the end-user, yet
in a beautiful and highly interactive style.

Microsoft’s latest tool for building active, next-generation user interfaces is Win-
dows Presentation Foundation, or WPF. As in LINQ, WPF melds together many dif-
ferent technologies into a unified whole. Some of those technologies have been with
us for many years, such as Microsoft’s Direct3D system that displays and manipu-
lates 3D elements. WPF condenses all of these technologies, and makes them avail-
able through an XML-based descriptive language known as XAML (eXtensible
Application Markup Language).

WPF includes features and elements that deal with many areas of presentation,
including on-screen controls, 2D drawings (like GDI+), 3D graphics (from
Direct3D), static images (such as JPEG pictures), interactive multimedia (video and
audio), and WYSIWYG document presentation (similar to PDF documents). Individ-
ual elements and entire user interfaces can be animated automatically, or in response
to user interactions.

When it comes time to display your WPF content, you can present it to the user in a
few common ways. XAML files and related .NET code can be built into a stand-
alone application, much like a typical .NET Windows Forms application, but with
the amazing Cary Grant looks normally inaccessible to developers.

WPF can also be used to generate web-based applications hosted within a user’s
browser. In fact, elements that you design for use in desktop-style applications can
be used on the Web generally without any modifications. As expected, security limi-
tations put a damper on some of the things you can do when running in this type of
host.

Browser-based WPF programs require that the .NET Framework and the WPF
libraries be installed and accessible on the client workstation. Microsoft is bundling
up much of that technology and packaging it in a product called Silverlight. Designed to
compete with the likes of Adobe’s Flash platform and Sun Microsystems’ new JavaFX
system, Silverlight will eventually allow XAML and .NET linked content to run on
non-Windows platforms, such as the Macintosh.

A third variation uses a subset of XAML to define a PDF-like static document. Such
documents are known as XPS (XML Paper Specification) documents, and are actu-
ally ZIP files that contain all of the XAML pages, graphics, and other page elements
in distinct files within the archive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

508 | Chapter 18: User Interface

WPF and XAML
One of the hallmarks of application design in WPF is the separation of logic from
presentation. This is a common goal expressed in many newer technologies, includ-
ing XML and ASP.NET (see Chapter 23). All application logic—all event handlers
triggered by user input and system actions—is written in standard .NET code. The
user interface can also appear as .NET code, with objects created out of the WPF-
specific System.Windows namespace. But it’s more common to design user interface
elements and derived controls through XAML, an XML schema that can be gener-
ated by you in Visual Studio or Notepad, or by third-party tools.

Because XAML content can be built outside its application, a user interface design
specialist with limited programming knowledge can build the UI components inde-
pendently from the developer’s work on the application logic. Microsoft offers a tool
for such designers, called Microsoft Expression Blend, one of a handful of Expression
design products. Other vendors also offer tools to generate rich XAML content.

Visual Studio 2008 lets you create complete WPF applications based on XAML con-
tent. To build a WPF application, start Visual Studio, create a new project, and from
the New Project dialog select the WPF Application template within the Visual Basic
Project type. Then click OK. Windows immediately creates a new WPF Forms
project, displaying the starting form, Window1 (see Figure 18-15).

Figure 18-15. Not too different from a Windows Forms application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows Presentation Foundation | 509

The user interface is defined entirely by the XML set displayed at the bottom of the
form. Currently, it defines the eventual application window itself.

<Window x:Class="Window1"
 xmlns="http://schemas.microsoft.com

/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Grid>

 </Grid>
</Window>

This code defines the window, Window1, which has as its real class System.Windows.
Window. The attributes of the XAML Window tag, including Title, Height, and Width,
map back to properties of the same name in the Window class.

Let’s spice up this form a little more. I’ll add a button that includes a rainbow on the
button’s face, plus add a yellow glow around the button. I’ll also add an event hand-
ler that shows a message box. As with standard Windows Forms application, you
use the controls in the toolbox to build your form. I’ll drag a button onto the form’s
surface and use the XAML text area to bring new life to the window.

<Window x:Class="Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="160" Width="411">
 <Grid>
 <Button Margin="95,26,99,35" Name="Button1">
 <Button.Foreground>White</Button.Foreground>
 <Button.FontSize>18</Button.FontSize>
 <Button.FontWeight>Bold</Button.FontWeight >
 <Button.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color="Red" Offset="0" />
 <GradientStop Color="Orange" Offset="0.1425"/>
 <GradientStop Color="Yellow" Offset="0.285"/>
 <GradientStop Color="Green" Offset="0.4275"/>
 <GradientStop Color="Blue" Offset="0.57"/>
 <GradientStop Color="Indigo" Offset="0.7325"/>
 <GradientStop Color="Violet" Offset="0.875"/>
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Button.Background>
 <Button.BitmapEffect>
 <OuterGlowBitmapEffect />
 </Button.BitmapEffect> Click Me
 </Button>
 </Grid>
</Window>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

510 | Chapter 18: User Interface

I’ll also add an event handler, using the same point-and-click simplicity that I’ve
used in Windows Forms projects.

Private Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles Button1.Click
 MsgBox("Hello, World")
End Sub

Running this program with the F5 key gives us the expected form and button, but
oh, what a complex-looking button it is (see Figure 18-16).

Although the colors don’t appear in this grayscale book, the form does indeed have a
rainbow button.

Enhancing Classes with Attributes
Class-modifying attributes are something we discussed way back in Chapter 1, and
they have nothing to do with GDI+. I just wanted to refresh your memory since they
will be used in this chapter’s project code.

Class- or member-modifying attributes appear just before the definition of the class
or member, and within angle brackets. This code attaches the ObsoleteAttribute
attribute to the SomeOldClass class:

<ObsoleteAttribute> _
Class SomeOldClass
 ...class details here...
End Class

(You can leave the “Attribute” part of an attribute’s name off if the first part of the
name doesn’t conflict with any Visual Basic keyword.) Attributes appear as meta-
data in the final compiled assembly, and they are used by classes and applications
that, by design, extract meaning from specific attributes. In this chapter’s code, we’ll

Figure 18-16. Click somewhere on the rainbow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 511

make use of the PropertyGrid control, the control that implements the Properties
panel within the Visual Studio development environment, and is often used to mod-
ify Form and Control properties. This control is available for your use in your own
applications. To use it, assign a class instance to the control’s SelectedObject prop-
erty. Then, magically, all of the object’s properties appear in the control’s list of
properties.

Nice as this is, it’s not always desirable. Your object may have properties that should
not be displayed. The PropertyGrid control is designed to be generic; it doesn’t know
about your object’s needs, so it doesn’t know which properties to exclude. That is, it
doesn’t know until you tell it through attributes. By adding specific attributes to your
class’s properties, you tell the PropertyGrid control how to treat members of your
object. For instance, the BrowsableAttribute attribute tells the PropertyGrid to
include (True) or exclude (False) the property.

<Browsable(False)> _
Public Property SecretProperty() As String...

I’ll supply additional details about this when we use the PropertyGrid control later in
this chapter.

Summary
Although many parts of GDI+ are pretty much wrappers around the old GDI sys-
tem, GDI+ still manages to provide power and simplicity that go way beyond the
original implementation. In business development, you won’t always have a need to
use the more interesting aspects of the System.Drawing namespace. But when you do,
you’ll encounter a simple and coherent system for displaying images, text, and cus-
tom vector elements on the screen or other output medium.

And speaking of simple and coherent, look for WPF at a computer near you. As
more and more programmers cozy up to the new system, it may eventually supplant
both the Windows Forms and the ASP.NET page system as the primary presenta-
tion layer in .NET desktop and web applications.

Project
The Library Project has used features of GDI+ since the moment the first form
appeared in the newly created project, but it all came for free through code included
in the framework. Now it’s time for you, the programmer, to add your own GDI+
contribution to the application. In this chapter’s project code, we’ll use GDI+ to
enhance the normal display of a control through owner draw features. Plus, we’ll
finally begin to implement some of the bar code features I tempted you with in ear-
lier chapters. I’m sorry to say that we won’t be using the cool XML drawing experi-
ence that is WPF.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

512 | Chapter 18: User Interface

PROJECT ACCESS

Load the Chapter 18 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 18 (After) Code instead.

Install the Bar Code Font
If you haven’t yet obtained a bar code font, now is the time to do it. The features
included in this chapter’s project code will require you to use such a font. The pub-
lisher web site for this book (listed in Appendix A) includes suggested resources for
obtaining a font at little or no cost for your personal use. You may also purchase a
professional bar code font. Make sure the font you obtain is a TrueType font.

Using Owner Draw
In the previous chapter, we added the ItemLookup.vb form with its multiple views of
library items. One of those views included the MatchingItems control, a multicolumn
listbox displaying Author/Name, Call Number, and Media Type columns. Although we
stored the column-specific data within each item already, we didn’t actually display
the individual columns to the user.

The thing about multicolumn lists and other limited-space text displays is that some
of the text is bound to overrun its “official” area if you let it. For instance, the text in
one list column may overlap into another column of text. In such cases, it has
become the tradition to chop off the extended content and replace it with an ellipsis
(“...”). So, we’ll need a routine that will determine whether a string is too long for its
display area, and perform the chopping and ellipsizing as needed. Add the
FitTextToWidth method to the General.vb file’s module code.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 1.

Public Function FitTextToWidth(ByVal origText As String, _
 ByVal pixelWidth As Integer, _
 ByVal canvas As System.Drawing.Graphics, _
 ByVal useFont As System.Drawing.Font) As String
 ' ----- Given a text string, make sure it fits in the
 ' specified pixel width. Truncate and add an
 ' ellipsis if needed.
 Dim newText As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 513

 newText = origText
 If (canvas.MeasureString(newText, useFont).Width() > _
 pixelWidth) Then
 Do While (canvas.MeasureString(newText & "...", _
 useFont).Width() > pixelWidth)
 newText = Left(newText, newText.Length - 1)
 If (newText = "") Then Exit Do
 Loop
 If (newText <> "") Then newText &= "..."
 End If
 Return newText
End Function

The ItemLookup.vb form has a web-browser-like Back button with a drop-down list
of recent entries. The items added to this list may include long book titles and author
names. Let’s use the new FitTextToWidth method to limit the size of text items in this
list. Open the source code for the ItemLookup form and locate the RefreshBackButtons
method. About halfway through this routine is this line of code:

whichMenu.Text = scanHistory.HistoryDisplay

Replace this line with the following lines instead.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 2.

whichMenu.Text = FitTextToWidth(scanHistory.HistoryDisplay, _
 Me.Width \ 2, useCanvas, whichMenu.Font)

That will limit any menu item text to half the width of the form, which seems reason-
able to me. That useCanvas variable is new, so add a declaration for it at the top of
the RefreshBackButtons method.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 3.

Dim useCanvas As Drawing.Graphics = Me.CreateGraphics()

Also, we need to properly dispose of that created graphics canvas at the very end of
the method.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 4.

useCanvas.Dispose()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

514 | Chapter 18: User Interface

Now let’s tackle owner draw list items. ListBox controls allow you to use your own
custom drawing code for each visible item in the list. You have two options when
you are managing the item drawing by yourself: you can keep every item a consis-
tent height, or you can make each list item a different height based on the content for
that item. In the MatchingItems listbox, we’ll use the same height for every list item.

To enable owner draw mode, open the ItemLookup form design editor, select the
MatchingItems listbox on the form or through the Properties panel, and change its
DrawMode property to OwnerDrawFixed.

Each matching list item will include two rows of data: (1) the title of the matching
item, in bold; and (2) the three columns of author, call number, and media type data.
Add the following code to the form’s Load event handler that determines the entire
height of each list item, and the position of the second line within each item.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 5.

' ----- Prepare the form.
Dim formGraphics As System.Drawing.Graphics

' ----- Set the default height of items in the matching
' items listbox.
formGraphics = Me.CreateGraphics()
MatchingItems.ItemHeight = CInt(formGraphics.MeasureString(_
 "A" & vbCrLf & "g", MatchingItems.Font).Height()) + 3
SecondItemRow = CInt(formGraphics.MeasureString("Ag", _
 MatchingItems.Font).Height()) + 1
formGraphics.Dispose()

I used the text “Ag” to make sure that the height included all of the font’s ascenders
and descenders (the parts that stick up and stick down from most letters). I think the
calculation would include those values even if I used “mm” for the string, but better
safe than sorry, I always say. Setting the MatchingItems.ItemHeight property here
indicates the size of all items in the list. If we had decided to use variable-height
items instead of fixed-height items, we would have handled the control’s MeasureItem
event. With fixed items, we can ignore that event, and move on to the event that
does the actual drawing: DrawItem.

Here is what the code is going to do for each list item: (1) create the necessary
brushes and font objects we will use in drawing; (2) draw the text strings on the list
item canvas; and (3) clean up. Since list items can also be selected or unselected,
we’ll call some framework-supplied methods to draw the proper background and
foreground elements that indicate item selections.

When we draw the multiple columns of text, it’s possible that one column of text
will be too long, and intrude into the next column area. This was why we wrote the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 515

FitTextToWidth function earlier. But it turns out that GDI+ already includes a fea-
ture that adds ellipses to text at just the right place when it doesn’t fit. It’s found in a
class called StringFormat, in its Trimming property. Setting this property to
EllipsisCharacter and using it when drawing the string will trim the string when
appropriate. When we draw the string on the canvas, we will provide a rectangle that
tells the string what its limits are. Here is the basic code used to draw one column of
truncated text:

Dim ellipsesText As New StringFormat
ellipsesText.Trimming = StringTrimming.EllipsisCharacter
e.Graphics.DrawString("Some Long Text", e.Font, someBrush, _
 New Rectangle(left, top, width, height), ellipsesText)

The code we’ll use to draw each list item in the MatchingItems list will use code just
like this. Let’s add that code now to the MatchingItems.DrawItem event handler.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 6.

' ----- Draw the matching items on two lines.
Dim itemToDraw As MatchingItemData
Dim useBrush As System.Drawing.Brush
Dim boldFont As System.Drawing.Font
Dim ellipsesText As StringFormat

' ----- Draw the background of the item.
If (CBool(CInt(e.State) And CInt(DrawItemState.Selected))) _
 Then useBrush = SystemBrushes.HighlightText _
 Else useBrush = SystemBrushes.WindowText
e.DrawBackground()

' ----- The title will use a bold version of the main font.
boldFont = New System.Drawing.Font(e.Font, FontStyle.Bold)

' ----- Obtain the item to draw.
itemToDraw = CType(MatchingItems.Items(e.Index), _
 MatchingItemData)
ellipsesText = New StringFormat
ellipsesText.Trimming = StringTrimming.EllipsisCharacter

' ----- Draw the text of the item.
e.Graphics.DrawString(itemToDraw.Title, boldFont, useBrush, _
 New Rectangle(0, e.Bounds.Top, _
 ItemColEnd.Left - MatchingItems.Left, _
 boldFont.Height), ellipsesText)
e.Graphics.DrawString(itemToDraw.Author, e.Font, useBrush, _
 New Rectangle(ItemColAuthor.Left, _
 e.Bounds.Top + SecondItemRow, _
 ItemColCall.Left - ItemColAuthor.Left - 8, _
 e.Font.Height), ellipsesText)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

516 | Chapter 18: User Interface

e.Graphics.DrawString(itemToDraw.CallNumber, e.Font, _
 useBrush, New Rectangle(ItemColCall.Left, _
 e.Bounds.Top + SecondItemRow, _
 ItemColEnd.Left - ItemColType.Left, _
 e.Font.Height), ellipsesText)
e.Graphics.DrawString(itemToDraw.MediaType, e.Font, _
 useBrush, New Rectangle(ItemColType.Left, _
 e.Bounds.Top + SecondItemRow, _
 ItemColType.Left - ItemColCall.Left - 8, _
 e.Font.Height), ellipsesText)

' ----- If the ListBox has focus, draw a focus rectangle.
e.DrawFocusRectangle()
boldFont.Dispose()

See, it’s amazingly easy to draw anything you want in a listbox item. In this code, the
actual output to the canvas via GDI+ amounted to just the four DrawString state-
ments. Although this library database doesn’t support it, we could have included an
image of each item in the database, and displayed it in this listbox, just to the left of
the title. Also, the calls to e.DrawBackground and e.DrawFocusRectangle let the con-
trol deal with properly highlighting the right item (although I did have to choose the
proper text brush). Figure 18-17 shows the results of our hard labor.

Bar Code Design
The Library Project includes generic support for bar code labels. I visited a few librar-
ies in my area and compared the bar codes added to both their library items (such as
books) and their patron ID cards. I found that the variety was too great to shoehorn
into a single predefined solution. Therefore, the Library application allows an admin-
istrator or librarian to design sheets of bar code labels to meet their specific needs.
(There are businesses that sell preprinted bar code labels and cards to libraries that
don’t want to print their own. The application also supports this method, since bar
code generation and bar code assignment to items are two distinct steps.)

Figure 18-17. A sample book with two lines and three columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 517

To support generic bar code design, we will add a set of design classes and two forms
to the application:

BarcodeItemClass.vb
This class file contains six distinct classes, one of which is a base class for the
other five derived classes. The derived classes design the static text elements, bar
code images, bar code numbers, lines, and rectangles that the user will add to
the surface of a single bar code label.

BarcodePage.vb
This is an editor form derived from BaseCodeForm, the same base form used for
the various code editors in the application. This form specifies the arrangement
of label sheets. The user will probably purchase label sheets from his local office
supply store. By entering the number of label rows and columns, the size of each
label, and any spacing between and around each label, the user can design on
pretty much any regular sheet of labels.

BarcodeLabel.vb
Another editor based on BaseCodeForm, this form lets the user design a single bar
code label by adding text, bar codes, lines, and rectangles to a preview area.

In a future chapter, we’ll add label printing, where labels and pages are joined
together in one glorious print job.

Since these three files together include around 2,000 lines of source code, I will show
you only key sections of each one. I’ve already added all three files to your project
code, so let’s start with BarcodeItemClass.vb. It defines each type of display item that
the user will add to a label template in the BarcodeLabel.vb form. Here’s the code for
the abstract base class, BarcodeItemGeneric:

Imports System.ComponentModel
Public MustInherit Class BarcodeItemGeneric
 <Browsable(False)> Public MustOverride ReadOnly _
 Property ItemType() As String
 Public MustOverride Overrides _
 Function ToString() As String
End Class

Not much going on here. The class defines two required members: a read-only
String property named ItemType, and a requirement that derived classes provide
their own implementation for ToString. The other five derived classes in this file
enhance the base class to support the distinct types of display elements included on a
bar code label. Let’s look briefly at one of the classes, BarcodeItemRect. It allows an
optionally filled rectangle to appear on a bar code label, and includes private mem-
bers that track the details of the rectangle.

Public Class BarcodeItemRect
 ' ----- Includes a basic rectangle element in a
 ' bar code label.
 Inherits BarcodeItemGeneric

http://lib.ommolketab.ir
http://lib.ommolketab.ir

518 | Chapter 18: User Interface

 ' ----- Private store of attributes.
 Private StoredRectLeft As Single
 Private StoredRectTop As Single
 Private StoredRectWidth As Single
 Private StoredRectHeight As Single
 Private StoredRectColor As Drawing.Color
 Private StoredFillColor As Drawing.Color
 Private StoredRectAngle As Short

The rest of the class includes properties that provide the public interface to these pri-
vate members. Here’s the code for the public FillColor property:

<Browsable(True), DescriptionAttribute(_
"Sets the fill color of the rectangle.")> _
Public Property FillColor() As Drawing.Color
 ' ----- The fill color.
 Get
 Return StoredFillColor
 End Get
 Set(ByVal Value As Drawing.Color)
 StoredFillColor = Value
 End Set
End Property

Like most of the other properties, it just sets and retrieves the related private value.
Its declaration includes two attributes that will be read by the PropertyGrid control
later on. The Browsable property says, “Yes, include this property in the grid,” and
DescriptionAttribute sets the text that appears in the bottom help area of the
PropertyGrid control.

When you’ve used the Properties panel to edit your forms, you’ve been able to set
colors for a color property using a special color selection tool built into the property.
Just having a property defined using System.Drawing.Color is enough to enable this
same functionality for your own class. How does it work? Just as the FillColor prop-
erty has attributes recognized by the PropertyGrid control, the System.Drawing.Color
class also has such properties, one of which defines a custom property editor class for
colors. Its implementation is beyond the scope of this book, but it’s cool anyway. If
you’re interested in doing this for your own classes, you can read an article I wrote
about property grid editors a few years ago.*

Before we get to the editor forms, I need to let you know about four supporting func-
tions I already added to the General.vb module file:

BuildFontStyle function
Font styles (such as bold and italic) are set in Font objects using members of the
System.Drawing.FontStyle enumeration. But when storing font information in
the database, I chose to store these style settings using letters (such as B for
bold). This function converts the letters back to a FontStyle value.

* You can find the article referenced on my web site, http://www.timaki.com, in the Articles section.

http://www.timaki.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 519

ConvertPageUnits function
The label editors let you position items in a few different measurement systems,
including inches and centimeters. This function converts measurements between
the different systems.

DBFontStyle function
This is the opposite of the BuildFontStyle function, preparing a FontStyle value
for insertion into a database record.

GetBarcodeFont function
This returns the name of the bar code font, if configured.

The BarcodePage form lets the user define a full sheet of labels. Not the labels them-
selves, but the positions of multiple labels on the same printed page. Figure 18-18
shows the fields on the form with some sample data.

Collectively, the fields on the form describe the size of the page and the size of each
label that appears on the page. As the user enters the values, the Page Preview area
instantly refreshes with a preview of what the page will look like.

As a code editor derived from BaseCodeForm, the logic in the form is already familiar
to you; it manages the data found in a single record from the BarcodeSheet table.
What’s different is the GDI+ code found in the PreviewArea.Paint event handler. Its
first main block of code tries to determine how you scale down an 8.5 × 11 piece of

Figure 18-18. The BarcodePage form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

520 | Chapter 18: User Interface

paper to make it appear in a small rectangle that is only 216×272 pixels in size. It’s a lot
of gory calculations that, when complete, determine the big-to-small-paper ratio, and
lead to the drawing of the on-screen piece of paper with a border and a drop shadow.

e.Graphics.FillRectangle(SystemBrushes.ControlDark, _
 pageLeft + 1, pageTop + 1, pageWidth + 2, pageHeight + 2)
e.Graphics.FillRectangle(SystemBrushes.ControlDark, _
 pageLeft + 2, pageTop + 2, pageWidth + 2, pageHeight + 2)
e.Graphics.FillRectangle(Brushes.Black, pageLeft - 1, _
 pageTop - 1, pageWidth + 2, pageHeight + 2)
e.Graphics.FillRectangle(Brushes.White, pageLeft, _
 pageTop, pageWidth, pageHeight)

Then, before drawing the preview outlines of each rectangular label, it repositions
the grid origin to the upper-left corner of the on-screen piece of paper, and trans-
forms the world scale based on the ratio of a real-world piece of paper and the on-
screen image of it.

e.Graphics.TranslateTransform(pageLeft, pageTop)
e.Graphics.ScaleTransform(useRatio, useRatio)

There are a few more calculations for the size of each label, followed by a double
loop (for both rows and columns of labels) that does the actual printing of the label
boundaries (detail calculations omitted for brevity).

For rowScan = 1 To CInt(BCRows.Text)
 For colScan = 1 To CInt(BCColumns.Text)
 leftOffset = ...
 topOffset = ...
 e.Graphics.DrawRectangle(Pens.Cyan, _
 leftOffset, topOffset, _
 oneWidthTwips, oneHeightTwips)
 Next colScan
Next rowScan

The BarcodeLabel form is clearly the more interesting and complex of the two bar
code editing forms. While the BarcodePage form defines an entire sheet of labels with
nothing inside each label, BarcodeLabel defines what goes inside each of those labels.
Figure 18-19 shows this form with a sample label.

The BarcodeLabel form does derive from BaseCodeForm, so much of its code deals
with the loading and saving of records from the BarcodeLabel and BarcodeLabelItem
database tables. Each bar code label is tied to a specific bar code page template
(which we just defined through the BarcodePage form), and stores its primary record
in the BarcodeLabel table. This table defines the basics of the label, such as its name
and measurement system. The text and shape items placed on that label are stored as
records in the related BarcodeLabelItem table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 521

The PrepareFormFields routine loads existing label records from the database, creat-
ing instances of classes from the new BarcodeItemClass.vb file, and adds them to the
DisplayItems ListBox control. Here’s the section of code that loads in a “bar code
image” (the actual displayed bar code) from an entry in the BarcodeLabelItems table:

newBarcodeImage = New Library.BarcodeItemBarcodeImage
newBarcodeImage.Alignment = CType(CInt(dbInfo!Alignment), _
 System.Drawing.ContentAlignment)
newBarcodeImage.BarcodeColor = _
 System.Drawing.Color.FromArgb(CInt(dbInfo!Color1))
newBarcodeImage.BarcodeSize = CSng(dbInfo!FontSize)
newBarcodeImage.Left = CSng(dbInfo!PosLeft)
newBarcodeImage.Top = CSng(dbInfo!PosTop)
newBarcodeImage.Width = CSng(dbInfo!PosWidth)
newBarcodeImage.Height = CSng(dbInfo!PosHeight)
newBarcodeImage.RotationAngle = CShort(dbInfo!Rotation)
newBarcodeImage.PadDigits = _
 CByte(DBGetInteger(dbInfo!PadDigits))
DisplayItems.Items.Add(newBarcodeImage)

Figure 18-19. The BarcodeLabel form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

522 | Chapter 18: User Interface

The user can add new shapes, text elements, and bar codes to the label by clicking
on one of the five Add Items buttons that appear just below the DisplayItems con-
trol. Each button adds a default record to the label, which the user can then modify.
As each label element is selected from the DisplayItems, its properties appear in the
ItemProperties control, an instance of a PropertyGrid control. Modification of a
label element is a matter of changing its properties. Figure 18-20 shows a color prop-
erty being changed.

As with the BarcodePage form, the real fun in the BarcodeLabel form comes through
the Paint event of the label preview control, PreviewArea. This 300+ line routine
starts out drawing the blank surface of the label with a drop shadow. Then it pro-
cesses each element in the DisplayItems list, one by one, transforming and drawing
each element as its properties indicate. As it passes through the element list, the code
applies transforms to the drawing area as needed. To keep things tidy for each ele-
ment, the state of the surface is saved before changes are made, and restored once
changes are complete.

For counter = 0 To DisplayItems.Items.Count - 1
 ' ----- Save the current state of the graphics area.
 holdState = e.Graphics.Save()

 ...main drawing code goes here, then...

Figure 18-20. Modifying a label element property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 523

 ' ----- Restore the original transformed state of
 ' the graphics surface.
 e.Graphics.Restore(holdState)
Next counter

Each element type’s code performs the various size, position, and rotation transfor-
mations needed to properly display the element. Let’s take a closer look at the code
that displays static text elements (code that is also called to display bar code text).
After scaling down the world view to the label surface preview area, any user-
requested rotation is performed about the upper-left corner of the rectangle that
holds the printed text.

e.Graphics.TranslateTransform(X1, Y1)
e.Graphics.RotateTransform(textAngle)

Next, a gray dashed line is drawn around the text object to show its selected state.

pixelPen = New System.Drawing.Pen(Color.LightGray, _
 1 / e.Graphics.DpiX)
pixelPen.DashStyle = Drawing2D.DashStyle.Dash
e.Graphics.DrawRectangle(pixelPen, X1, Y1, X2, Y2)
pixelPen.Dispose()

After setting some flags to properly align the text vertically and horizontally within
its bounding box, the standard DrawString method thrusts the text onto the display.

e.Graphics.DrawString(textMessage, useFont, _
 New System.Drawing.SolidBrush(textColor), _
 New Drawing.RectangleF(X1, Y1, X2, Y2), textFormat)

We will somewhat duplicate the label drawing code included in the BarcodeLabel
class when we print actual labels in a later chapter.

The only thing left to do is to link up these editors to the main form. Since I’ve had
so much fun with these forms, I’ll let you play for a while in the code. Open the code
for MainForm, locate the event handler for the AdminLinkBarcodeLabel.LinkClicked
event, and add the following code.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 7.

' ----- Let the user edit the list of bar code labels.
If (SecurityProfile(_
 LibrarySecurity.ManageBarcodeTemplates) = False) Then
 MsgBox(NotAuthorizedMessage, MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 Return
End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

524 | Chapter 18: User Interface

' ----- Edit the records.
ListEditRecords.ManageRecords(New Library.BarcodeLabel)
ListEditRecords = Nothing

Do the same for the AdminLinkBarcodePage.LinkClicked event handler. Its code is
almost identical except for the class instance passed to ListEditRecords.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 8.

' ----- Let the user edit the list of bar code pages.
If (SecurityProfile(_
 LibrarySecurity.ManageBarcodeTemplates) = False) Then
 MsgBox(NotAuthorizedMessage, MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 Return
End If

' ----- Edit the records.
ListEditRecords.ManageRecords(New Library.BarcodePage)
ListEditRecords = Nothing

Fun with Graphics
GDI+ isn’t all about serious drawing stuff; you can also have some fun. Let’s make a
change to the AboutProgram.vb form so that it fades out when the user clicks its
Close button. This involves altering the form’s Opacity property to slowly increase
the transparency of the form. From our code’s point of view, no GDI+ is involved.
But it’s still involved through the hidden code that responds to the Opacity property.

Open the source code for the AboutProgram.vb file, and add the following code to
the end of the AboutProgram.Load event handler.

INSERT SNIPPET

Insert Chapter 18, Snippet Item 9.

' ----- Prepare the form for later fade-out.
Me.Opacity = 0.99

Although this statement isn’t really necessary, I found that the form tended to blink a
little on some systems when the opacity went from 100% (1.0) to anything else
(99%, or 0.99, in this case). This blink was less noticeable when I made the transi-
tion during the load process.

In the event handler for the ActClose.Click event, include this code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 525

INSERT SNIPPET

Insert Chapter 18, Snippet Item 10.

' ----- Fade the form out.
Dim counter As Integer

For counter = 90 To 10 Step -20
 Me.Opacity = counter / 100
 Me.Refresh()
 Threading.Thread.Sleep(50)
Next counter
Me.DialogResult = Windows.Forms.DialogResult.Cancel

This code slowly fades out the form over the course of 250 milliseconds, in five dis-
tinct steps. So that the form doesn’t close abruptly before the cool fade-out, open the
form designer, select the ActClose button, and change its DialogResult property to
None.

Another thing we never did was to set the primary icon for the application. Although
this isn’t strictly GDI+, it does involve graphics display, which impacts the user’s
perception of the program’s quality. I’ve included an icon named Book.ico in the
project’s file set. Open the project properties, select the Application tab, and use the
Icon field to browse for the Book.ico file.

While testing out the icon, I noticed that the splash window appeared (with the default
Visual Studio icon) in the Windows task bar. In fact, each opened form appeared in the
task bar, right alongside the main form’s entry. This is non-standard, and it’s all due to
the ShowInTaskbar property setting included in each form. I’ve taken the liberty of
going through all the forms (except for MainForm) and setting this property to False.
Most of the forms were already set properly, so I altered the dozen or so that were set
improperly.

The Library application is really starting to bulk up with features. In fact, by the next
chapter, we will have added more than 95% of its total code. I can see the excite-
ment on your face. Go ahead, turn the page, and add to your coding enjoyment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

526

Chapter 19CHAPTER 19

Localization and Globalization 19

Bienvenue à chapitre dix-neuf! My apologies to those of you who don’t speak
French—and also to those who actually do. I took four full years of the language in
high school, but for some reason, it didn’t stick. I can still remember a few important
sentences, such as «Je suis un garçon» and «Où est le crayon?», but that’s about it. We
even read Candide and Le Petit Prince in class, but to no avail. I did take Japanese in
college, and found it much easier to digest than French. So, perhaps I should
instead say .

In an attempt to expand this book beyond the shores of English-speaking nations, I
localized that previous paragraph. In an attempt to expand the appeal of your own
applications beyond the English-speaking world, .NET provides features that let you
localize your project in another language, even after your software has been com-
piled and released.

Coverage of all localization features in .NET would include lunar- and emperor
reign-based calendars, and right-to-left writing systems. This chapter covers only
some of the more common user interface localization features. Hopefully, it will
entice you to push the language limits of your own applications, reaching out to les
étoiles.

Defining Globalization and Localization
Microsoft has hundreds of for-sale and freely available software applications, and the
company makes a lot of money worldwide providing these software products to con-
sumers. Most of its products are developed in the United States, written by program-
mers who speak mainly English, directed by technical leads and product managers
who make decisions in English, marketed by a sales team that plans out campaigns
in English, and dogged by competitors and detractors who blast the motives and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resource Files | 527

business practices behind each product in English. So, how is it possible that
Microsoft can sell software to non-English speakers around the globe?

The key lies in the globalization and localization of its products. Sure, Microsoft or
any other company could develop distinct yet identical products, each in a different
language, and sell them in the appropriate markets. But that would be expensive
and time-consuming. Instead, it writes a single program, and then enhances it with
language- and culture-specific features.

Globalization is the process of preparing software so that it can be easily adjusted for
each language and culture market. No foreign terms are added to software during the
globalization process. Instead, the developers design the application so that all rele-
vant English (in my case) terms and American cultural elements (such as currency
displays in U.S. dollars) can be quickly and easily replaced by foreign substitutes, all
without impacting the core software elements.

Windows applications have traditionally used resources to keep applications globally
generic. Resources contain text strings, images, and other non-code elements that are
replaced at runtime based on the active language and culture of the operating system.
On a German-language system, the application loads its German-language resources
(if available) and displays them instead of the default resources. The .NET Frame-
work continues to use resources for this purpose, although it enhances resource
development through XML-based resource files and tools.

Localization adds the actual non-native language and culture elements to an applica-
tion. It is in this step that, say, English-language form labels get translated into Swa-
hili, or some other target language. Visual Studio lets you localize an application
within the development environment itself, or through external tools that translators
who have no access to the application source code can use.

The good news for .NET developers is that Microsoft pretty much took care of the
globalization part for you. You mainly need to focus on localizing your application.
Your local community college offers foreign language instruction in a dozen or so
languages, so I’ll let you choose your first localization target.

Resource Files
Resource files are the key to language localization in .NET programs. Visual Studio
will write the files for you, but it’s good to know something about how they work,
since you may want to craft your own resource files (if you have a lot of time on your
hands). The life of a resource moves through three phases, as determined by the type
of file in which it appears:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

528 | Chapter 19: Localization and Globalization

Source
An application’s resources start their lives in a resource source file. Before .NET,
resources appeared in “resource script” files, which merged all the best of C-
language development and UPPER CASE SCRIPT COMMANDS, and used an
.rc file extension. In Visual Basic 2008, you use XML-based .resx files. Every new
Windows Forms application already includes a Resources.resx file just waiting to
be joyfully filled with your application resources.

Beyond the core resource source files, other file types can be included as resources,
although they are still referenced through the .resx file content. Common external
resource files include image files (such as .gif and .jpg files) and plain-text files (.txt).
The Library Project uses a file named SplashImage.jpg as a resource for the splash
screen, and another file named ItemLookupBody.txt that contains HTML content
used when displaying items through the ItemLookup.vb form.

Intermediate
Once you have your resource sources ready, they are converted into an inter-
mediate form, and stored with a .resources file extension, through a process
called resource generation. Visual Studio normally does this step behind the
scenes for you, but you can also use a tool supplied with the .NET SDK (called
resgen.exe) to generate these files yourself. Intermediate resource files include
binary content only, and are not designed for browsing in Notepad.

Compiled
Intermediate resource files aren’t much use to your deployed application. The
term intermediate kind of gave this secret away, didn’t it? Before employing the
resources in your program, they need to be compiled into a DLL or EXE file. Per-
haps you already knew that these files contained multiple sections, including dis-
tinct code and data sections. A compiled resource file contains only a data
section with the resources; there is no code in a compiled resource file, although
standard compiled code files may also include compiled resources.

In .NET, compiled resource files are satellite assemblies. They support your pri-
mary application assembly, and are not generally useful apart from that master
assembly.

Figure 19-1 shows the lifetime of a resource through these three stages.

Some standard resource types are stored in .NET resource (.resx) files:

Strings
We’ll focus primarily on string resources in this chapter. Each string resource
includes a name and a string value.

Images
Visual Basic applications can include JPEG, GIF, TIFF, PNG, and BMP image
files. Each image, as with all resources, includes an associated name, which may
differ from the original name of the graphics file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The My.Resources Object | 529

Icons
Program icons used with forms and the application itself appear as standard
resources. Icons have an .ico file extension.

Audio
Resources can include named audio files, based on WAV audio content.

Files
If the file types listed so far don’t meet your needs, you can include whole files of
any type as a named resource.

Other
Beyond files, you can store the content of any valid .NET data type as a resource.
The resources in a .resx file are actually strongly typed to .NET types, so there’s
really no limit to the type of data you can place there. You can also modify the
underlying .resx file to include “non-standard” resources. Non-standard
resources are beyond the scope of this chapter.

The project properties window includes a manager for application-wide resources
(see Figure 19-2). The IDE also includes special editors that let you edit standard and
a few non-standard resource types.

The My.Resources Object
We discussed this in earlier chapters, but as a reminder, you can access an applica-
tion’s resources through the My.Resources object. If you have a string resource named
MainFormCaption, the following reference returns its value:

My.Resources.MainFormCaption

All resources are strongly typed. In this case, MainFormCaption is of type System.String.
The SplashImage image resource included in the Library Project is declared as type
System.Drawing.Bitmap. Because each resource is strongly typed, you can use the
My.Resources reference in your code just like any data of the resource’s type.

Figure 19-1. The edible life of a resource

Compiled
Resources

Intermediate
Resources

Original
Resources

Generation Compilation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

530 | Chapter 19: Localization and Globalization

In new Windows Forms applications, all application-wide resources appear in the
Resources.resx file, found in the My Project directory within the application’s source
code directory. You can view it in Notepad if you want. It’s a pretty big XML file that
doesn’t immediately interest me, except that it works! Here’s the portion of the
Library Project’s Resources.resx file that specifies our two existing resources. (I’ve
wrapped some of the lines to make it fit on the page.) I’ve highlighted the name of
each resource, and their strong data types.

<data name="ItemLookupBody"
 type="System.Resources.ResXFileRef, System.Windows.Forms">
 <value>..\Resources\ItemLookupBody.txt;System.String,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089;Windows-1252</value>
</data>

<data name="SplashImage"
 type="System.Resources.ResXFileRef, System.Windows.Forms">
 <value>..\Resources\SplashImage.jpg;System.Drawing.Bitmap,
 System.Drawing, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a</value>
</data>

Each form you add to your project also has its own private resource file. The one for
Form1 is called Form1.resx. These files end up being a big plus in the localization of
Windows Forms applications.

Behind the scenes, your application is taking an object-oriented approach to resource
management. It’s using the System.Resources.ResourceManager class to locate and
return instances of each resource when you need it. And this same class makes deci-
sions about which language-specific or culture-specific resources—from the dozens
I’m sure you’ll have added to your application—will be made visible to the user.

Figure 19-2. The resource manager for the Library Project in Visual Studio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Localizing Forms Within Visual Studio | 531

Localizing Forms Within Visual Studio
There’s no sense in postponing the introduction to the localization features of Visual
Studio, since they are so easy to use. You already know about the application-wide
project properties resource editor. Instead, let’s look at the amazing part: localizing
forms and controls right in the Visual Studio form editor. You might as well start up
Visual Studio and try it out with me, because it’s just so fun.

Here’s a cute but relatively harmless Windows Forms application that writes your
name upside down. I added some Label controls, a TextBox control, and a PictureBox
control to a form, as shown in Figure 19-3.

Then I added the following source code to the form:

Private Sub TextBox1_TextChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles TextBox1.TextChanged
 ' ----- Force a redraw.
 PictureBox1.Invalidate()
End Sub

Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 ' ----- Draw the blank background.
 e.Graphics.Clear(SystemColors.Window)
 e.Graphics.DrawRectangle(SystemPens.InactiveCaption, _
 0, 0, PictureBox1.Width - 1, PictureBox1.Height - 1)

 ' ----- Change the orientation of the display.
 Dim saveState As Drawing2D.GraphicsState = _
 e.Graphics.Save()
 Dim mirrorMatrix As New Drawing2D.Matrix(_
 1, 0, 0, -1, 0, PictureBox1.Height)
 e.Graphics.Transform = mirrorMatrix

Figure 19-3. A typical Windows Forms application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

532 | Chapter 19: Localization and Globalization

 ' ----- Draw the text.
 e.Graphics.DrawString(TextBox1.Text, TextBox1.Font, _
 SystemBrushes.WindowText, 1, 4)

 ' ----- Put everything back.
 e.Graphics.Restore(saveState)
End Sub

When you run the program, it creates a mirror image of whatever you type in the
TextBox control using GDI+ features. Figure 19-4 shows me playing with the pro-
gram instead of meeting this chapter’s submission deadline.

As interesting as this program may be, it is neither fully globalized nor localized. It’s
almost globalized. All we need to do to fully globalize it is to “throw the switch” on
the form that enables later localization. We do this through the form’s Localizable
property. Change this property from False to True. Ta-da! Your form is globalized!

Now for part 2: localization. Here are the steps to localize the form:

1. Determine which language or language-culture combination you want to localize.

2. Select that language or language-culture from the form’s Language property.
When you open this property list, it includes languages alone, such as “French,”
and languages combined with a culture or country, as with “French (Canada).”
The language-alone entries are known as “neutral language” entries. You can use
either type for localization. If you select, for instance, “French,” users of your
application in either France or French-speaking Canada will use the French
resources. If you localize using “French (Canada),” French Canadian users will
access the localized resources, but not French-language users in France.

3. Modify any of the properties of the form or its controls.

That’s it. Whenever the form’s Language property is changed to something other than
(Default), Visual Studio starts recording all form and control changes into a sepa-
rate form-specific and language- or language-culture-specific resource file.

You can localize the form with multiple languages. Each time you change the
Language property to another language or language-culture selection, the changes to
the form or controls apply only to that selection. Whatever you change gets saved in
a separate resource file.

Figure 19-4. Look Ma, I’m upside down

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Localizing Forms Within Visual Studio | 533

Let’s try it with the sample mirror program. I’m going to choose Japanese for the
localization language. First, I set the form’s Language property to “Japanese.” The
form momentarily blinks, but there is no other noticeable change. It looks just as it
did in Figure 19-3.

Next, I change the Text properties of the form and of each label control to their Japa-
nese language equivalents (see Figure 19-5).

Do you notice how the shorter Japanese language labels are farther away from the
text and mirror display fields? Does it bother you as much as it bothers me? To get it
out of my mind, I will resize the two fields a little larger by stretching them to the
left, as I’ve done in Figure 19-6.

The amazing part is that if you set the form’s Language property back to (Default),
not only will the labels return to English, but the resized text and mirror fields will
return to their “natural” sizes. Although I haven’t checked out every property, the
localization feature seems to impact all display elements of each control.

The program is now fully localized for English (the default language) and Japanese.
Normally, the Japanese resource would be used only on a system running the Japanese
version of Microsoft Windows. But we can force the program to use Japanese by chang-
ing its “user interface culture.” In the application’s startup code (the MyApplication_
Startup routine in the ApplicationEvents.vb file), I add the following code:

Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices. _
 StartupEventArgs) Handles Me.Startup
 If (MsgBox("Switch from English to Japanese?", _
 MsgBoxStyle.Question Or MsgBoxStyle.YesNo) = _
 MsgBoxResult.Yes) Then

Figure 19-5. The name-mirror program in Japanese

Figure 19-6. The Japanese version with adjusted fields

http://lib.ommolketab.ir
http://lib.ommolketab.ir

534 | Chapter 19: Localization and Globalization

 My.Application.ChangeUICulture("ja-JP")
 End If
End Sub

And sure enough, running the program and saying “Yes” to the “Switch to Japa-
nese” prompt presents a form in Japanese, as shown in Figure 19-7. (If you answer
“No” to the question, the default language, English, appears.)

Let’s look at the files created in this project. (Look in the installation directory of this
book’s code for the Foreign Names subdirectory. I’ve placed a copy of this mirror-
text project there for you.) The source code directory includes a Form1.resx file,
added by default to all new Windows Forms applications. But there is also a Form1.
ja.resx file, the Form1 resource file for the Japanese language. Visual Studio will com-
pile this file into a language-specific resource when it builds the project. At that time,
the code’s bin\Release subdirectory will contain a further ja subdirectory with a file
named ForeignNames.resources.dll. This is the satellite assembly that contains all of
the Japanese language resources. If the application had included multiple forms, all
of the Japanese resources for all forms would appear in that single DLL file.

Adding Resources Outside Visual Studio
Visual Studio makes localization quite easy. But it’s rare that the developer of a
major application would also be fluent in multiple target languages. And you cer-
tainly don’t want non-programmers gaining access to your forms and code in Visual
Studio, where they can do who-knows-what to its logic.

To keep foreign-language eyes and fingers where they belong, Microsoft wrote the
Windows Resource Localization Editor, and included it with the Software Develop-
ment Kit supplied with .NET. (On my system, it’s located at Start ➝ [All] Programs ➝

Microsoft Windows SDK v6.0A ➝ Tools ➝ Windows Resource Localization Editor.
Its command-line name is winres.exe.) When you are ready to have a translator con-
vert a form to a specific language, you only need to provide them with this program,
and the form’s .resx file (such as Form1.resx). The program simulates the display of
the form as it appears in Visual Studio, and lets the translator modify any relevant
form or control properties for a specific language. Figure 19-8 shows ForeignNames’s
Form1 in the Localization Editor.

Figure 19-7. Look Ma, I’m Japanese

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Manually Compiling Resources | 535

The program prompts for the target language or language-culture when you try to
save changes. It outputs a language-specific .resx file (such as Form1.ja.resx for Japa-
nese) that can be used in your application. Once you get the foreign resource files
back from the translators, store them (the files, not the translators) in the project’s
source directory, and rebuild the project to generate the correct satellite assemblies.

Manually Compiling Resources
It’s possible to generate the satellite assemblies manually from the source .resx files
without rebuilding the entire project in Visual Studio. You will have to use the Win-
dows command line (cmd.exe), and you will need access to the main assembly’s EXE
or DLL file. It’s not for the faint of heart, and a single mistyped character could cost
American taxpayers millions.

Figure 19-1 summarized the steps needed to move a .resx file into a satellite assembly.
The “generate” and “compile” steps can be done using two command-line utilities:
resgen.exe and al.exe. Doesn’t that sound like great fun?

As with other .NET command-line tools, these tools need the command-line envi-
ronment to be set up just so, or they will have a snit and refuse to run. To ensure that
you have the correct environment, you need to open the special .NET version of the
command line. The .NET SDK was installed when you installed the framework, so
you should be able to find a Start-menu entry for it at Start ➝ [All] Programs ➝

Microsoft Visual Studio 2008 ➝ Visual Studio Tools ➝ Visual Studio 2008 Com-
mand Prompt.

Figure 19-8. An amazing likeness of Form1, ready for translation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

536 | Chapter 19: Localization and Globalization

Resource File Generation
Once you have a .resx file available, either by creating it manually or by using the Win-
dows Resource Localization Editor, you generate a .resources file using resgen.exe, the
Resource Generator command-line utility, part of the SDK toolset. It accepts an
input and an output filename as its arguments.

resgen.exe Form1.ja.resx Form1.ja.resources

If you omit the output filename, resgen will simply replace the .resx extension
with .resources.

If you have multiple foreign-language assemblies (for multiple forms, for instance),
generate resource files for all of them. Then you will be ready to compile the satellite
assembly.

Compiling Satellite Assemblies
.NET uses al.exe, the Assembly Linker program, to compile all of your .NET applica-
tions to their final assembly files. We’ll use this same program to generate the satel-
lite assemblies. Its command-line arguments were designed by a secret society, so
getting them just right will take some work. Let’s look at the command first, and
then I’ll explain it.

al.exe /target:lib
/embed:Form1.ja.resources,ForeignNames.Form1.ja.resources
/culture:ja
/out:ForeignNames.resources.dll
/template:bin\Release\ForeignNames.exe

You should enter these lines as one long line. I had to wrap them in the book
because the publisher didn’t want to do one of those fold-out pages that you see in
some children’s books. They didn’t like my interactive “pop-up” Visual Studio envi-
ronment idea, either (something about keeping the book at less than $100 per copy).

The options provided to al.exe work all of the magic:

/target:lib
The lib part says, “Output a DLL-style file.”

/embed
This option indicates which source files you want to include in the output
assembly. The first comma-delimited part indicates the source filename. The sec-
ond part indicates the name by which this resource will be known in the applica-
tion. The name must be in the format basename.cultureName.resources, where
basename is the application name (for application-wide resources) or the class
name (qualified with its namespace) for a specific class, such as Form1. Since my
application and its default top-level namespace are both “ForeignNames,” I’ve
included that in the name component. You can add as many /embed options as
you have resource files to include.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other Localization Features | 537

/culture
Although you will eventually put the satellite assembly in a folder named for the
target culture, Visual Basic doesn’t trust you. Instead, it wants a record of the
culture embedded in the assembly itself. You do that through this command-line
option.

/out
This option specifies the output name of the satellite file. You really need to use
the name application.resources.dll for the file, where application is the same as
your application’s name before the .exe part. If you don’t do this, it won’t work.
Well, you could still get it to work by adjusting the application’s app.config file,
but that file is just plain scary, so you don’t want to go there.

/template
This is the option that says, “I’m making a satellite assembly, and the related pri-
mary assembly is x.”

To use the satellite assembly, locate the directory that contains the main EXE
assembly. Create a new subdirectory right there, giving it the name of the language
or language-culture key used to create the assembly (“ja” in my case; “ja-JP” would
have been an option if I created the assembly using “Japanese (Japan)”). Then put
the new satellite assembly in that subdirectory.

Other Localization Features
Localization is more than just words on a screen. There are also issues of how you
display times, dates, and monetary values to the user. The good news is that these
features will work automatically if you globalize your program properly. Just as each
.NET program maintains a “user interface culture” (which we played with in the
sample program previously), it also has a “general culture” used for string manipula-
tion of times, dates, financial values, and other similar culture-dependent things.

If you use core methods such as CDate to extract date values, instead of scanning
through a user-entered date string by hand, you get culture-specific date processing
for free. Also for output, if you use the predefined formats for the Format method
(and other similar string output methods), you get correct culture-specific format-
ting for no additional effort on your part. Let’s try a quick sample that displays
money using the local currency.

I’m creating a new Windows Forms application. I’ll add the following code to the
ApplicationEvents.vb file:

Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices. _
 StartupEventArgs) Handles Me.Startup
 If (MsgBox("Switch from English to Japanese?", _
 MsgBoxStyle.Question Or MsgBoxStyle.YesNo) = _
 MsgBoxResult.Yes) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

538 | Chapter 19: Localization and Globalization

 My.Application.ChangeCulture("ja-JP")
 End If
End Sub

This code block is almost identical to the one we used in the previous sample, but
I’m calling My.Application.ChangeCulture instead of My.Application.ChangeUICulture
(the UI part is missing). This changes the string-manipulation culture instead of the
user interface culture.

Now I’ll add the following code to Form1’s class:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 MsgBox(Format("500", "Currency"))
End Sub

Figure 19-9 shows the results of this code when run in both English and Japanese
modes.

The Framework Class Libraries (FCLs) include even more culture management fea-
tures in the System.Globalization namespace. The classes in this namespace let you
manually adjust the output of culture-sensitive strings to meet your needs. Most of
them are pretty esoteric and are intended for specific culture groups, so I won’t be
discussing them here.

Summary
It’s a small world, after all. And the culture-specific features in .NET have helped to
make it that way, at least for your software. I’m still amazed that I’m able to use Jap-
anese on my English version of Microsoft Windows. (I first had to enable support for
East Asian languages in the Control Panel’s Regional and Language Options applet.)
And now it’s not just Windows or Microsoft Office that can automatically shift with
the current culture. Politicians can do it, too. Oops, I mean that your own applica-
tions can do it, too. By taking advantage of culture-specific resources and the auto-
matic and manual formatting features included with .NET, you’ll soon be selling
your snazzy business application in six of the seven continents.

Figure 19-9. Spending money in two places at once

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 539

Project
I know you’re expecting me to localize all of the forms in the Library Project into
Greek, and it is a tempting idea. But in the interest of brevity (and my sanity), I’ll
leave that as an exercise for the reader. (Muffled laughter.)

What we will do in this chapter’s project code is to enable the remaining patron-
specific tracking and management features. Those features include the management
of fines for naughty patrons who don’t return their library books on time. We’ll use
the generic currency formatting features discussed in this chapter to make the appli-
cation as globally accessible as possible.

PROJECT ACCESS

Load the Chapter 19 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 19 (After) Code instead.

Tracking Patron Payments
Let’s create a class that exposes the important features of each set of payments
applied to a specific checked-in item. Of course, they’ll all be stored in the Library
database. But keeping a summary of payments temporarily cached in memory simpli-
fies some processing.

Add a new class item to the Library Project, giving it the name PaymentItem.vb.
Define it using the following code.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 1.

Public Class PaymentItem
 ' ----- Used to track and print payment tickets.
 Public ItemTitle As String
 Public PatronCopyID As Integer
 Public FeesPaid As Decimal
 Public BalanceDue As Decimal
End Class

Each instance of this class identifies the collected fines and payments for a specific
library item (ItemTitle) and for the patron who turned in the item late
(PatronCopyID).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

540 | Chapter 19: Localization and Globalization

Calculating Patron Fines
We also need to know the total fines owed by a patron for all items, even when we’re
not showing the details. Add the CalculatePatronFines function to the General.vb
module.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 2.

Public Function CalculatePatronFines(_
 ByVal patronID As Integer) As Decimal
 ' ----- Given a patron ID, calculate the fines due.
 Dim sqlText As String

 On Error GoTo ErrorHandler

 ' ----- Retrieve the fine records for the patron.
 sqlText = "SELECT SUM(Fine - Paid) FROM PatronCopy " & _
 "WHERE Patron = " & patronID
 Return DBGetDecimal(ExecuteSQLReturn(sqlText))

ErrorHandler:
 GeneralError("CalculatePatronFines", Err.GetException())
 Return 0@
End Function

It’s pretty basic code, actually, since the database does all of the work of adding up
the values. I checked the database documentation and confirmed that Fine and Paid
are required fields, and will never be NULL. This keeps the SQL code terse.

Patron Record Access
Before reviewing a patron’s record, the user must identify the patron. This is done
through a Patron Record Access form, sort of a login form for patrons. Each patron is
assigned a password, which must be supplied before the patron can access his or her
record. Administrators can access a patron’s record without providing the password.

I’ve already added the PatronAccess.vb form to your project; it appears in Figure 19-10.

This form’s code is a lot like that found in the ChangeUser.vb form, a form that pro-
vides administrative access to the program, and that we added back in Chapter 11. The
Patron Access form behaves a little differently for administrators and regular patrons.

• Regular patrons must either provide their bar code, or supply their name (full
last name, optional wildcards on the first name) and their password. If they use a
partial name instead of a bar code, and a search of that name results in multiple
matches, they will have to provide a more correct entry of their name. (If two
patrons have the same name, they will have to depend on bar codes; but this
program is for a small library, so name conflicts should be rare.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 541

• Administrators enter the patron’s name or bar code, but no password is needed.
If there are multiple name matches, the form presents all matching names in a
list, and the administrator can select the correct entry from the list. This gives an
administrator full access to all patron records. It’s obviously important for an
administrator to log out when finished using a workstation that is available to
patrons.

The PatronAccess form’s SelectPatron method provides the interface to the form for
both administrators and ordinary patrons. The function returns the ID of the
selected patron, or –1 if the user didn’t successfully access a patron record.

Patron Password Modification
Although administrators can change the password of each patron through the
Patron.vb form, we don’t want to give ordinary patrons access to that form and all of
its raw, unadulterated power. But we still want the patrons to be able to change their
own passwords, because it’s the nice and secure thing to do. I’ve added the
PatronPassword.vb form to your project to fulfill this purpose (see Figure 19-11).

Figure 19-10. The Patron Access form, PatronAccess.vb

Figure 19-11. The Patron Password form, PatronPassword.vb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

542 | Chapter 19: Localization and Globalization

The form is basically a dramatically reduced subset of the full Patron.vb form. Since
it needs to deal with only active patrons, it doesn’t have a lot of the Patron.vb code
that differentiates between new and existing patron records. The focus of the Patron
Password form is the update statement that sets the patron’s password, in the
SaveFormData method.

sqlText = "UPDATE Patron SET [Password] = " & _
 DBText(EncryptPassword("patron", _
 Trim(RecordPassword.Text))) & _
 " WHERE ID = " & ActiveID
ExecuteSQL(sqlText)

The word Password is a reserved keyword in SQL Server, so we need to “escape” it
with square brackets when referring to the field in SQL statements.

Collecting Patron Payments
In a perfect world, patrons would never let their books and other library items reach
the overdue state. Of course, in a perfect world, libraries would let you keep books
you like indefinitely. And give me a break with those incessant overdue notices.
What’s up with that?

But for those small libraries that insist on charging fines for overdue items, the
Library Project includes features for assigning and tracking fines. In a later chapter,
we’ll add the code that automatically calculates the fines for overdue items. Right
now, we’ll implement the form that lets you document patron payments and other
financial adjustments to items in the patron’s record.

I’ve added the PatronPayment form to the collection of project files, but it’s not yet
integrated into the project. Select the PatronPayment.vb file in the Solution Explorer,
and then change its Build Action property (in the Properties panel) from None to
Compile. Figure 19-12 shows the controls on this form.

Fines that are automatically added to an overdue item appear in the PatronCopy.Fine
database field. Although that value is displayed on the Patron Payment form, it’s not
the primary focus of that form. Instead, the form exists to allow a librarian to enter
charges and payments for a previously checked-out item, storing these updates in the
PatronPayment database table. This table tracks four types of financial events for each
item checked out by a patron:

• Additional fines imposed by a librarian or administrator. For example, a librar-
ian may add the value of an item as a fine if it turns out that the patron has lost
the item. Additional fine entries use the letter F in the PatronPayment.EntryType
database field.

• Payments made by the patron for an overdue item. P is the entry type.

• A dismissal of some or all of the pending fines for an overdue item, indicated by
a D entry type.

• If the entry type is R, the record indicates a refund paid to the patron by the library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 543

Each PatronPayment table record includes a transaction date, the amount of the trans-
action, optional comments, and the identity of the administrative user recording the
entry. To make the code a little clearer, the letter codes in the database table are con-
verted into enumeration values from the EventEntryType enumeration.

Private Enum EventEntryType
 NotDefined
 PatronPayment
 FineAdded
 FineDismissal
 RefundToPatron
 OverdueFines
End Enum

The OverdueFines entry allows the PatronCopy.Fines value to be part of the displayed
financial history on the form.

The librarian uses the fields in the New Payment Event section of the PatronPayment
form to add charge and payment records. All previously added records appear in the
EventHistory list, in the Payment Event History section of the form.

The calling form (added later in this chapter) needs to pass in the PatronCopy.ID
value to identify the proper record. But the plan is to have payments added on this
form flow back to the parent form. The two forms will share a set of PaymentItem
objects using the class we added a few sections earlier in this chapter. We’ll store it
in a local member variable as a generic set.

Private PaymentsOnly As Generic.List(Of PaymentItem)

Figure 19-12. The Patron Payment form, PatronPayment.vb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

544 | Chapter 19: Localization and Globalization

The entry point into the form will be a public method named ManagePayments. Add
that code now to the PatronPayment class.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 3.

Public Sub ManagePayments(ByVal patronCopyID As Integer, _
 ByVal sessionPayments As Generic.List(Of PaymentItem))
 ' ----- Manage the payments for an item.
 ActivePatronCopyID = patronCopyID
 PaymentsOnly = sessionPayments
 Me.ShowDialog()
End Sub

This method records the patron-copy ID number and the collection of payments for
that checked-out item. Processing then moves on to the form’s Load event handler.
It’s in this routine that we will add our localized financial management code. In the
PatronPayment_Load routine, scan down about one-third of the way through the
method to the code that loads in the “summary details” from the database. Just after
the line:

RecordItem.Text = CStr(dbInfo!Title)

add the statements that will globally format currency values for the Fines, Payments,
and Balance summary labels that appear near the top of the form.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 4.

originalFine = CDec(dbInfo!Fine)
RecordFine.Text = Format(originalFine, "Currency")
RecordPayments.Text = Format(CDec(dbInfo!Paid), "Currency")
balanceDue = originalFine - CDec(dbInfo!Paid)
RecordBalance.Text = Format(balanceDue, "Currency")

The rest of the Load event handler’s code loads existing records from the
PatronPayment table, plus the original overdue fine, if any, from the PatronCopy.Fine
database field.

Later, when the user clicks the Add button to add a new financial event to the
patron-and-item-copy entry, the SaveEventData routine—equivalent to the SaveFormData
method in most of the other forms we’ve developed so far—saves the updated infor-
mation in the database. This routine needs to save the new charge or payment in the
PatronPayment table, plus update the charge and payment summary in the PatronCopy
record. Add the code that writes out these records, just after the calculations for the
fineAmount and paidAmount variables in the SaveEventData method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 545

INSERT SNIPPET

Insert Chapter 19, Snippet Item 5.

' ----- Add the entry to the database.
TransactionBegin()
sqlText = "INSERT INTO PatronPayment (PatronCopy, " & _
 "EntryDate, EntryType, Amount, Comment, UserID) " & _
 "OUTPUT INSERTED.ID VALUES (" & ActivePatronCopyID & _
 ", GETDATE(), " & DBText(entryCode) & ", " & _
 RecordAmount.Text & ", " & _
 DBText(Trim(RecordComment.Text)) & _
 ", " & LoggedInUserID & ")"
newID = CInt(ExecuteSQLReturn(sqlText))

sqlText = "UPDATE PatronCopy SET Fine = " & fineAmount & _
 ", Paid = " & paidAmount & " WHERE ID = " & _
 ActivePatronCopyID
ExecuteSQL(sqlText)
TransactionCommit()

I’ve wrapped up both database statements in a transaction to help ensure the integ-
rity of the data. Once the database is up-to-date, it’s time to update the screen. The
on-screen list of charges and payments needs this new record. That list uses the local
EventHistoryItem class, a variation of the application-wide ListItemData class that we
usually use in ListBox controls. EventHistoryItem has fields that are specific to dis-
playing financial information in the EventHistory listbox. Add the code that builds
an EventHistoryItem record and add it to the EventHistory list, immediately after the
database update code we just added.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 6.

' ----- Add an item to the entry list.
historyItem = New EventHistoryItem
historyItem.PaymentID = newID
historyItem.EntryDate = Today
historyItem.PaymentAmount = CDec(RecordAmount.Text)
historyItem.Comments = Trim(RecordComment.Text)
historyItem.EntryType = entryType
EventHistory.Items.Add(historyItem)

This code block is followed by similar code that updates the PaymentsOnly list, the
Generic.List(Of PaymentItem) that was passed in from the calling form. The code
either updates the existing payment summary record, or adds a new record to the
generic list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

546 | Chapter 19: Localization and Globalization

' ----- Add a new payment.
scanPayment = New PaymentItem
scanPayment.PatronCopyID = ActivePatronCopyID
scanPayment.ItemTitle = RecordItem.Text
scanPayment.FeesPaid = paidAmount
scanPayment.BalanceDue = fineAmount - paidAmount
PaymentsOnly.Add(scanPayment)

Before leaving this function, we need to refresh the three financial summary values
near the top of the form, the ones we set when the form first loaded. Add this code
just after the update to the PaymentOnly list.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 7.

' ----- Update the on-screen values.
RecordFine.Text = Format(fineAmount, "Currency")
RecordPayments.Text = Format(paidAmount, "Currency")
RecordBalance.Text = Format(fineAmount - paidAmount, _
 "Currency")

The EventHistory list is a variable-line-height owner draw control, similar to one we
designed in Chapter 18. Its MeasureItem event handler sets the height of each list item
(comments appear on a second line when available), and its DrawItem event handler
does the actual drawing of each data column and the comments.

Managing All Fines and Payments
The Patron Payment form lets a librarian enter individual fines and payments, but
the program still needs a form to manage all fines and payments for a single patron, a
form that calls up the Patron Payment form when needed. The new PatronRecord.vb
form fulfills this need. I’ve added this form to your project, although you need to
enable it. Select it in the Solution Explorer, and change its Build Action property (in
the Properties panel) from None to Compile. Figure 19-13 shows the controls on this
form.

This form is available to both administrators and patrons, although some of the
fields are hidden from patron view.

The Password button leads to the Change Patron Password form we added earlier in
this chapter. The Edit button, available only to administrators, provides access to the
full Patron.vb form. The main section of the Patron Record form displays a list of all
items the patron currently has checked out. It includes a Renew button that lets a
patron extend the due date for a checked-out item. We’ll add the code for that fea-
ture in a later chapter.

The form also displays a summary of all pending fines and payments. Figure 19-14
shows the Fines tab and its fields.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 547

The Print Balance Ticket button generates a printed receipt of all fines and payments
for the patron. We’ll add its code in a later chapter.

Most of the code in this form exists to manage fines and payments. To add a charge
or payment, the librarian selects an item from the Fines list, and then clicks the Fines
and Payments button. This brings up the just-added Patron Payment form.

The two main lists on the Patron Record form will each forgo the standard
ListItemData class, and use a more property-rich class to support the display needs

Figure 19-13. The Patron Record form, PatronRecord.vb

Figure 19-14. The Fines panel on the Patron Record form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

548 | Chapter 19: Localization and Globalization

of each list. We’ll add this PatronDetailItem as a separate public class since (as we’ll
see in a later chapter) it will be used elsewhere in the Library Project. Create a new
class named PatronDetailItem.vb, and use the following code for its content.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 8.

Private Class PatronDetailItem
 Public DetailID As Integer
 Public TitleText As String
 Public DueDate As Date
 Public FineAmount As Decimal
 Public PaidAmount As Decimal
 Public BalanceDue As Decimal
End Class

Now back to the PatronRecord form. As you can tell from looking at the form, the
Fines list displays several columns of currency values. Let’s add the code that cor-
rectly formats the currency according to the regional monetary settings. First, locate
the RefreshPaymentFines method. This routine adds up all fines and payments, and
displays the result through the BalanceDue Label control.

Near the top of this routine is a comment that states, “Clear the current list.” Add
the following code just after this comment.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 9.

Fines.Items.Clear()
totalBalance = 0@
BalanceDue.Text = Format(0@, "Currency")
Me.Cursor = Windows.Forms.Cursors.WaitCursor

We could have just set the BalanceDue field to “$0.00,” but this would not be properly
globalized. Using the Format function with “Currency” as the formatting rule still results
in “$0.00” when used in America, but properly adjusts for other cultures as well.

The RefreshPaymentFines method does a whole bunch of calculations, and ends up
with the remaining patron balance in the totalBalance local variable. Locate the com-
ment that reads, “Show the total balance,” and add the following code just after it.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 10.

BalanceDue.Text = Format(totalBalance, "Currency")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 549

The Fines list, an owner draw ListBox implementation, also displays currency val-
ues. This is another list that forgoes the standard ListItemData class, using the local
PatronDetailItem class instead for its item management. Locate the Fines_DrawItem
event handler, and the “Extract the details from the list item” comment within that
handler. Add the following code just after the comment.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 11.

itemDetail = CType(Fines.Items(e.Index), PatronDetailItem)
titleText = itemDetail.TitleText
fineText = Format(itemDetail.FineAmount, "Currency")
paidText = Format(itemDetail.PaidAmount, "Currency")
balanceText = Format(itemDetail.BalanceDue, "Currency")
If (itemDetail.BalanceDue = 0@) Then useNotice = useBrush

This block properly formats each currency value. By default, all due amounts appear
in red in the list. The last line in this code block resets the color to the neutral list
item color if no balance is due.

Connecting Patron Features to the Main Form
That does it for the new patron-specific forms. Let’s enable access to them through
the main Library form. Wow! It’s been awhile since I really looked at this form. I’ve
forgotten what it looks like. Ah, yes. One of the main icons provides access to a
patron’s record (see Figure 19-15).

All we need to do is add an event handler for the Patron button. Locate the
ActAccessPatron_Click event handler in the form’s source code. Then add the follow-
ing code to that handler.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 12.

Figure 19-15. Accessing patron records from the main form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

550 | Chapter 19: Localization and Globalization

' ----- Look up the record of an active patron.
Dim patronID As Integer

' ----- Get the ID of the patron.
patronID = (New PatronAccess).SelectPatron()
If (patronID = -1) Then Return

' ----- Show the patron record.
Call (New PatronRecord).ViewPatronRecord(patronID, True)

This code makes direct calls to two of the forms we added in this chapter:
PatronAccess and PatronRecord. It first prompts the user to select a patron record,
and then displays its details through the Patron Record form.

Dueling Patron Management Forms
Let’s make one more change regarding patron records. Way back in an earlier chap-
ter, we included a Manage Patron Items button on the Patron.vb form. This button
existed to provide access to the future PatronRecord.vb form, but it’s pretty much
been dead weight until now. But with the PatronRecord.vb form in place, we’re ready
to make patron management history.

Open the source code for the Patron.vb form, and locate the ActItems_Click event
handler. Then add the following code to it.

INSERT SNIPPET

Insert Chapter 19, Snippet Item 13.

Call (New PatronRecord).ViewPatronRecord(ActiveID, False)

This is all well and good, but you are probably thinking to yourself, “The Patron
form now lets you open the Patron Record form. And that form has an Edit button
that lets you once again open the Patron form. If you get a rogue librarian, there may
be millions of patron management forms on the screen at once.” And that’s all true.
So, we had to add some code to prevent that from happening. The second False
argument to PatronRecord.ViewPatronRecord is a flag that says, “Don’t show the Edit
button on the Patron Record form.” Similar code exists in the Patron Record form
that stops the recursion.

Private Sub ActEditPatron_Click...
 If ((New Patron).EditRecordLimited(_
 ActivePatronID) <> -1) Then...

The EditRecordLimited method hides the Manage Patron Items button on the Patron.vb
form. Whichever form you start with, you can access the other form, but you won’t
be able to generate a new copy of the initial form.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 551

There was a lot of new code in this chapter, but it was all very pedestrian. We could
have made even more culturally sensitive changes. For example, the Due Date col-
umn in the list of checked-out items on the PatronRecord.vb form uses a hardcoded
date format for its display.

dueDate = Format(itemDetail.DueDate, "MMM d, yyyy")

You could change this to Short Date or another culture-neutral setting. Whichever
method you choose really depends on your target audience. And if that target audience
likes to see things spelled out on paper, the next chapter on printing is just for you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

552

Chapter 20CHAPTER 20

Printing 20

When Microsoft released its original version of MS-DOS, it included printing fea-
tures that supported the then-available printers: chisel and stone. Fortunately, print-
ing has come a long way since then. These days, advanced color laser printers and
even “paperless” printing systems (such as Adobe Acrobat and XPS) provide printer
support that rivals that of professional four-color offset printing facilities.

Although the .NET Framework does not replace the print spooler system built into
each copy of Windows, it makes it greatly accessible. As you’ll read in this chapter, a
printer is now treated like any other .NET drawing surface. The statements you use
to draw on a form or control can be copied and pasted directly into your printing
code.

As I mentioned in Chapter 18, Windows Presentation Foundation (WPF) includes
features that let you generate XPS files, designed for eventual WYSIWYG printing. I
will not be discussing that technology in this chapter since the XPS files are actually
an interim step between your printing code and the physical printer. The GDI+
based printing techniques shown in this chapter provide for more direct integration
between your code and the printer.

This chapter provides a general discussion of .NET printing support. A discussion of
report printing appears in the next chapter. If you are reading this chapter in its elec-
tronic format through the Safari publishing system, you can still rush right out and
plunk down the funds for a hardcopy version of this book. Having that tactile
response from the surface of the page should get you in the mood for this chapter’s
discussion of ink and paper.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Printing in Windows | 553

Printing in Windows
Printers are a lot like people. Oh, I don’t mean that they are cantankerous, or that
they quickly run out of ink. Like the people of the world, printers speak many differ-
ent languages. At the basic end of the language scale, some printers simply output
the characters they receive. Others add “escape sequences,” special combinations of
characters that enable enhanced features such as font selection and double-wide text.
At the complex end of the scale are PostScript and XPS, full-scale printer languages
with commands that are somewhat similar to those in GDI+.

It would be every programmer’s worst nightmare to adjust application code so that it
targets all likely printers that a user may have. Each new printer language would
mean another bout of development and testing. And printer makers are just giddy
enough to come up with new language variations on a monthly basis.

Fortunately, Windows implements a system of printer-specific drivers that shield the
developer from most printer variations. These drivers all speak a common lan-
guage—let’s call it “Printish”—which the driver translates into the printer’s native
tongue. As developers, we need only design software that speaks Printish.

The .NET Framework’s printing system adds yet another level of language transla-
tion. .NET programs do not directly communicate with the printer drivers. Instead,
they use GDI+ commands—the same commands used for screen updates—to out-
put content to an in-memory printer canvas. The framework then converts these
commands to Printish and sends the output on to the appropriate printer driver, and
finally to the printer. Figure 20-1 shows a summary of the steps involved in .NET
printing.

Figure 20-1. From programmer to canvas: printing with .NET

PrintishApplication

.NET/GDI+

Driver Printer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

554 | Chapter 20: Printing

Printing in .NET
Having both screen and printer output generated through identical GDI+ com-
mands means that I can make this a really short chapter, referring you back to
Chapter 18 for details. But it also means that there needs to be a canvas—a
System.Drawing.Graphics object—where the printer-specific GDI+ commands target
their output. The System.Drawing.Printing.PrintDocument class provides you with the
output canvas you need for both ordinary printing and “print preview” output.
There are three ways to use the PrintDocument class:

• Add a PrintDocument control to a form from the Windows Forms toolbox. This
control appears by default in the toolbox’s Printing section. Assign its properties
and respond to its events as with any other control.

• Create a field-level instance of the PrintDocument class. Include the With Events
clause in the definition to get event management.

• Create a local instance of PrintDocument, and connect any events using
AddHandler.

These are standard methods in .NET, but having a control variation makes the class
that much more convenient. We’ll get into the actual printing code a little later.

Four other printer-specific controls are available for Windows Forms projects:

PageSetupDialog
This control presents a standard Windows printer settings dialog that lets the
user configure a specific print job, or all print jobs for the application. The con-
trol’s ShowDialog method displays the form shown in Figure 20-2. The control
also exposes properties related to the user’s selection. Its PageSettings member
exposes specific user preferences as defined on the form, and the
PrinterSettings member identifies the selected printer and its properties. You
can retain these members and later assign them to other printer-specific classes
that include similar members.

PrintDialog
Figure 20-3 shows this control’s dialog, the standard dialog that appears in most
programs when the user selects the File ➝ Print menu command. This control
also exposes a PrinterSettings member used to assign or retrieve the selected
printer and related options.

PrintPreviewDialog
This control’s dialog displays a preview of your printed document to the user. It
includes standard preview presentation features, including zoom level and a
pages-to-see-at-once control. The included Print button sends the preview con-
tent to the default printer (without prompting for printer selection). This con-
trol directly interacts with your PrintDocument instance, which drives the actual
display content. Figure 20-4 shows the Print Preview dialog, although with no
page-specific content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Printing in .NET | 555

PrintPreviewControl
The PrintPreviewDialog control includes basic preview management features
(such as the zoom feature) that meet the needs of most applications. Unfortu-
nately, that control is a sealed black box, and you cannot easily add your own
custom features to it, or remove features that you don’t want. The
PrintPreviewControl control provides an alternative interface that lets you fully
customize the print preview experience. Instead of a full dialog, it implements
just the page-display portion of the form. You must implement all toolbars and
other features, and link their functionality with the preview control. I won’t be
discussing this control in this chapter. If you’re interested in using this advanced
control, you can read an article I wrote about print preview a few years ago.*

Before you print, you need to know which printer your user wants to target for the
output. You may also need to know about available features of the printer, such as
whether it supports color. If you used to be a Visual Basic 6.0 developer, you were
accustomed to the convenient Printers collection. The absence of that collection in
Visual Basic 2008 means that we must use more indirect means to access the printers.

Figure 20-2. The Page Setup dialog

* You can find the article referenced on my web site, http://www.timaki.com, in the Articles section.

http://www.timaki.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

556 | Chapter 20: Printing

Figure 20-3. The Print dialog

Figure 20-4. The Print Preview dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Printing a Document | 557

The System.Drawing.Printing.PrinterSettings class includes a shared
InstalledPrinters string collection that lists the path to each configured printer. You
can assign any of these strings to the PrinterSettings’ PrinterName member, making
the specific printer available within the application. The following code chunk lets
the user select from the list of printers, and displays some basic information about
the selected printer:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Display the list of printers.
 Dim scanPrinter As String

 For Each scanPrinter In Drawing.Printing. _
 PrinterSettings.InstalledPrinters
 ListBox1.Items.Add(scanPrinter)
 Next scanPrinter
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Display information about the selected printer.
 Dim selectedPrinter As Drawing.Printing.PrinterSettings

 If (ListBox1.SelectedIndex = -1) Then Return
 selectedPrinter = New Drawing.Printing.PrinterSettings()
 selectedPrinter.PrinterName = ListBox1.Text
 MsgBox(selectedPrinter.ToString)
End Sub

Printing a Document
Earlier we saw that many Windows components work together to generate your
printed output. Within your .NET code, you will also use many components
(classes) to drive the printing process. Four main steps are involved (at least directly)
in printing a document from your code:

1. Create an instance of a PrintDocument class (or add it as a control to your form).

2. Set the PrintDocument’s various printer settings, either by using a PrintDialog (or
related) class/control, or by using the default or manual settings.

3. Add an event handler for the PrintDocument’s PrintPage event. This event is
called once for each page, and receives a System.Drawing.Graphics object for the
printer canvas. Your event handler code prints a single page, and updates a flag
telling the document whether there are more pages to come.

4. Call the PrintDocument’s Print method to start the ball rolling.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

558 | Chapter 20: Printing

Let’s try a little code to see how this printing beast eats. Or prints. Or whatever it
does. How about a simple program that prints a five-page document on the user’s
selected printer? The output will be a large single-digit page number, perfect for the
Sesame Street set. First, let’s create a new Windows Forms application, and add a
single button to Form1 named ActPrint. We’ll also add a PrintDocument control
(named CountingDoc), and a PrintDialog control (named UserPrinter). Figure 20-5
shows the form and its supporting controls.

These controls implement the first two steps of our four-step printing process. Next,
we’ll add the source code.

Public Class Form1
 Private WhichPage As Integer

 Private Sub ActPrint_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActPrint.Click
 ' ----- Prompt the user for printer settings, and
 ' start printing.
 UserPrinter.Document = CountingDoc
 If (UserPrinter.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then _
 CountingDoc.Print()
 End Sub

 Private Sub CountingDoc_BeginPrint(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintEventArgs) _
 Handles CountingDoc.BeginPrint
 ' ----- Start the counting over.
 WhichPage = 1
 End Sub

 Private Sub CountingDoc_PrintPage(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing. _
 PrintPageEventArgs) Handles CountingDoc.PrintPage
 ' ----- Print a single page.
 Dim hugeFont As Font
 Dim centeredText As StringFormat

Figure 20-5. A program with only printing on its mind

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Print Preview | 559

 ' ----- Let's go overboard on the font: 256 points!
 hugeFont = New Font("Arial", 256)

 ' ----- Center the text on the page.
 centeredText = New StringFormat()
 centeredText.Alignment = StringAlignment.Center
 centeredText.LineAlignment = StringAlignment.Center

 ' ----- Print the number.
 e.Graphics.DrawString(CStr(WhichPage), hugeFont, _
 Brushes.Black, e.MarginBounds, centeredText)

 ' ----- Draw the page margins to make it clear where
 ' they are.
 e.Graphics.DrawRectangle(Pens.Blue, e.MarginBounds)

 ' ----- Limit the output to five pages.
 WhichPage += 1
 If (WhichPage <= 5) Then e.HasMorePages = True _
 Else e.HasMorePages = False
 End Sub
End Class

This code implements steps 3 (ActPrint_Click) and 4 (CountingDoc_PrintPage). The
ActPrint button’s Click event handler links the document and the Print dialog so
that they both refer to the same settings. It then prompts the user to select a printer
and various options through the ShowDialog call. If the user clicks the OK button on
that dialog, it triggers a call to the document’s Print method.

The action then moves to the events of the PrintDocument instance. I’ve imple-
mented two of the events: a BeginPrint event handler that performs some initializa-
tion, and a PrintPage event handler that does the hard work. (Other events include
EndPrint, used to clean up when printing is complete, and QueryPageSettings, where
you can change the orientation and settings of each page of the document.) Actually,
it’s not all that hard, especially since we saw similar code in Chapter 18. The biggest
difference is the amount of space available on a printed page, allowing us to play
with fonts in the hundreds of point sizes.

Figure 20-6 shows page 2 of the output from this program. I printed to the pseudo-
printer installed for capturing print jobs as XPS documents. You can see in the bottom-
left corner that it did properly record five output pages.

Print Preview
Adding a print preview interface is so easy, you should probably ask your boss for a
really hard project to do first, and then come back when you’re worn out. Let’s build
on our simple number-printing application, adding a new Button control named
ActPreview. We will also add a PrintPreviewDialog control named UserPreview. Once
these are in place, add the following preview button Click event handler:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

560 | Chapter 20: Printing

Private Sub ActPreview_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActPreview.Click
 ' ----- Display a preview of the document.
 UserPreview.Document = CountingDoc
 UserPreview.ShowDialog()
End Sub

Hey, that’s even simpler than the code that initiates printing to a real printer, even
though print preview technology seems to be more complex than plain printing.
There almost ought to be a law against code that simple. Fortunately, there’s not.
Figure 20-7 shows the preview window, after using the two-pages-at-once toolbar
button.

Let’s dwell just a little longer on how simple that code was. I can accept that the
PrintPreviewDialog class includes a lot of amazing code for previewing printed out-
put. But the remarkable part of the code is that we didn’t have to rewrite the custom
GDI+ drawing logic. The same set of GDI+ statements now drives the preview dis-
play and the actual output. All we had to do was assign the PrintDocument object to
the correct dialog control.

Figure 20-6. This page is brought to you by the number 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Counting and Numbering Pages | 561

Counting and Numbering Pages
During the printing (or preview) process, the PrintDocument’s PrintPage event hand-
ler gets called once for each output page. But here’s the tricky thing: when the
PrintPage handler was called the first time, it was not to print “page 1” of the docu-
ment, but to print “the first page in need of printing,” whatever its page number.
Search all you want through the properties of the PrintDocument class, but you will
never find a PageNumber property. The PrintDocument class does not know about the
page numbers in your document, and—despite all of the nice things it does for
you—it does not care. All it knows is that you have a bunch of pages to print, and it
will call your PrintPage event handler until you say “enough!”

If you turn back to Figure 20-3, you’ll see that the Print dialog includes a Page Range
section, although most of its controls are disabled by default. The PrintDialog con-
trol includes three Boolean properties that let you enable specific controls in that sec-
tion: AllowCurrentPage, AllowSomePages, and AllowSelection. Setting any of these
properties to True enables the matching option control. Later, after the user has
made a choice, you can query the PrintDocument object’s PrinterSettings.PrintRange
property to determine which choice it is.

Figure 20-7. The preview displays multiple pages at once with no extra effort on our part

http://lib.ommolketab.ir
http://lib.ommolketab.ir

562 | Chapter 20: Printing

Let’s add code that enables page range selection. We’ll still limit the allowed pages to
just those numbered one to five, but the user will be able to choose a subrange
within that set. Return to the Click event handler for the ActPrint button, and insert
a few new lines of code (the ones in bold):

Private Sub ActPrint_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActPrint.Click
 ' ----- Prompt the user for printer settings, and
 ' start printing.
 UserPrinter.Document = CountingDoc

 UserPrinter.AllowSomePages = True
 CountingDoc.PrinterSettings.MinimumPage = 1
 CountingDoc.PrinterSettings.MaximumPage = 5
 CountingDoc.PrinterSettings.FromPage = 1
 CountingDoc.PrinterSettings.ToPage = 5

 If (UserPrinter.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then _
 CountingDoc.Print()
End Sub

When the user clicks on the Print button this time, the Print Range section of the dia-
log has enabled the Pages field, and it’s already filled in with the minimum and maxi-
mum pages in the range “1–5” (see Figure 20-8).

If the user adjusts this field to “1–6,” an error occurs stating that the valid range is
somewhere within “1–5” only. But whether the user selects All Pages or 1–5 or 1–4 or
2–3 or Current Page or Selection, the PrintPage event handler will be called in exactly
the same manner. In fact, the handler will be called dozens, even hundreds, of times
until you tell it to stop. The user’s selection impacts the PrinterSettings.PrintRange
property and some other properties, but it does not directly impact the print process. It
is up to you to alter the print behavior based on these settings.

Let’s pretend that the user entered a print range of 2–3. We cannot let the
PrintDocument fire the PrintPage event for all five pages because, even if we gener-
ated output for only pages 2 and 3, we would still get three other blank pages out of
the printer. What we want is to have the event fire only twice, once for page 2 and

Figure 20-8. Support for page ranges

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Printing in “Raw” Mode | 563

once for page 3. We’ll need to adjust the use of the WhichPage class-level tracking
variable to compensate for the indicated range. First, let’s change the BeginPrint
handler to use the correct starting page number.

Private Sub CountingDoc_BeginPrint(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintEventArgs) _
 Handles CountingDoc.BeginPrint
 ' ----- Start the counting over.
 WhichPage = CountingDoc.PrinterSettings.FromPage
End Sub

In the PrintPage event handler, we must modify the code that determines when to
quit the print process.

WhichPage += 1
If (WhichPage <= CountingDoc.PrinterSettings.ToPage) _
 Then e.HasMorePages = True Else e.HasMorePages = False

Since the print preview code shares the same document settings, we need to adjust
the preview code to force it to always print all pages.

Private Sub ActPreview_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActPreview.Click
 ' ----- Display a preview of the document.
 UserPreview.Document = CountingDoc
 CountingDoc.PrinterSettings.PrintRange = _
 Printing.PrintRange.AllPages
 UserPreview.ShowDialog()
End Sub

If you run the program and adjust the print range, you should get just the pages you
requested. I’ve placed a copy of this program in the book’s installation directory.
You’ll find it in the Print Preview Test subdirectory.

Printing in “Raw” Mode
Using GDI+ to generate printed pages is pretty straightforward. For complex pages,
you may have to do a lot of positioning and measuring of text strings and whatnot,
but it all boils down to “draw this text or this shape at this position.”

Sadly, not all printers support the application-to-printer-via-GDI-and-Printish way of
doing things. This is especially true of printers used to print thermal credit card
receipts at your favorite pizza place. Although some of these printers may have Win-
dows drivers, they are really designed for direct communication with an application
via their special “escape sequence” language. For such printers, you need to write
directly to the printer in “raw” mode, where you control exactly which characters get
sent to the printer. (Actually, you don’t have to go directly to the printer. You can
still write to the printer’s queue, and let Windows manage the scheduling of the print
job.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

564 | Chapter 20: Printing

It is with even more sadness that I must inform you of .NET’s lack of raw printer
support. Although a DLL is included with Windows that enables this direct printing
method, a managed .NET wrapper for it does not ship with the framework. You, and
other overburdened programmers everywhere, must take up the charge yourselves.

Well, it’s not all that bad. Microsoft and other developers have published code that
maps the unmanaged DLL calls to managed equivalents. We’ll be using a variation of
some of this code in the Library Project in this chapter to support the printing of
checkout slips, paper receipts that let a patron know which items were just checked
out and when they are all due back.

Summary
I recommend that you peruse the printer-specific classes and controls discussed in
this chapter. They include many properties that let you fine-tune the output of your
printed page based on the user’s specified settings. For instance, I promised you ear-
lier in the chapter that you could discover whether a printer supported color. The
PrinterSettings.SupportsColor property gives you a straight-up yes or no answer to
this feature question. If you know that a printer does not support color, you can
adjust your PrintPage code to present the page content in a slightly different format.

Project
As advertised, this chapter’s project focuses on the printing of checkout and fine-
payment receipts. But we’ll also add all of the code that lets patrons and librarians
check in and check out books and other library items.

PROJECT ACCESS

Load the Chapter 20 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 20 (After) Code instead.

Supporting Raw Printing
In the interest of frank and honest discussion, I must tell you that I didn’t come up
with the basic code for raw printing in this section. Oh, some of the code is mine, both
stylistically and imaginatively. But I didn’t figure out all of the links between the appli-
cation and the winspool.drv file. That code originally came from Microsoft Knowledge
Base article number 322090, which describes raw printing support from .NET appli-
cations. It uses a feature of .NET known as “interop” that allows .NET code to
“interoperate” with older unmanaged COM-based components and applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 565

Boy, am I glad that I got that off my chest. I mean, if anyone thought I was the one
who came up with the code you are about to see, there would be angry mobs storm-
ing my house nightly, and general turmoil in the streets. The code, contained in the
RawPrinterHelper class, is just plain ugly. Well, there’s no sense in postponing it any
longer. Create a new class named RawPrinterHelper.vb, and use the following code
for its definition.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 1.

Imports System.Runtime.InteropServices

Public Class RawPrinterHelper
 ' ----- The code in this class is based on Microsoft
 ' knowledge base article number 322090.
 ' Web: http://support.microsoft.com/?id=322090

 ' ----- Structure and API declarations.
 <StructLayout(LayoutKind.Sequential, _
 CharSet:=CharSet.Unicode)> _
 Private Structure DOCINFOW
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pDocName As String
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pOutputFile As String
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pDataType As String
 End Structure

 <DllImport("winspool.Drv", EntryPoint:="OpenPrinterW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Private Shared Function OpenPrinter(ByVal src As String, _
 ByRef hPrinter As IntPtr, ByVal pd As Long) As Boolean
 End Function

 <DllImport("winspool.Drv", EntryPoint:="ClosePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Private Shared Function ClosePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.Drv", EntryPoint:="StartDocPrinterW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

566 | Chapter 20: Printing

 Private Shared Function StartDocPrinter(_
 ByVal hPrinter As IntPtr, ByVal level As Int32, _
 ByRef pDI As DOCINFOW) As Boolean
 End Function

 <DllImport("winspool.Drv", EntryPoint:="EndDocPrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Private Shared Function EndDocPrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.Drv", EntryPoint:="StartPagePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Private Shared Function StartPagePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.Drv", EntryPoint:="EndPagePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Private Shared Function EndPagePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.Drv", EntryPoint:="WritePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Private Shared Function WritePrinter(_
 ByVal hPrinter As IntPtr, ByVal pBytes As IntPtr, _
 ByVal dwCount As Int32, ByRef dwWritten As Int32) _
 As Boolean
 End Function

 Public Shared Function SendStringToPrinter(_
 ByVal targetPrinter As String, _
 ByVal stringContent As String, _
 ByVal documentTitle As String) As Boolean
 ' ----- Send an array of bytes to a printer queue.
 ' Return True on success.
 Dim printerHandle As IntPtr
 Dim errorCode As Int32
 Dim docDetail As DOCINFOW = Nothing
 Dim bytesWritten As Int32
 Dim printSuccess As Boolean
 Dim contentBytes As IntPtr
 Dim contentSize As Int32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 567

 On Error Resume Next

 ' ----- Set up the identity of this document.
 With docDetail
 .pDocName = documentTitle
 .pDataType = "RAW"
 End With

 ' ----- Convert the string to ANSI text.
 contentSize = stringContent.Length()
 contentBytes = Marshal.StringToCoTaskMemAnsi(_
 stringContent)

 ' ----- Open the printer and print the document.
 printSuccess = False
 If OpenPrinter(targetPrinter, printerHandle, 0) Then
 If StartDocPrinter(printerHandle, 1, docDetail) Then
 If StartPagePrinter(printerHandle) Then
 ' ----- Send the content to the printer.
 printSuccess = WritePrinter(printerHandle, _
 contentBytes, contentSize, bytesWritten)
 EndPagePrinter(printerHandle)
 End If
 EndDocPrinter(printerHandle)
 End If
 ClosePrinter(printerHandle)
 End If

 ' ----- GetLastError may provide information on the
 ' last error. For now, just ignore it.
 If (printSuccess = False) Then errorCode = _
 Marshal.GetLastWin32Error()

 ' ----- Free up unused memory.
 Marshal.FreeCoTaskMem(contentBytes)

 ' ----- Complete.
 Return printSuccess
 End Function
End Class

Although ugly, the code is relatively clear-cut. The SendStringToPrinter method pre-
pares a string for printing by forcing it to a standard ANSI format. It then uses the
functions in the winspool.drv library to open a new print job, and send the prepared
content to it. There’s a whole lot of “marshalling” going on in the code through
members of the Marshal class. Since winspool.drv is an unmanaged library, all data
must be shuttled indirectly between the managed Library application and the
unmanaged winspool.drv library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

568 | Chapter 20: Printing

Printing Tickets
Now that we have a convenient class that will send any raw content to any specific
printer, let’s add some code to use it. First, we need to add a helper class for a por-
tion of the ticket printing. Create a new class file named CheckedOutItem.vb, and
replace its empty class template with the following code.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 2.

Public Class CheckedOutItem
 ' ----- Used to store the details of each checked-out
 ' item on the main form, although it also supports
 ' receipt printing.
 Public ItemTitle As String
 Public CopyNumber As Integer
 Public Barcode As String
 Public DueDate As Date
End Class

We’ll use this class to convey the details to be printed on the receipt when checking
out items. Speaking of ticket printing, let’s add the class that does the actual printing.
Create a new module file (not a class) named TicketPrinting.vb. Replace its empty
module definition with the snippet code.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 3.

The code includes three methods that drive printing: PrintCheckoutTicket,
PrintBalanceTicket, and PrintPaymentTicket. These methods are called from other
parts of the application when it’s time to present a printed ticket to the user. The
TicketPrinting module also includes a few other methods that support these three
primary methods. Since these three methods are somewhat similar in structure, let’s
just look at PrintCheckoutTicket.

Public Sub PrintCheckoutTicket(ByVal patronID As Integer, _
 ByVal checkedOutItems As ListBox)
 ' ----- Print out a ticket of what the patron checked
 ' out. The supplied ListBox control contains
 ' objects of type CheckedOutItem.
 Dim ticketWidth As Integer
 Dim ticketText As System.Text.StringBuilder
 Dim counter As Integer
 Dim patronFines As Decimal
 Dim itemDetail As CheckedOutItem

 On Error GoTo ErrorHandler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 569

 ' ----- Ignore if there is nothing to print.
 If (patronID = -1) Or (checkedOutItems.Items.Count = 0) _
 Then Return

 ' ----- Get the width of the ticket.
 ticketWidth = My.Settings.ReceiptWidth
 If (ticketWidth <= 0) Then ticketWidth = 40

 ' ----- Build the heading.
 ticketText = GetTicketHeader(patronID, ticketWidth)
 If (ticketText Is Nothing) Then Return

 ' ----- Process each checked-out item.
 For counter = 0 To checkedOutItems.Items.Count - 1
 ' ----- Extract the detail from the list.
 itemDetail = CType(checkedOutItems.Items(counter), _
 CheckedOutItem)

 ' ----- Add the item name.
 ticketText.AppendLine(Left(itemDetail.ItemTitle, _
 ticketWidth))

 ' ----- Add the bar code number and due date.
 ticketText.AppendLine(LeftAndRightText(_
 itemDetail.Barcode, "Due: " & _
 Format(itemDetail.DueDate, "MMM d, yyyy"), _
 ticketWidth))
 ticketText.AppendLine()
 Next counter

 ' ----- If there are fines due, print them here.
 patronFines = CalculatePatronFines(patronID)
 If (patronFines > 0@) Then
 ticketText.AppendLine("Fines Due: " & _
 Format(patronFines, "Currency"))
 ticketText.AppendLine()
 End If

 ' ----- Add the bottom display text.
 ticketText.Append(GetTicketFooter(ticketWidth))

 ' ----- Send the ticket to the printer.
 RawPrinterHelper.SendStringToPrinter(_
 My.Settings.ReceiptPrinter, _
 ticketText.ToString(), "Checkout Receipt")
 Return

ErrorHandler:
 GeneralError("TicketPrinting.PrintCheckoutTicket", _
 Err.GetException())
 Return
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

570 | Chapter 20: Printing

The code builds a string (actually a StringBuilder) of display content, adding details
about each checked-out item to a string buffer. Then it calls SendStringToPrinter to
send the content to the configured receipt printer (My.Settings.ReceiptPrinter).

We’ll add the code that calls PrintCheckoutTicket later. Right now, let’s add code
that calls the two other methods. When the Payment Record form closes, we want to
automatically print a receipt of all payments made while the form was open. Add the
following code to the PatronRecord.ActClose_Click event handler, just before the
code already found in that handler.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 4.

' ----- Print out a ticket if needed.
If (SessionPayments.Count > 0) Then _
 PrintPaymentTicket(ActivePatronID, SessionPayments)
SessionPayments.Clear()
SessionPayments = Nothing

Then, add some code to the ActBalanceTicket_Click event handler, also in the
PatronRecord class, that prints a balance ticket when the user requests it.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 5.

' ----- Print a ticket of all balances.
PrintBalanceTicket(ActivePatronID, Fines)

Printing Bar Codes
The Library Project prints three types of bar codes: (1) item bar codes that you can
stick on books, CDs, and anything else that can be checked out or managed by the
system; (2) patron bar codes that can be made into patron identification cards; and
(3) miscellaneous bar codes that a library can use for any other purpose. All three bar
code types are printed through the new BarcodePrint form. Figure 20-9 shows the
controls included on this form.

I’ve already added this form to the project, including its code. Here’s the code for the
Preview button, which should look familiar after I beat its concepts into you
throughout this chapter.

Private Sub ActPreview_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActPreview.Click
 ' ----- The user wants to preview the labels.
 On Error Resume Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 571

 ' ----- Make sure the user supplied valid data.
 If (VerifyFields() = False) Then Return

 ' ----- Load in all of the page-specific details to be
 ' used in printing.
 If (LoadPageDetails() = False) Then Return

 ' ----- Create the preview dialog.
 Me.Cursor = Windows.Forms.Cursors.WaitCursor
 PageSoFar = 0
 PreviewMode = True
 BarcodeDoc = New System.Drawing.Printing.PrintDocument

 ' ----- Display the preview.
 BarcodePreview.Document = BarcodeDoc
 BarcodePreview.ShowDialog()
 BarcodeDoc = Nothing
 Me.Cursor = Windows.Forms.Cursors.Default
End Sub

The Print button’s code is almost exactly the same, but it uses a PrintDialog instance
instead of PrintPreviewDialog. It also keeps track of the final printed bar code num-
ber so that it can help avoid overlaps the next time they are printed.

The BarcodeDoc_PrintPage event handler does the actual bar code printing. Its code
combines the BarcodeLabel.PreviewArea_Paint and BarcodePage.PreviewArea_Paint
event handlers into one glorious printing machine.

To enable use of the bar code printing form, add the following statements to the
ActReportsBarcode_Click event handler in the MainForm class.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 6.

Figure 20-9. One form, three bar code types, many happy labels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

572 | Chapter 20: Printing

' ----- Make sure the user is allowed to do this.
If (SecurityProfile(LibrarySecurity. _
 ManageBarcodeTemplates) = False) Then
 MsgBox(NotAuthorizedMessage, MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 Return
End If

' ----- Show the bar code label printing form.
Call (New BarcodePrint).ShowDialog()

Renewal of Checked-Out Patron Items
For a library patron, the only thing more important than checking items out and in is
being able to read those items. The Library Project won’t help anyone with that, but
it will do that check-in, checkout transaction thing through the code we add in this
chapter. Let’s start by adding the renewal code for currently checked-out items. The
Renew button on the Patron Record form initiates the process. Add the code to the
PatronRecord.ActRenewItemsOut_Click event handler that does the renewal.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 7.

The code does some calculations to determine the new due date (avoiding holidays),
and then updates the database in a transaction.

TransactionBegin()

' ----- Update the record.
sqlText = "UPDATE PatronCopy SET DueDate = " & _
 DBDate(dueDate) & ", Renewal = " & renewsSoFar & _
 " WHERE ID = " & itemDetail.DetailID
ExecuteSQL(sqlText)

' ----- Update the patron record.
sqlText = "UPDATE Patron SET LastActivity = GETDATE() " & _
 "WHERE ID = " & ActivePatronID
ExecuteSQL(sqlText)

TransactionCommit()

Support for Check-In and Checkout
If a library adds bar code labels to all of its items, check-in and checkout will be via a
bar code reader. But a very small library using the program may not have the staff
time available to bar code everything on the shelves. Therefore, the Library Project
needs to support check-in and checkout by title. During checkout or check-in, the
user enters either a bar code or a title (partial or complete). Non-numeric entries are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 573

assumed to be titles, and initiate a title search. The new CheckLookup.vb form, pic-
tured in Figure 20-10, displays all matches for the entered title.

Although the fields on the form initially indicate that they are for checkout only, the
form does double duty, altering its visage for check-in purposes. Additionally, check-
in listings are limited to only those items already checked out.

I’ve already added this form to the project, along with its source code. Most of the
code queries the database for matching library items and displays the results using an
owner draw listbox. It is a subset of the code found in the ItemLookup.vb form. The
only real difference between check-in and checkout occurs in the PerformLookup
method. This code block starts to build the main item selection SQL command, and
then ends it with these statements:

If (asCheckIn) Then sqlText &= " AND IC.ID IN" _
 Else sqlText &= " AND IC.ID NOT IN"
sqlText &= " (SELECT ItemCopy FROM PatronCopy " & _
 "WHERE Returned = 0)"

So, the difference is “IN” versus “NOT IN.”

The CheckItemByTitle function is the main interface to the form’s logic.

Public Function CheckItemByTitle(ByVal CheckIn As Boolean, _
 ByVal searchText As String) As Integer

You pass this function the user-supplied title (searchText) and a flag indicating
check-in or checkout, and it returns the ItemCopy.ID database field for the selected
library item.

All of the remaining changes in this chapter occur in the MainForm class, so let’s go
there now. The UpdateDisplayForUser method adjusts the main form’s features when
an administrator logs in or out. One feature we didn’t take into account before is the
administrator-defined ability for patrons to check out their own items without librar-
ian assistance. To support that feature, we need to change some of the code in the
UpdateDisplayForUser method. About 10 lines into the code, in the conditional sec-
tion that sets up the display for patrons, you’ll find these four lines:

Figure 20-10. A title matching form for both check-in and checkout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

574 | Chapter 20: Printing

LabelTasks.Visible = False
LineTasks.Visible = False
PicCheckOut.Visible = False
ActCheckOut.Visible = False

Replace these four lines with the following code.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 8.

' ----- See if patrons can check out items by themselves.
Dim userCanCheckOut As Boolean = _
 CBool(Val(GetSystemValue("PatronCheckOut")))

LabelTasks.Visible = userCanCheckOut
LineTasks.Visible = userCanCheckOut
PicCheckOut.Visible = userCanCheckOut
ActCheckOut.Visible = userCanCheckOut

We also need to add similar security-related code to the TaskCheckOut method. Here
are the first few lines of code from that method:

' ----- Update the display.
AllPanelsInvisible()
If (SecurityProfile(LibrarySecurity.CheckOutItems)) Then _
 PanelCheckOut.Visible = True

Replace these lines with the following code.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 9.

' ----- Check Out mode.
Dim userCanCheckOut As Boolean

' ----- See if patrons can check out items by themselves.
userCanCheckOut = CBool(Val(GetSystemValue("PatronCheckOut")))

' ----- Update the display.
AllPanelsInvisible()
If (userCanCheckOut Or _
 SecurityProfile(LibrarySecurity.CheckOutItems)) Then _
 PanelCheckOut.Visible = True

The actual checkout of items occurs on the main form itself. First, a patron is identified,
and then the items to check out get processed. Let’s add a class-level variable to
MainForm to keep track of the patron. And as long as we’re adding definitions, we’ll also
add two constants that refer to images stored in the MainForm.StatusImages control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 575

These constants will be used in some check-in-related code added a little later. Add
the following code to the start of the class definition.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 10.

Private ActiveCheckOutPatron As Integer = -1

Private Const StatusImageBad As Integer = 0
Private Const StatusImageGood As Integer = 1

When the user identifies the patron to use for checkout, and then starts checking
items out, the last step is a click of the Finish button, indicating the end of the check-
out process for that patron. (Skip ahead to Figure 20-11 if you want to see the Finish
button now.) However, there is nothing to stop the user from jumping to another
part of the program, or from exiting the program completely, without first clicking
the Finish button. We must anticipate this rude behavior so typical of software users.
To ensure that checkout completes properly, we will add some code to three places
in MainForm that should catch any such discourteous actions by the user. Add the fol-
lowing code to the start of these three methods: (1) the MainForm_FormClosing event
handler; (2) the ShowLoginForm method; and (3) the AllPanelsInvisible method.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 11 three times.

' ----- Finish the in-process check-out if needed.
If (ActiveCheckOutPatron <> -1) Then _
 ActFinishCheckOut.PerformClick()

Checking Out Items
All of the checkout code (except for the code in the CheckLookup.vb form) appears
in the main form’s class. Checkout is one of the eight main display panels accessed
through this form (see Figure 20-11).

Here’s the process for checking out items from the checkout panel:

1. The user clicks the Patron button and identifies the patron who will check out
items.

2. The user enters the title or bar code for each item to check out, and clicks the
Check Out button for each one.

3. The user clicks the Finish button when checkout is complete.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

576 | Chapter 20: Printing

Let’s add the code for each of these three buttons. First, add code to the
ActCheckOutPatron_Click event handler.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 12.

This code prompts the user for patron selection, and displays the remaining fields if
successful. Here’s the part of the code that does the prompting:

' ----- Get the ID of the patron.
patronID = (New PatronAccess).SelectPatron()
If (patronID = -1) Then Return

' ----- Get the patron name.
sqlText = "SELECT FirstName + ' ' + LastName FROM Patron " & _
 "WHERE ID = " & patronID
patronName = CStr(ExecuteSQLReturn(sqlText))

' ----- Is this patron active?
sqlText = "SELECT Active FROM Patron WHERE ID = " & patronID
If (CBool(ExecuteSQLReturn(sqlText)) = False) Then
 MsgBox("Patron '" & patronName & _
 "' is marked as inactive.", MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 Return
End If

Figure 20-11. The checkout panel on the main form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 577

Add code to the ActDoCheckOut_Click event handler, which processes each item
through the Check Out button.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 13.

As I mentioned before, this code differentiates between numeric entry (bar codes)
and other entries (titles).

If (IsNumeric(Trim(CheckOutBarcode.Text))) Then
 ' ----- Probably a bar code supplied. Get the related ID.
 sqlText = "SELECT ID FROM ItemCopy WHERE Barcode = " & _
 DBText(Trim(CheckOutBarcode.Text))
 copyID = DBGetInteger(ExecuteSQLReturn(sqlText))
 If (copyID = 0) Then
 ' ----- Invalid bar code.
 MsgBox("Bar code not found.", MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 CheckOutBarcode.Focus()
 CheckOutBarcode.SelectAll()
 Return
 End If
Else
 ' ----- Lookup by title.
 copyID = (New CheckLookup).CheckItemByTitle(False, _
 Trim(CheckOutBarcode.Text))
 If (copyID = -1) Then Return
End If

Eventually, after verifying that the item is available for patron use, the code checks
out the item by updating the relevant records in the database.

TransactionBegin()

' ----- Update patron copy record.
sqlText = "INSERT INTO PatronCopy (Patron, ItemCopy, " & _
 "CheckOut, Renewal, DueDate, Returned, Missing, " & _
 "Fine, Paid) VALUES (" & ActiveCheckOutPatron & ", " & _
 copyID & ", " & DBDate(Today) & ", 0, " & _
 DBDate(untilDate) & ", 0, 0, 0, 0)"
ExecuteSQL(sqlText)

' ----- Update the patron record.
sqlText = "UPDATE Patron SET LastActivity = GETDATE() " & _
 "WHERE ID = " & ActiveCheckOutPatron
ExecuteSQL(sqlText)

TransactionCommit()

The last of the three buttons is the Finish button. Add code to the
ActFinishCheckOut_Click event handler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

578 | Chapter 20: Printing

INSERT SNIPPET

Insert Chapter 20, Snippet Item 14.

This code simply resets the display fields in preparation for the next patron checkout.

The listbox on the checkout panel needs to display two columns of data: (1) the due
date; and (2) details of the item, such as title and bar code. These values were added
to the list using the CheckedOutItem class we added a little earlier in the chapter. Add
code to the CheckedOutItems_DrawItem event handler.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 15.

Checking In Items
Checking in items is much simpler since we don’t need to first identify the patron.
The bar code or title of the check-in item is sufficient to complete all processing.
Figure 20-12 shows the check-in panel.

Figure 20-12. The check-in panel on the main form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 579

This panel includes a date indicating when the item will be checked in. Normally,
that’s today, but if library items are turned in through a nighttime repository after
business hours, the librarian might want to adjust the date to “Yesterday,” just in
case any of these items were turned in before midnight. Let’s add some code so that
the panel indicates “Today” or “Yesterday” or some other day when the date
changes. Add the following code to the CheckedInDate_ValueChanged event handler.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 16.

' ----- Adjust the day in the display.
Select Case DateDiff(DateInterval.Day, _
 CheckInDate.Value, Today)
 Case 0 ' ----- Today
 CheckInDay.Text = "Today"
 CheckInDay.BackColor = SystemColors.Control
 CheckInDay.ForeColor = SystemColors.ControlText
 Case 1 ' ----- Yesterday
 CheckInDay.Text = "Yesterday"
 CheckInDay.BackColor = Color.Red
 CheckInDay.ForeColor = Color.White
 Case Else ' ----- X days ago
 CheckInDay.Text = DateDiff(DateInterval.Day, _
 CheckInDate.Value, Today) & " days ago"
 CheckInDay.BackColor = Color.Red
 CheckInDay.ForeColor = Color.White
End Select

The actual check-in occurs when the user enters a bar code or title in the text field,
and clicks the Check In button. Add code to the ActDoCheckIn_Click event handler.

INSERT SNIPPET

Insert Chapter 20, Snippet Item 17.

After performing some lookups and confirmation checks, the code checks in the item
through database updates.

' ----- Do the check-in in a transaction.
TransactionBegin()

' ----- Update patron copy record.
sqlText = "UPDATE PatronCopy SET CheckIn = " & _
 DBDate(CheckInDate.Value) & _
 ", Returned = 1 WHERE ID = " & patronCopyID
ExecuteSQL(sqlText)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

580 | Chapter 20: Printing

' ----- Update the patron record.
sqlText = "UPDATE Patron SET LastActivity = " & _
 "GETDATE() WHERE ID = " & patronID
ExecuteSQL(sqlText)

TransactionCommit()

That’s it for the check-in and checkout procedures, and all ticket printing. It’s pretty
good code, but not yet perfect. What we haven’t yet added is code to properly pro-
cess fines on items before they are checked in, or as they are adjusted in other ways.
We will postpone this logic until Chapter 22. Until then, let’s look at another appli-
cation printing feature: reports.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

581

Chapter 21 CHAPTER 21

Reporting21

For the business application developer, reports are a fact of life. You may want to
spend your time developing cool user interfaces or figuring out the core algorithms
used in Generally Accepted Accounting Principles. But instead, you invest many bor-
ing hours each week turning out report after report. And these reports take a signifi-
cant toll on the programming community. In America alone, the Centers for Disease
Control and Prevention estimates nearly 850 report-related deaths each year—and
that doesn’t even count those who read the reports. I once had a customer that
printed off 20 copies of a 600-page report every month for its top-level managers.
Clearly stupefied by the amount of tree pulp used to generate this report, the staff
was unable to come up with a more interesting name than “the monthly report.”

So, if you are a business programmer, reports are in your future. But whereas your
forebears had to deal with languages such as RPG III, you get to use .NET. Hey,
reports won’t be so bad after all. And even without resorting to third-party reporting
tools, Visual Studio and .NET include several report-focused features and tools you
can use right out of the box.

This chapter discusses some of those reporting resources, and delves a little deeper
into the reporting controls used in the Library Project.

Report Options in .NET
Reporting involves displaying and printing basic or summarized data to the user for
specific business purposes. Visual Basic 2008 Professional Edition includes six pri-
mary methods of accomplishing this goal. Other editions add to or reduce this set of
choices, and you can always enhance this list using third-party tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

582 | Chapter 21: Reporting

PrintDocument-Based Printing
As we learned in the previous chapter, the .NET Framework includes a full object-
based printing system that uses GDI+ commands to draw text and graphics on each
printed page. Since you can put anything you want on each page, you could develop
your own custom reports using this method. The responsibility for positioning each
label and calculated field on the page, and determining when to move to a new page,
will rest entirely on your shoulders. Still, the GDI+ commands are straightforward,
and developing some basic reports using this method would not be overwhelming.

If you want to take this route for your reports, I refer you back to Chapter 20 and the
basic printing concepts presented there.

HTML/Web Pages
Besides being a significant timewaster, the Internet (and its HTML-based page
description language) is a great medium for data-report communication. The table-
formatting tags in HTML (such as <td>) let you organize tabular output without
much effort. Sure, it’s a chore stringing all of those baby-size text strings together to
build the page, but there are ways around that, too.

Back in Chapter 13, I discussed XSLT (XSL Transformations), a way to take XML-
based data and reshape it into any form you want—including great works of art by
Michelangelo, or nicely crafted HTML. However you obtain the HTML, you have a
choice of display methods as well. The most direct method involves storing the gen-
erated HTML in a disk file, and starting the user’s default browser to display it using
a command such as:

Process.Start("c:\temp\MyReport.htm")

If you want the report to have a more “integrated” look in your application, you can
display the HTML content in a web browser control. We did this in the project code
for Chapter 17, when we displayed the details of a library item as HTML.

XPS Documents
Windows Presentation Foundation (WPF) is used primarily to make your user inter-
face dance with color and action. But a portion of that technology exists to generate
XML-based static documents known as XPS (XML Paper Specification). Just as you
can generate reports using HTML, you can generate them using the XPS standard.

Chapter 18 includes a brief discussion of WPF and XPS. If the generation of XPS-
based reports is of interest to you, check out the documentation included with Visual
Studio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Report Options in .NET | 583

Reporting Services and Controls
Visual Studio includes a set of classes in the Microsoft.Reporting namespace that are
specifically designed to report data. The key class in this namespace is the
ReportViewer class (identified as MicrosoftReportViewer in its control alter-ego).
Actually, it is two controls: one for Windows Forms and one for Web Forms. These
controls are based, in part, on the technology found in Microsoft SQL Server Report-
ing Services, although you can use the controls without SQL Server.

The Library Project will use the WinForms.ReportViewer control for its built-in
reports. We’ll spend most of this chapter discussing the control and its use in Win-
dows Forms applications. I won’t be discussing the Web Forms version of the con-
trol here, although its use closely parallels that of the Windows Forms version.

You’ll see how simple it is to add the MicrosoftReportViewer control to an existing
project. But Visual Studio also includes a new project template that focuses on the
MicrosoftReportViewer control. Creating a new “Reports Application” project uses a
project wizard to help you set up a custom report. The final result can be your com-
plete report application, or you can use it as the basis for further customization.

Crystal Reports
If you have at least the Professional Edition of Visual Studio 2008, you received a
complimentary copy of Crystal Reports. The included version is a functional subset
of the official Crystal Reports 2008 release. If you are new to Visual Basic, you have
missed out on the previous versions of Crystal Reports that have been included with
the language since its earliest releases. Because of this long-time relationship with
Visual Basic, Crystal Reports has become one of the most widely used reporting
packages on the market.

Crystal Reports is a third-party product, currently owned by a company called Busi-
ness Objects. The product has changed ownership hands several times since it was
first paired with Visual Basic, but Business Objects seems to be taking care of it for
now. I won’t be discussing Crystal Reports any further in this book.

Integration with Microsoft Office
Visual Basic has been the primary macro language of the Microsoft Office suite of
applications since the untimely death of WordBasic. But I’m talking about pre-.NET
Visual Basic, which is so unmanaged. Fortunately, you can also use the managed
world of Visual Basic 2008 to interact with Microsoft Office applications. How you
interact with Office depends on whether the Office document or the Visual Basic
application is the primary focus for the user.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

584 | Chapter 21: Reporting

If your goal is to enhance a “line of business” application by using various Office
applications as the portal to that application—for example, showing the latest sales
figures from within Microsoft Outlook—consider building an Office Business Appli-
cation (OBA). OBAs represent a new way of designing integrated programs using
Visual Studio, Microsoft Office, Microsoft SharePoint Services, and other related sys-
tems. From the Visual Studio side of the world, your development work happens
through Visual Studio Tools for Office (abbreviated as VSTO, or “visto”), included
with the Professional and Team System editions of Visual Studio.

If your goal is to create your own “task bar” add-ins within Office applications, use
the new Office Add-In project templates included with Visual Studio. These easy-to-
develop extensions let you customize the user experience by customizing the Office
feature set. Add-ins are also considered part of VSTO, and are available only with
Visual Studio 2008 Professional and Team System editions.

If the user will access Office features only indirectly through your Visual Basic applica-
tion (e.g., if you want your program to initiate a Microsoft Word mail merge), use the
Microsoft Office Primary Interop Assemblies (PIA) supplied by Microsoft. These librar-
ies provide access to Office application-specific features through the Microsoft.Office
namespace. Like VSTO, these libraries link up your .NET code to Microsoft Office,
but with the focus on your code instead of on the Office document.

Using Reporting Controls in .NET
Let’s spend the remainder of this chapter discussing the standard reporting tools pro-
vided in Visual Studio. As mentioned earlier, two ReportViewer classes are included
in Visual Studio: one for desktop development and one for web development. I’ll be
talking about only the desktop variation in this chapter. The designer used to
develop these reports does not differentiate between the report target (desktop or
browser). There are some differences in deployment, but I’ll have to leave the web
deployment to a future best-selling programming book, or to your own research.

The MicrosoftReportViewer control integrates directly with Microsoft SQL Server
Reporting Services, displaying whole pages generated by that server-based system.
Since we’re assuming that you are using SQL Server Express Edition for your devel-
opment (which does not include Reporting Services), I’ll focus instead on the con-
trol’s “local” mode presentation. This lets you display any data from any source you
choose on each report display page, including SQL Server.

In the vein of “those who can, do; those who can’t, teach,” let me walk you through
the steps needed to visually design a simple report using the ReportViewer class.
We’ll create a report that lists the records in the Library Project’s Activity table, a
table that will have data in it even if you haven’t used the Library program yet. This
works best if you follow along in front of your computer, because reading about
report design is a lot like reading about brain surgery: it’s more interesting if you
actually do it. Start by creating a new Windows Forms application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Reporting Controls in .NET | 585

Adding the Data Source
Add a data source to the project that refers to the Activity database table. We
already did this back in Chapter 10, in the “Creating a Data Source” section. Select
the Data ➝ Add New Data Source menu command, and use the Data Source Config-
uration Wizard to locate your Library database. When you reach the list of database
objects, check the box next to the Activity table, and click the Finish button. You
should now have a data source named LibraryDataSet. Figure 21-1 shows the ele-
ments added to the Solution Explorer and the Data Sources panel by this action.

And Now, the Bad News
The MicrosoftReportViewer control is not the easiest control in the world to use, but
it’s even harder to use when it doesn’t even come with your copy of Visual Studio. If
you are using Visual Basic 2008 Express Edition, you will not find the
MicrosoftReportViewer control in your toolbox. Microsoft does make it available as a
separate download (access the Microsoft download area, http://www.microsoft.com/
downloads, and look for “Microsoft Report Viewer Redistributable 2005 SP1”), but
that will get you only halfway. I’ll be discussing a visual reporting designer later that is
also not in the Express Edition. Although you can still manually create the XML con-
tent that is normally generated by the visual designer, that’s no fun at all.

If you are using the Express Edition, you can still use the project code in this book. You
just won’t be able to visually design new reports. But you can run the prewritten
reports that I already included, since they are just XML content.

If, after all of that, you are still an Express Edition user, please download and install
the Microsoft Report Viewer Redistributable 2005 SP1 file from Microsoft’s web site.

Figure 21-1. The LibraryDataSet as a data source, and as an XML “.xsd” file

http://www.microsoft.com/downloads
http://www.microsoft.com/downloads
http://lib.ommolketab.ir
http://lib.ommolketab.ir

586 | Chapter 21: Reporting

Adding a Report Design Surface
Use the Project ➝ Add New Item menu command to add a new “Report” item.
Figure 21-2 shows the item report in the Add New Item dialog. Make sure you
choose Report and not Crystal Report from the list.

Click the Add button to insert the report into the project. A new Report1.rdlc file
appears in your project, and its designer opens automatically. “RDLC” is short for
“Report Definition Language – Client,” and files of this type contain XML content
that describes the layout of a locally designed report. Figure 21-3 shows the designer
for the added Report1.rdlc file, plus the controls in the toolbar that you can add to
the report surface. I will refer to reports created through this designer as “RDLC
reports” throughout the rest of this chapter.

Figure 21-2. Adding a new report to the project

Figure 21-3. The report designer and related toolbar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Reporting Controls in .NET | 587

Designing the Report Surface
If you’ve written reports in Microsoft Access or in some other common reporting
tool, you are probably familiar with “banded” reports. These reports have separate
“bands” or stripes that represent a portion of the printed page. Bands include page
headers and footers, report headers and footers, the record detail section, and group
headers and footers used to visually and logically group the detail entries. As the
report runs, an imaginary horizontal page-wide line runs from the top to the bottom
of the page. As the line hits each band, the report processes the fields in that band
until there are no more records to process.

RDLC reports are a little bit different from those banded reports. There are only
three bands: page header, page footer, and everything else (a band called “Body”).
Instead of adding bands for records and groups, you add fields to data regions. These
special controls process the records linked to the report according to the shape of the
data region. There are four data region controls in the toolbox:

Table
This region presents an unlimited number of data rows, but with a predefined
set of data columns. It’s designed for tabular presentation of data records, with
each column generally displaying a single source or calculated data field. Each
row of the table represents a source data record.

Matrix
This control is similar to the Table region, but it allows for a flexible number of
data columns, not just rows.

List
The List region provides a free-form display section for each incoming record.
You can add any number of fields or display controls to the record section.

Chart
Charts use the collected data of the report to present line, bar, and pie charts to
the user.

Records from data sets are always tied to a data region. If your report includes data
from multiple distinct data sources, each data source will link to exactly one report
region, and all regions appear in the Body band. We’ll use a List data region for this
sample report. Go ahead and add the List control to the Body band on the report
surface. You can now add other items either to the band surface itself, or to the List
control surface. Items added to the List control are reprocessed for each record in
the incoming data source. These items can be either controls from the toolbox, or
database fields displayed in the Data Sources panel. Using the Activity table in the
Data Sources panel, drag the FullName field to the List control surface. Figure 21-4
shows the display just after performing this drag operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

588 | Chapter 21: Reporting

When we dragged the field from the data source to the List control, Visual Studio
established a link between them. The list1 control’s DataSetName field now refers to
LibraryDataSet_Activity, the name of the data source. It also added a TextBox con-
trol to the list’s surface, and added an expression (=Fields!FullName.Value) that dis-
plays the contents of that field from the database for each processed record.

I’m going to resize the List control, the text box, and the Body band so that the
FullName text box field is pretty much all there is in the report (see Figure 21-5).

The report is ready to use. As we designed the report surface, Visual Studio was busy
generating XML and storing it in the Report1.rdlc file.

Using a Report Control
The RDLC file is only an XML definition of a report; it doesn’t have any ability to
display itself. To view the report, we must add a report control to a form or web page
that knows how to properly merge the XML design content with the data from the
specified data source. Return to Form1, and add a MicrosoftReportViewer control to its
surface from the toolbox (it’s in the Reporting section of the toolbox on my system).

The added control includes a small “smart tags” button in its upper-right corner.
Clicking this button displays the ReportViewer Tasks fly-out window, which appears
in Figure 21-6.

The MicrosoftReportViewer control presents a form-based experience for displaying
reports. Most of the control is a blank area where the report appears. It also includes
a toolbar used to navigate through the pages of the report. The user can also initiate
an export or a printout of the report through these controls. If you don’t need the
toolbar or one of its controls, use the various Show... properties of the
MicrosoftReportViewer control to hide the unneeded elements.

Figure 21-4. A List control with a field from the data set

Figure 21-5. A resized version of the report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Reporting Controls in .NET | 589

The report viewer is generic and report-independent. If you have several RDLC
files in your project, you can display any of them (one at a time) through the same
report viewer. We have only one report in our project, so let’s connect it
(SimpleReport.Report1.rdlc) to the viewer by using the Choose Report task from the
report viewer’s smart tag button. Also, click on the “Dock in parent container” task
in the fly-out window to expand the report to the form’s size.

The RDLC report, the data from the data source, and the MicrosoftReportViewer
control are all joined in one glorious report display by the magic of data binding.
When you linked the report to the viewer control, three more controls appeared
on the form: LibraryDataSet, ActivityBindingSource, and ActivityTableAdapter.
LibraryDataSet is a reference to the actual data source we added earlier. The other
two controls wrap up that data in a form that can be bound to the report viewer.
Although you can’t see it in the designer, the hidden form code connects up these
controls and the XML report to the viewer.

ReportDataSource1.Name = "LibraryDataSet_Activity"
ReportDataSource1.Value = Me.ActivityBindingSource
Me.ReportViewer1.LocalReport.DataSources.Add(_
 ReportDataSource1)
Me.ReportViewer1.LocalReport.ReportEmbeddedResource = _
 "SimpleReport.Report1.rdlc"

Yeah, I don’t really get it, either. But that’s OK. Visual Studio connected it all up for us.

Running the Report
Press F5 and see the results of your efforts. In Figure 21-7, I adjusted the view by click-
ing on the Page Layout toolbar button, and setting the zoom level to Page Width.

Well, that report is fine as far as Activity table reports go, but we could spruce it up
a bit more.

Figure 21-6. The MicrosoftReportViewer control on the form surface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

590 | Chapter 21: Reporting

Adding a Page Header and Footer
I think the report needs a meaningful title at the top of each page, plus a page num-
ber in the bottom-right corner. Let’s return to the RDLC report designer and add
them. Once there, right-click on the background of the report (not the body, which
has the grid marks on it), as shown in Figure 21-8.

From this menu, select Page Header, then bring up the menu again and select Page
Footer. Each new band appears on the report surface.

Whether it’s static, unchanging text or text that’s dynamically generated from a data
source, the TextBox control is the control of choice for showing text content. Add a
TextBox control from the toolbox to both the header and footer sections. Click inside
the header’s text box, and type the following:

="The Activity Table Report"

You can use the Properties panel to adjust the look of this control, including its dis-
play font.

In the footer text box, add this text:

="Page " & Globals!PageNumber

Figure 21-7. Reporting the essential contents of the Activity table

Figure 21-8. Adding page headers and footers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Reporting Controls in .NET | 591

The Globals pseudo-object includes a few members that you can use in the report.
How did I know to use Globals!PageNumber? I built the expression visually using the
Expression Editor. To access it, right-click on the TextBox control and select Expres-
sion from the shortcut menu. The editor, shown in Figure 21-9, lets you build up an
expression using lists of functions and field names. The actual functions just happen
to be—hooray—Visual Basic functions.

Support for Grouping and Sorting
Grouping of data is common in printed reports. To add grouping to our report, we
need to embed our existing List control (the detail record) within another List con-
trol (the group), and set various properties on the group List control to determine
the method of data grouping.

Let’s try it. Add another List control (called list2) to the report body, and give it
twice the height as the existing List control (called list1). Then, drag list1 (the
detail record) into list2 (the new group), placing it toward the bottom. Your report
should look like Figure 21-10.

To configure the group, right-click on it and select Properties from the shortcut
menu. The List Properties form appears. On its General tab, click the “Edit details
group” button, which sets the grouping. On the Grouping and Sorting Properties
form that appears, enter the following text into the first row of the “Group on” field:

=Left(Fields!FullName.Value, 1)

Figure 21-9. The Expression Editor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

592 | Chapter 21: Reporting

This expression tells the list2 control to group its detail results by the first character
of the first name field.

On this same form, add the following text to the “Document map label” field:

="Letter: " & Left(Fields!FullName.Value, 1)

The document map enables a clickable hyperlink list into the different groups of the
report. When we run the report a little later, we’ll see this map just to the left of the
report display surface.

The records in the Activity table are ordered for the convenience of the programmer
(me). But the report user probably wants to see them sorted in some reasonable fash-
ion. Click on the Sorting tab, and add the following text to the “Sort on” field, in the
Expression column:

=Fields!FullName.Value

As expected, this will sort the data by the FullName field. Click the OK buttons all the
way out, and return to the report surface.

We still need to add something that will make each group stand out. Add a TextBox
control to the list2 grouping control. Put it in the upper-left corner of that parent
control, and type the following text into it (or into its Value property):

=Left(Fields!FullName.Value, 1)

I also set its BackgroundColor property to “Black,” its Color property to “White,” and
its Font property to “Normal, Arial, 12pt, Bold” just for looks.

Running the report gives the results in Figure 21-11. Notice the document map along
the left edge of the window, and the grouped single-letter titles before each grouped
section.

Enhanced Style Formatting
Probably the coolest feature of RDLC reports is that many of the properties for items
placed on the report surface can include conditional expressions. This means that
you can conditionally alter, say, the visual properties of a TextBox control based on
the value of a field in the current record.

Figure 21-10. A grouping list added to the report

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Reporting Controls in .NET | 593

In the “Project” section of this chapter, we’ll write a report that uses due dates for
items currently checked out. If the item is past due, I want to show the due date in
red. Normally, a TextBox control’s Color property (which controls font color) is
“Black.” To have that field respond to overdue items, I will replace “Black” with the
following expression:

=IIf(Fields!DueDate.Value < Today, "Red", "Black")

Using Custom Data
Although it is very common to generate reports from databases, you can actually use
data from virtually any source. When using the MicrosoftReportViewer control, any
data source that implements the IEnumerable interface is good enough. That includes
all collections, arrays, and LINQ query results. The report isn’t that picky, as long as
the data is formatted as it expects. For the report we just made, we can ditch the
actual data and supply our own fake data. This intercepting and substituting data is
like something out of a spy thriller. But we must follow a few rules to make it work:

• When we dragged the Activity.FullName field from the data source to the report
surface, the report (actually, the list1 control) got this funny idea that all data
had to come from a data source named LibraryDataSet_Activity. Any data
source we use in place of the real one must keep this name.

• The fake data source must include the FullName field, since that is what the
report fields expect.

Those rules aren’t so bad. So, here’s what we need to do: create a fake data source,
intercept the report just before it tries to get the data from the Library database, and
insert our own data instead.

Figure 21-11. The full report, with grouping and sorting enabled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

594 | Chapter 21: Reporting

For a fake data source, we’ll need a class that includes at least the FullName field.

Public Class FakeActivityRecord
 Private StoredID As Long
 Private StoredFullName As String

 Public Sub New(ByVal whatID As Long, _
 ByVal whatFullName As String)
 StoredID = whatID
 StoredFullName = whatFullName
 End Sub

 Public Property ID() As Long
 Get
 Return StoredID
 End Get
 Set(ByVal value As Long)
 StoredID = value
 End Set
 End Property

 Public Property FullName() As String
 Get
 Return StoredFullName
 End Get
 Set(ByVal value As String)
 StoredFullName = value
 End Set
 End Property
End Class

The exposed fields must be properties, and not just public fields; the report viewer
doesn’t recognize standard member fields.

If you look at the source code for Form1, you’ll find that the following code was
added to the Form_Load event handler when we linked the report viewer with the
RDLC report:

Me.ActivityTableAdapter.Fill(Me.LibraryDataSet.Activity)
Me.ReportViewer1.RefreshReport()

It’s that first line that loads the data from the Library database’s Activity table and
links it to the report. We need to replace those two wizard-generated lines with code
that cuts off the real data at the pass.

' ----- Create a fake table of fake records.
Dim fakeSource As New Collections.Generic.List(_
 Of FakeActivityRecord)

' ----- Add each of the fake records.
fakeSource.Add(New FakeActivityRecord(1, "Do some work"))
fakeSource.Add(New FakeActivityRecord(2, "Take a nap"))
fakeSource.Add(New FakeActivityRecord(3, "Write a program"))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Reporting Controls in .NET | 595

' ----- The report was already bound to the true
' data source. Delete it.
Me.ReportViewer1.LocalReport.DataSources.Clear()

' ----- Build a new data source. Remember, it must have
' the same name.
Dim fakeReportSource As New _
 Microsoft.Reporting.WinForms.ReportDataSource
fakeReportSource.Name = "LibraryDataSet_Activity"
fakeReportSource.Value = fakeSource

' ----- Connect the data source to the report, and we're done.
Me.ReportViewer1.LocalReport.DataSources.Add(fakeReportSource)
Me.ReportViewer1.RefreshReport()

Figure 21-12 shows the report with the fake data on display.

Supplying Custom Data Sources
Substituting data at the last second is fine and all, but what if you want to design a
report that doesn’t depend on a database at all? You can do that, too, by supplying a
fully custom data source. RDLC reports require some sort of data source schema at
design time; you just can’t supply fully custom data on the fly when running the
report. But you can supply a custom schema based on a class in your application.

For the class, we’ll stick with the FakeActivityRecord we created in the previous sec-
tion. Then we will design a data source from this class. Select the Data ➝ Add New
Data Source menu command. When the Data Source Configuration Wizard has
appeared in the past, you have always selected Database as the source for the data.
This time, select Object, as shown in Figure 21-13.

When you click the Next button, a hierarchy of all the classes in your application
appears. Expand the classes, then locate and select the FakeActivityRecord class.

Figure 21-12. This fake data will not self-destruct in five seconds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

596 | Chapter 21: Reporting

Click the Finish button. FakeActivityRecord now appears as a data source in the
Data Sources panel.

Now you can drag and drop this data source’s FullName field onto a new RDLC
report design surface. Add a new report to your project, and follow the same steps
we used previously to design the first report. This time, use the FakeActivityRecord
data source instead of the LibraryDataSet source.

To test this new report, I removed the original Form1 from the project and added a
brand-new Form1. I also added a MicrosoftReportViewer control to its surface and
docked it, but I did not link it to the RDLC report. This keeps things a lot cleaner as
there are no binding source controls and whatnot to worry about. Then I added this
code to the form’s Load event handler:

' ----- Link to the RDLC report design.
Me.ReportViewer1.LocalReport.ReportEmbeddedResource = _
 "SimpleReport.Report2.rdlc"

' ----- Create a fake table of fake records.
Dim fakeSource As New Collections.Generic.List(_
 Of FakeActivityRecord)

' ----- Add each of the fake records.
fakeSource.Add(New FakeActivityRecord(1, "Breakfast"))
fakeSource.Add(New FakeActivityRecord(2, "Lunch"))
fakeSource.Add(New FakeActivityRecord(3, "Dinner"))

' ----- Build a new data source. Remember, it must have
' the same name.
Dim fakeReportSource As New _
 Microsoft.Reporting.WinForms.ReportDataSource
fakeReportSource.Name = "SimpleReport_FakeActivityRecord"
fakeReportSource.Value = fakeSource

Figure 21-13. Creating a data source based on a custom object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 597

' ----- Connect the data source to the report, and we're done.
Me.ReportViewer1.LocalReport.DataSources.Add(fakeReportSource)
Me.ReportViewer1.RefreshReport()

It’s pretty similar to the previous custom code, although the data source name is now
SimpleReport_FakeActivityRecord, the name this new report expects (which I found
out by running the report and reading the error message).

I’ve saved a copy of both custom reports in the installation directory for the book’s
source code samples. Look in the subdirectory named SimpleReport.

Summary
Although this chapter included many pretty pictures and a lot of instructions, we
only scratched the surface of the features available in the reporting controls included
with .NET. I think I bruised my brain when I tried to study up on every available fea-
ture, but perhaps your brain is better prepared for the task. Still, if you don’t find it
exactly to your liking, you can use one of the other reporting features I listed at the
start of the chapter, or even opt for a third-party solution.

Reports are an important part of the business developer’s daily life. Finding the right
reporting tool and getting comfortable with its features is not only a good sugges-
tion, it’s a necessity in the world of report-hungry software users.

Project
When we last left the Technical Resource Kit document for the Library Project, it
listed five “built-in” reports:

• Report #1: Items Checked Out Report

• Report #2: Items Overdue Report

• Report #3: Items Missing Report

• Report #4: Fines Owed by Patrons Report

• Report #5: Library Database Statistics Report

We’ll add these five reports to the project in this chapter. Before we write any code,
we need to figure out how we’re going to get the data. Since the data will come from
the Library database, we just need to craft the SQL statement for each report that
will link to the designed report.

The fifth report, “statistics,” will report things such as the number of items, the num-
ber of patrons, and other similar statistical values from the Library database. Since
this data can’t really come from a single SQL statement, we’ll extract the data from
the database and build a custom data source that feeds into the report.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

598 | Chapter 21: Reporting

Crafting the SQL Statements
The first report, “items checked out,” lists the patron name and item title for every
item currently checked out by the patron. It involves the Patron table (to get the
patron name), the PatronCopy table (the checkout event), the ItemCopy table (the
actual item checked out), and the NamedItem table (where the item title appears).
We’ll also include the CodeMediaType table, which tells us whether the item is a book,
a CD, or some other media type.

Microsoft SQL Server Management Studio Express includes a visual Query Designer
that we can use to design the query. Figure 21-14 shows the five needed tables as
linked together by the designer.

Whether you use the Query Designer or build the SQL statement by hand, you even-
tually come up with something similar to the following, which we’ll use within the
Library application:

/* ----- Report #1: Items checked out report. */
SELECT PA.LastName + ', ' + PA.FirstName AS PatronName,
 PA.Barcode AS PatronBarcode,
 PC.DueDate, IC.CopyNumber, IC.Barcode AS ItemBarcode,
 NI.Title, CMT.FullName AS MediaName
FROM Patron AS PA
 INNER JOIN PatronCopy AS PC ON PA.ID = PC.Patron
 INNER JOIN ItemCopy AS IC ON PC.ItemCopy = IC.ID
 INNER JOIN NamedItem AS NI ON IC.ItemID = NI.ID
 INNER JOIN CodeMediaType AS CMT ON NI.MediaType = CMT.ID
WHERE PC.Returned = 0
 AND PC.Missing = 0
 AND IC.Missing = 0
ORDER BY NI.Title, IC.CopyNumber, PA.LastName, PA.FirstName

This query links up all of the tables, and then requests every record that has not been
returned (PC.Returned = 0). It ignores any item marked as missing (PC.Missing = 0 AND

Figure 21-14. The five tables in the checked-out items query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 599

IC.Missing = 0). This query will eventually drive the report. But for now, keep in
mind that RDLC reports don’t actually need a real SQL statement or database table
for the report schema. We can also build a compatible schema by hand using a class.
This turns out to be a lot cleaner since we won’t have a lot of dataset-related files
strewn throughout the project source code. (The LibraryDataSet data source we cre-
ated in the sample report earlier in this chapter added four source files and nearly 50
KB of source code to the project, not counting the RDLC report! The class-based
data source didn’t add any code other than the class definition itself, and a little bit
of XML in the RDLC file.)

As for the data source schema, we can extrapolate it from the SELECT clause of the
SQL query. If we were to design a class with a matching schema, it would look like
this (without the property detail code):

Class Report1Schema
 Public Property PatronName As String
 Public Property PatronBarcode As String
 Public Property DueDate As Date
 Public Property CopyNumber As Integer
 Public Property ItemBarcode As String
 Public Property Title As String
 Public Property MediaName As String
End Class

The next two reports are for “overdue items” and “missing items.” For me, the
schema for report #1 is exactly what I want to see in these other two reports, so let’s
just use the same SQL statement. All we need to do is change the WHERE clause. For
the overdue items report, use this WHERE clause:

WHERE PC.Returned = 0
 AND PC.Missing = 0
 AND IC.Missing = 0
 AND PC.DueDate < GETDATE()

The missing items report will use this WHERE clause:

WHERE PC.Missing = 1
 OR IC.Missing = 1

The fourth report displays the amount of fines still owed by patrons, so it will require
a different schema. Here’s its SQL statement, which uses some aggregate grouping
features:

/* ----- Report #4: Fines owed by patron. */
SELECT PA.LastName + ', ' + PA.FirstName AS PatronName,
 PA.Barcode AS PatronBarcode,
 SUM(PC.Fine - PC.Paid) AS FinesDue
FROM Patron AS PA
 INNER JOIN PatronCopy AS PC ON PA.ID = PC.Patron
GROUP BY PA.LastName + ', ' + PA.FirstName, PA.Barcode
HAVING SUM(PC.Fine - PC.Paid) > 0
ORDER BY PatronName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

600 | Chapter 21: Reporting

Here’s the schema that goes with report #4:

Class Report4Schema
 Public Property PatronName As String
 Public Property PatronBarcode As String
 Public Property FinesDue As Decimal
End Class

For the final report, we’ll just use a schema with two string values: a statistic name,
and its related value. Here’s its schema:

Class Report5Schema
 Public Property EntryName As String
 Public Property EntryValue As String
End Class

Well, that’s enough preparation. Let’s start coding.

PROJECT ACCESS

Load the Chapter 21 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 21 (After) Code instead.

Adding Report Schemas
The ReportSchemas.vb file, already added to the project, includes the three schemas
used for the five built-in reports. Just to remind us of the members, here are the pub-
lic property definitions included in each class, minus the Get and Set accessors, and
minus the private class members:

Public Class ReportSchemaPatronItems
 ' ----- Used for the following reports:
 ' Report #1: Items checked out report
 ' Report #2: Items overdue report
 ' Report #3: Items missing report
 Public Property PatronName() As String
 Public Property PatronBarcode() As String
 Public Property DueDate() As Date
 Public Property CopyNumber() As Integer
 Public Property ItemBarcode() As String
 Public Property Title() As String
 Public Property MediaName() As String
End Class

Public Class ReportSchemaPatronFines
 ' ----- Used for the following reports:
 ' Report #4: Fines owed by patron
 Public Property PatronName() As String
 Public Property PatronBarcode() As String
 Public Property FinesDue() As Decimal
End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 601

Public Class ReportSchemaStatistics
 ' ----- Used for the following reports:
 ' Report #5: Library database statistics report
 Public Property EntryName() As String
 Public Property EntryValue() As String
End Class

Once the schema classes are in the project, you will need to build the project before
those classes can be used in RDLC reports as data sources. In the Library Project,
build the project now with the Build ➝ Build Library menu command. All three sche-
mas should then appear as sources in the Data Sources panel (see Figure 21-15). If
the Data Sources panel is closed, open it using the Data ➝ Show Data Sources menu
command.

Adding Reports
Since we already jointly created an RDLC report earlier in the chapter, I went ahead
and added the five built-in reports for you:

ReportCheckedOut.rdlc
This file implements report #1, the “items checked out” report. It uses the
ReportSchemaPatronItems class schema, and includes three columns in the main
data list: patron name/bar code, item name/bar code/details, and due date. For
the item name field, I wanted to present additional information when available.
The item name, copy number, and media type are required values, but item bar
code is optional. Here’s the format I desired:

Item Name (#CopyNumber, MediaType, Barcode)

Figure 21-15. The three data source schemas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

602 | Chapter 21: Reporting

To get this result, I had to concatenate the various source fields together, and use
a conditional function (IIf) to optionally include the bar code and its comma:

=Fields!Title.Value & " (#" &
CStr(Fields!CopyNumber.Value) & ", " &
Fields!MediaName.Value &
IIf(IsNothing(Fields!ItemBarcode.Value), "",
", " & Fields!ItemBarcode.Value) & ")"

As mentioned earlier, the due date field has an expression in its Color property
that turns the text red when the item is overdue.

ReportOverdue.rdlc
This report shows a list of all overdue items in the system. Since everything will
be overdue, I set the due date field to always use red for its font color. Other
than that and the title, the report is basically identical to the checked-out items
report.

ReportMissing.rdlc
This report shows a list of all items marked as missing. Even though the schema
includes a due date field, I don’t use it in this report. The rest of the report is
basically identical to the checked-out items report.

ReportPatronFines.rdlc
This report lists all patrons that still owe fines, and the amount of the fine due. It
uses the ReportSchemaPatronFines class schema. The field that displays the fine
has a “C” in its Format property. This formatting code forces the decimal value to
display as currency using the culture settings on the local system. This Format
property uses the same codes recognized by the String.Format method.

ReportStatistics.rdlc
Report #5 displays record counts from some of the tables in the Library data-
base. This is the only report that uses the ReportSchemaStatistics class schema.
The report itself just displays two strings per record: a name and a value. It
depends on the calling code to format those fields properly.

Adding a Report Viewer
It’s time to add a MicrosoftReportViewer control. Since a single MicrosoftReportViewer
control can display any type of RDLC report, we’ll just add a single form to handle all
five built-in reports.

Add a new form named ReportBuiltinViewer.vb to the project. Set its Text property to
Library Report and its WindowState property to Maximized. Also, load the project’s
icon (Book.ico) into the Icon property. You’ll find a copy of this file in the project
installation directory. If you want, you can size the form to some reasonable starting
point for a report (I used “680, 400”), but each report will start out maximized when
used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 603

Add a MicrosoftReportViewer control named ReportContent to the form, and set its
Dock property to Fill. Set both the ShowBackButton and ShowDocumentMapButton prop-
erties to False.

The code we will add to this form is a variation of code we wrote earlier in this chap-
ter. The code that starts each report will pass to this form the name of the report
RDLC file, the name of the data schema used, and the actual data. Since these
reports will be modeless (you can keep them open while still using other parts of the
Library program), we can’t let the calling code wait around for the user to close the
report before we discard the report data. We’ll let the report dispose of the data
itself. To do this, we need to keep a reference to that data. Add the following state-
ment to the ReportBuiltinViewer form class.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 1.

Private StoreDataTable As Object

Remember, reports can use a variety of data source formats, including true database
connections, arrays, and collections. Reports #1 through #4 will use a System.Data.
DataTable instance, and report #5 will pass a generic List collection.

The best time to dispose of the data is when the report is closing. Add the following
event handler to the form, which confirms that the data supports the disposal pro-
cess before calling the Dispose method.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 2.

Private Sub ReportBuiltinViewer_FormClosing(_
 ByVal sender As Object, ByVal e As _
 System.Windows.Forms.FormClosingEventArgs) _
 Handles Me.FormClosing
 ' ----- Get rid of the data.
 If (TypeOf StoreDataTable Is IDisposable) Then
 CType(StoreDataTable, IDisposable).Dispose()
 End If
End Sub

The code that opens this display form will pass in the essential report values through
a public method named StartReport. Add its code now.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

604 | Chapter 21: Reporting

Public Sub StartReport(ByVal whichReport As String, _
 ByVal whichDataSchema As String, _
 ByVal whichData As Object)
 ' ----- Run one of the built-in reports. whichReport is
 ' the name of the RDLC report file, in the format
 ' "Library.xxx.rdlc." whichDataSchema provides the
 ' name of the schema to use, in the format
 ' "Library_xxx." whichDataSet is the actual data
 ' to link to the report, which must match the schema.
 Dim customDataSource As New _
 Microsoft.Reporting.WinForms.ReportDataSource

 ' ----- Connect the viewer, the report, and the data.
 ReportContent.LocalReport.ReportEmbeddedResource = _
 whichReport
 customDataSource.Name = whichDataSchema
 customDataSource.Value = whichData
 ReportContent.LocalReport.DataSources.Add(_
 customDataSource)

 ' ----- Display the report.
 StoreDataTable = whichData
 Me.Show()
End Sub

This code tells the viewer which report to use as an embedded resource, and then
attaches the data as a custom data source. “Local” in these property names indicates
a local (client) report instead of a “server” report that runs within SQL Server.

When we were playing with the reports before, we saw that the default display mode
was the “fill-the-entire-screen-with-page-content” mode. Personally, I like to see
those fake page boundaries. The MicrosoftReportViewer control doesn’t include a
property that lets us change this default view (why not?), but we can still adjust the
initial display style through methods on the control. When we added the report
viewer to the form, Visual Studio also added the following statement to the form’s
Load event handler:

ReportContent.RefreshReport()

Add the following code just before that statement.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 4.

' ----- Generate and display the report.
ReportContent.SetDisplayMode(_
 Microsoft.Reporting.WinForms.DisplayMode.PrintLayout)
ReportContent.ZoomMode = _
 Microsoft.Reporting.WinForms.ZoomMode.Percent
ReportContent.ZoomPercent = 100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 605

Adding Built-in Reports
I forget how long ago we added the ReportSelect.vb form that drives reporting, but it
is already there in the project. In case you forgot what it looked like (I did),
Figure 21-16 gives us a refresher.

We previously added support for our five built-in reports in this form’s code. In a
tribute to the never-ending reality of forgetting to finish all of the code, we need to
add some code that we overlooked earlier. If you use an XML report configuration
file to populate the report list, and you provide a description for each report in the
XML, each entry displays that description in the lower half of the report selection
form. But if you don’t use a configuration file, and just depend on the form to add
the five built-in reports by default (which it does), the form won’t display associated
descriptions, because we forgot to add them. Add a function to the ReportSelect
class that returns a short description for each of the five reports.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 5.

Private Function GetBuiltinReportDescription(_
 ByVal whichReport As ReportItemEnum) As String
 ' ----- Return a predefined description for the
 ' built-in reports.
 Select Case whichReport
 Case ReportItemEnum.BuiltInCheckedOut
 Return "Displays all items currently checked " & _
 "out, sorted by name."
 Case ReportItemEnum.BuiltInOverdue
 Return "Displays all overdue items, sorted by name."
 Case ReportItemEnum.BuiltInMissing

Figure 21-16. The report selection form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

606 | Chapter 21: Reporting

 Return "Displays all missing items, sorted by name."
 Case ReportItemEnum.BuiltInFinesOwed
 Return "Displays all unpaid fines owed by " & _
 "patrons, sorted by patron name."
 Case ReportItemEnum.BuiltInStatistics
 Return "Displays some record counts from the " & _
 "Library database."
 Case Else
 Return "There is no description for this report."
 End Select
End Function

We’ll call this code from two places. The first is in the LoadReportGroup method. This
code loads in the XML report configuration file. If that file includes one of the built-
in reports, but doesn’t supply a description with it, we’ll supply the description our-
selves. About halfway through that code, you’ll find these lines:

' ----- So, what type of entry is it?
If (scanNode.Attributes("type").Value = "built-in") Then

About five lines below this is the following statement:

reportEntry.ItemType = CType(CInt(_
 reportEntry.ReportPath), ReportItemEnum)

Add the following code just after that statement.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 6.

If (reportEntry.Description = "") Then _
 reportEntry.Description = _
 GetBuiltinReportDescription(reportEntry.ItemType)

The second need for the built-in descriptions appears in the RefreshReportList
method. This method makes the call to LoadReportGroup to retrieve the XML configu-
ration. But if after that the report list is still empty, RefreshReportList adds in the
five default reports, which each require a description. Near the end of the method,
within a For...Next loop, you’ll find this closing statement:

' ----- Add the report entry to the list.
AllReports.Items.Add(reportEntry)

Add the following code just before that statement.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 7.

reportEntry.Description = GetBuiltinReportDescription(_
 reportEntry.ItemType)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 607

OK, that’s it for the fix-up code. Now back to writing the actual reports. The code to
start each of the five reports already exists in the ReportSelect form’s ActRun_Click
event handler. Most of that code includes a Select Case statement that acts as a
switchboard for the selected report. Here’s the part that calls the five built-in reports:

Case ReportItemEnum.BuiltInCheckedOut
 ' ----- Items Checked Out
 ' TODO: Write BasicReportCheckedOut()
Case ReportItemEnum.BuiltInOverdue
 ' ----- Items Overdue
 ' TODO: Write BasicReportOverdue()
Case ReportItemEnum.BuiltInMissing
 ' ----- Items Missing
 ' TODO: Write BasicReportMissing()
Case ReportItemEnum.BuiltInFinesOwed
 ' ----- Fines Owed by Patrons
 ' TODO: Write BasicReportFines()
Case ReportItemEnum.BuiltInStatistics
 ' ----- Library Database Statistics
 ' TODO: Write BasicReportStatistics()

Clearly, this code isn’t accomplishing much. Change each of the TODO lines, remov-
ing the TODO: Write portion of the statement. So, in the line that says:

' TODO: Write BasicReportCheckedOut()

change the code to:

BasicReportCheckedOut()

Do that for each of the five TODO lines.

Exposing these five method calls means that we have to write those methods, darn it.
These methods will retrieve the data for the report, and send that data to the report
viewer, along with the name of the RDLC file. They’re actually quite short and sim-
ple, considering the beautiful reports you will get out of them. Let’s start by adding
the BasicReportCheckedOut method to the ReportSelect class.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 8.

Private Sub BasicReportCheckedOut()
 ' ----- Run built-in report #1: Items checked out report.
 Dim sqlText As String
 Dim reportData As Data.DataTable
 Dim reportForm As ReportBuiltinViewer

 On Error GoTo ErrorHandler

 ' ----- Retrieve the data as a dataset.
 sqlText = "SELECT PA.LastName + ', ' + " & _
 "PA.FirstName AS PatronName, " & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

608 | Chapter 21: Reporting

 "PA.Barcode AS PatronBarcode, " & _
 "PC.DueDate, IC.CopyNumber, " & _
 "IC.Barcode AS ItemBarcode, " & _
 "NI.Title, CMT.FullName AS MediaName " & _
 "FROM Patron AS PA " & _
 "INNER JOIN PatronCopy AS PC ON PA.ID = PC.Patron " & _
 "INNER JOIN ItemCopy AS IC ON PC.ItemCopy = IC.ID " & _
 "INNER JOIN NamedItem AS NI ON IC.ItemID = NI.ID " & _
 "INNER JOIN CodeMediaType AS CMT ON " & _
 "NI.MediaType = CMT.ID " & _
 "WHERE PC.Returned = 0 " & _
 "AND PC.Missing = 0 " & _
 "AND IC.Missing = 0 " & _
 "ORDER BY NI.Title, IC.CopyNumber, " & _
 "PA.LastName, PA.FirstName"
 reportData = CreateDataTable(sqlText)

 ' ----- Check for no data.
 If (reportData.Rows.Count = 0) Then
 reportData.Dispose()
 MsgBox("No items are checked out.", MsgBoxStyle.OkOnly _
 Or MsgBoxStyle.Exclamation, ProgramTitle)
 Return
 End If

 ' ----- Send the data to the report.
 reportForm = New ReportBuiltinViewer
 reportForm.StartReport("Library.ReportCheckedOut.rdlc", _
 "Library_ReportSchemaPatronItems", reportData)
 Return

ErrorHandler:
 GeneralError("ReportSelect.BasicReportCheckedOut", _
 Err.GetException())
 Return
End Sub

The code retrieves the report-specific records from the database, and makes sure that
at least one record was included. (We could have added the SQL statement to the
Library database as either a stored procedure or a view, and called that instead. For
the purposes of this tutorial, it was simpler to store the statement directly in code.) It
then calls the report viewer, passing the name of the RDLC file, the schema name (in
the format ProjectName_ClassName), and the data table.

Next, add the BasicReportOverdue and BasicReportMissing methods. I won’t show
the code here since, except for the name of the RDLC file and the WHERE clause in the
SQL statement, they are identical to BasicReportCheckedOut.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 609

Add in the BasicReportFines method, which handles built-in report #4.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 10.

It’s also quite similar to the BasicReportCheckedOut method, but it uses the SQL
statement we designed earlier for patron fine retrieval. It also uses a different schema
and report name.

reportForm.StartReport("Library.ReportPatronFines.rdlc", _
 "Library_ReportSchemaPatronFines", reportData)

The last method to add to ReportSelect.vb is BasicReportStatistics, which handles
built-in report #5. It’s a little different from the other four because it gathers data
from six different tables, one at a time. In each case, it retrieves a count of the num-
ber of records in a database table. The results are then stored in a generic collection
(System.Collections.Generic.List), where each list entry is an instance of
ReportSchemaStatistics, the class we used for the fifth report’s data schema. What a
coincidence!

Here’s the code for BasicReportStatistics for you to add now to the ReportSelect
form class.

INSERT SNIPPET

Insert Chapter 21, Snippet Item 11.

Private Sub BasicReportStatistics()
 ' ----- Run built-in report #5: Library database
 ' statistics report.
 Dim sqlText As String
 Dim reportData As Collections.Generic.List(_
 Of ReportSchemaStatistics)
 Dim oneEntry As ReportSchemaStatistics
 Dim reportForm As ReportBuiltinViewer
 Dim resultValue As Integer
 Dim counter As Integer
 Const tableSets As String = "Author,Publisher," & _
 "Subject,NamedItem,ItemCopy,Patron"
 Const tableTitles As String = "Authors,Publishers," & _
 "Subject Headings,Items,Item Copies,Patrons"

 On Error GoTo ErrorHandler

 ' ----- Build the report data. It's all counts from
 ' different tables.
 reportData = New Collections.Generic.List(_
 Of ReportSchemaStatistics)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

610 | Chapter 21: Reporting

 For counter = 1 To CountSubStr(tableSets, ",") + 1
 ' ----- Process one table.
 sqlText = "SELECT COUNT(*) FROM " & _
 GetSubStr(tableSets, ",", counter)
 resultValue = DBGetInteger(ExecuteSQLReturn(sqlText))

 ' ----- Add it to the report data.
 oneEntry = New ReportSchemaStatistics
 oneEntry.EntryName = _
 GetSubStr(tableTitles, ",", counter)
 oneEntry.EntryValue = CStr(resultValue)
 reportData.Add(oneEntry)
 Next counter

 ' ----- Send the data to the report.
 reportForm = New ReportBuiltinViewer
 reportForm.StartReport("Library.ReportStatistics.rdlc", _
 "Library_ReportSchemaStatistics", reportData)
 Return

ErrorHandler:
 GeneralError("ReportSelect.BasicReportStatistics", _
 Err.GetException())
 Return
End Sub

Since we really need to get the same information (COUNT(*)) for each of the six tables
involved, I just implemented the code as a loop, and built the SQL statement for
each one as I passed through the loop. A friendly table name and the record count
are then stored in the generic list, which is eventually sent to the report.

You can now run the application and use the five built-in reports. You must log in as
a librarian or administrator, and then access the Print Reports panel on the main
form.

Believe it or not, we’re almost finished with the application. The only big thing left to
do is to process past-due patron items to see whether fines are required. We’ll add
this code in the next chapter, and also take a look at licensing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

611

Chapter 22 CHAPTER 22

Licensing Your Application22

Proper .NET content licensing can mean the difference between marketplace domi-
nance and financial bankruptcy. And I’m just talking about trying to understand the
license agreement that comes with Visual Studio. You still have to figure out a licens-
ing method for your own application before you send it to your customers.

Licensing and license agreements are an essential means of protecting the intellectual
property you’ve worked so hard to develop. How does licensing work? The key is
found in the roots of the word itself: license comes from “li-” (to tell a lie) and “-cense”
(from “cents” as in “pennies”). Together, these roots mean “to tell lies about small
units of currency.” The confusion brought about in trying to figure out what this
means keeps the bad guys perplexed and occupied long enough so that they don’t
steal your application.

If this method doesn’t work, there are software solutions, some of which I’ll review
in this chapter. Part of the discussion focuses on designing a licensing system that
will appear in the Library Project. The .NET Framework does include classes for
component licensing but they are primarily used for designers of controls used by
other programmers within the Visual Studio IDE, and not for end-user applications.
We will not be covering these licensing features in this chapter. If you’re curious
about such features, start by reading about the License Compiler (lc.exe) in the
Visual Studio online help.

Software Licensing Options
Back in the early days of software, licensing wasn’t an issue: if you could get to the
computer, it was because you were authorized. All user interaction with the system
was through the programmers and technicians. If some user wanted to steal some-
thing, it would be in the form of 20 tons of steel, wires, and vacuum tubes. Fun? Yes.
Easy? No.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

612 | Chapter 22: Licensing Your Application

Today, it’s a different story. Most users are non-technical, and some are unethical.
So, now we have licensing agreements and teams of lawyers to back it all up. But we
also have software, software that can delicately enforce some of the rules. For a par-
ticular piece of software, there is still the question of “How much licensing enforce-
ment code do I add to my application?” The amount of software control you include
will fall somewhere in the “Freedom–Security” continuum shown in Figure 22-1.

If you go for the Freedom end of the spectrum (“convenient for users and hackers”),
you will have to go on the trustworthiness of your users, and any armed guards you
have dispatched to their offices, to keep the program in compliance. At the Security
end of the scale (“secure for programmers and highly paid law firms”), the software
implements practices and policies that ensure that only licensed users of the applica-
tion ever use or install it; no armed guards needed.

The rest of this section discusses some possible options you could choose within the
Freedom–Security range.

License Agreement Only
The license agreement-only method clearly opts for freedom over security. When you
supply the user with software, it comes with a carefully crafted license agreement
that lays out the terms of use for both the user and the software supplier. It generally
gives the user certain rights as to installation, use, and distribution of the software.

When you write an application for use only within a specific organization or by a
small group of users who you will have regular contact with, the license agreement-
only method may be just what you need. In fact, I would bet that most Visual Basic
applications are in this vein. Microsoft has announced over the years that the vast
majority of Visual Basic programmers target their applications for use in a specific
business organization, tied to a specific custom database. Such systems often require
very little in the way of license enforcement, since the application is useless when
carried outside the building where it was meant to reside.

Even if your software achieves widespread distribution, this licensing scheme may
still be the way to go. Many open source applications, including a major operating
system that rhymes with “Plinux,” use the Free Software Foundation’s GNU Gen-
eral Public License (http://www.fsf.org/licensing/licenses/gpl.html) as their primary
licensing and distribution policy.

Figure 22-1. The licensing enforcement continuum: where are you on it?

Freedom Security

Perhaps here?

http://www.fsf.org/licensing/licenses/gpl.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Software Licensing Options | 613

Generated General License Key
If you need a bit more control over the distribution, installation, and use of an appli-
cation, you can impose a generated general license key—basically a password that
allows the application to be installed or used. Such keys are often entered at the start
of the installation process, with the user prompted for a specific key. Without the
key, it’s goodbye installation.

The software vendor will need a way to generate a good set of unique installation
keys. There are a couple of options:

• Just generate a sequential serial number, and mix into it a product ID and ver-
sion number. The great thing about such a key is that it is easy to generate. The
installation program doesn’t need to perform any complex verification logic on
the key. It only needs to ensure that the general format is correct. One of the
products I used to develop online help documentation for my older Visual Basic
6.0 applications used such a license key. In a way, it’s not much more secure
than using just a license agreement, since anyone who knows the general format
can make up his own key.

• Use a hashed or scrambled key, based on some original serial number or for-
mula that can be verified by the installation program. A well-crafted hashing
algorithm can generate a wide range of keys, but makes it difficult for others
who don’t know the formula to generate their own fake keys. Although I am not
privy to Microsoft’s internal processes, this appears to be the method it uses for
its 25-character “CD Keys,” including the one supplied with Visual Studio.
Although it is difficult for keys to be invented out of whole cloth, the public
nature of the keys makes them subject to sharing. For some of its products,
Microsoft combines a CD key with an online or phone-based registration pro-
cess to enhance security.

• Supply a hashed or encrypted key based on a serial number that is (secretly) sup-
plied with the installation program or distribution media. When the user enters
the key, it is unencrypted or otherwise prepared, and then compared with the
serial number. Only if it matches will the software installation complete properly.

Generated Custom License Key
A custom-generated license key is similar to a general generated key, but uses per-
sonal information supplied by the user as part of the generation process. Such a key is
more interactive, and requires that the end-user specifically communicate with the soft-
ware vendor (or an application on its web site) to complete the installation process.

During the purchase or installation process, the user makes specific information
(such as the owner’s name and the date of purchase) available to the software ven-
dor. The vendor then uses public-private key encryption (asymmetric cryptography)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

614 | Chapter 22: Licensing Your Application

to either fully encrypt or digitally sign the relevant information. The encrypted signa-
ture is then returned to the end-user for installation. The installation process uses the
public portion of the key pair to ensure that the signature is valid.

We will use this license key method in the Library Project, so I’ll have more to say
about it a little later.

License Key with Hardware Identity or Lock
For paranoid software vendors, or for those who have a legitimate need to keep a
tight rein on their installation base, there are solutions that involve regular access to
hardware or services to confirm that previously installed software is legal and valid.
One popular method uses a “dongle,” typically a USB port-based device that the soft-
ware must have access to each time it runs. The software vendor supplies a dongle with
the licensed software, and may encode it with date-based or use-based limits.

With the prevalence of the Internet, software vendors also have the option of real-
time verification over the Web. Each time the program runs, it could access a known
vendor site to engage in a usage verification process. Such a system allows for ongoing
monitoring of the software by vendors who may have a business or governmental rea-
son to limit use of the software.

For one of my customer projects, I must access a third-party web site on a monthly
basis and download proprietary data for use with that vendor’s software. The ven-
dor requires that I always access their web site from a specific machine with a spe-
cific IP address. It will refuse to supply the data if I attempt to connect from any
other machine. If I have a real need to use a fresh IP address (if, for example, I
change Internet service providers), I must submit paperwork to the vendor inform-
ing them of the new IP address. It seems pesky, and it is an irritation. But the data
they supply is unique and valuable, and they feel they have a business need to pro-
tect that investment. Since my customer requires the data, I have no choice but to
comply with the monthly verification procedures.

Controlled Access
The highest level of security requires a blatant distrust of the user, although there
may be good reason for this. For highly sensitive applications, the software vendor
may make their product available to only a limited number of customers, and then
only on a lease basis. As part of the lease agreement, the customer agrees to have a
trained staff member of the software vendor on-site, running and maintaining the
application for the customer. At the very least, the vendor will require that one of its
employees be immediately available to the customer whenever the application is
used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

License Agreements | 615

In a world of off-the-shelf software applications, it seems unconscionable that such a
system could exist. But in high-risk situations, security concerns are raised to such a
level that neither party is willing to fully assume the risks of installing and using the
application apart from the other.

Although I was tempted to use this system for the Library Project, I think we’ll stick
with our original plan of employing a custom-generated license key.

License Agreements
A license agreement is a document wherein the party of the first part hereby and does
amicably render to the party of the second part certain rights, quid pro quos, trea-
sury bonds, and other benefits; in exchange, the party of the second part will do the
same for the party of the first part without respect for any other party or festival.

Let’s try that again. A license agreement tells a user “Go ahead, install and use the
software, but you have to follow these rules.” Although they are often written in
legalese, they can also appear in a real language, such as English. They also range in
granted rights, from “You can use this, but when you’re finished, you must destroy
all copies” to “Use it, and feel free to pass a copy of the program and its source code
to your friends and relations.”

The Library software provided with this book comes with a license agreement. (I’ve
included it in Appendix B.) When you installed the sample code, you agreed to the
terms of the license agreement, including the part about supporting my family finan-
cially well into my retirement years. But enough about me; let’s talk about license
agreements you may want to use for your applications.

If you’re developing a DVD catalog program for your cousin Fred, you can probably
skip the license agreement part. But any software you craft in a business capacity for
use outside your own company should include some sort of agreement between you
(or your company) and the user of the software. This agreement could be defined as
part of the contract that established the software development project (this is typical
for software consulting), or you could include the agreement as a component of the
software (common for off-the-shelf programs).

Whichever method you choose, it is important that you state it in written form
because it can save you grief down the road. I once had a customer who insisted that
I fork over a copy of the source code for an application I wrote for them so that they
could enhance it and sell the new version to other businesses (the nerve!). Fortu-
nately, we had a written contract that stated the rules of engagement. They were
entitled to a copy of the source code for archive purposes, but they could not use it
or derive products from it without written consent from me. This granted a level of
safety for them while still providing the means for me to provide the best support
possible for their organization. Fortunately, it all came to a happy conclusion, and
since that Visual Basic 3.0 code doesn’t even run anymore, it’s a moot point.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

616 | Chapter 22: Licensing Your Application

A license agreement usually exists to protect the rights of the software vendor, but it
would be useless if it didn’t also grant meaningful rights to the user—and some of
the rights can be rather generous. Did you know that the standard consumer licens-
ing agreement for Microsoft Office allows you to install the product on two different
systems using a single licensed copy of the program? It’s not a complete install-fest.
Both computers must belong to the same person, and one must be a desktop
whereas the other is a portable device (a laptop). But it’s still a meaningful benefit to
the typical user.

The legal department at O’Reilly Media wants to remind you that Tim Patrick does
not have a sufficient understanding of the law, and cannot advise you on the con-
tents of any licensing agreement you may want to craft for your projects.

Obfuscation
I hinted a little about the obfuscation features in Visual Studio 2008 in Chapters 1
and 5, but it’s high time we actually took a look at the features. Visual Studio includes
a stripped-down version of Dotfuscator from a company named PreEmptive Solutions
(not a part of Microsoft—yet). To access the program, use the Tools ➝ Dotfuscator
Community Edition menu command in Visual Studio. The main interface appears in
Figure 22-2.

As of this writing, Dotfuscator Community Edition is not included
with Visual Basic 2008 Express Edition.

Figure 22-2. It’s time to obfuscate!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Obfuscation | 617

Even though this is the basic version of the product, you can see that it has a gazil-
lion options. If you want to dive into its enhanced features for your project, that’s
fantastic. I’ll just cover the basic usage here.

Let’s recall quickly why you would want to obfuscate your code, or even use the
word obfuscate in mixed company. Here’s some code from the Library Project:

Public Function CenterText(ByVal origText As String, _
 ByVal textWidth As Integer) As String
 ' ----- Center a piece of text in a field width.
 ' If the text is too wide, truncate it.
 Dim resultText As String

 resultText = Trim(origText)
 If (Len(resultText) >= textWidth) Then
 ' ----- Truncate as needed.
 Return Trim(Left(origText, textWidth))
 Else
 ' ----- Start with extra spaces.
 Return Space((textWidth - Len(origText)) \ 2) & _
 resultText
 End If
End Function

This code is quite easy to understand, especially with the comments and the mean-
ingful method and variable names. Although .NET obfuscation works at the MSIL
level, let’s pretend that the obfuscator worked directly on Visual Basic code. Obfus-
cation of this code might produce results similar to the following:

Public Function A(ByVal AA As String, _
 ByVal AAA As Integer) As String
 Dim AAAA As String
 AAAA = Trim(AA)
 If (Len(AAAA) >= AAA) Then
 Return Trim(Left(AA, AAA))
 Else
 Return Space((AAA - Len(AA)) \ 2) & AAAA
 End If
End Function

In such a simple routine, we could still figure out the logic, but with more effort than
in the original version. Naturally, true obfuscation goes much further than this,
scrambling the readability of the code at the IL level, and confounding code readers
and hackers alike.

To obfuscate an assembly:

1. Build your project in Visual Studio using the Build ➝ Build [Project Name] menu
command.

2. Start Dotfuscator using the Tools ➝ Dotfuscator Community Edition menu com-
mand in Visual Studio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

618 | Chapter 22: Licensing Your Application

3. When prompted for a project type, select Create New Project, and click the OK
button.

4. On the Input tab of the Dotfuscator application window, click the “Browse and
add assembly to list” toolbar button. This is the leftmost button—the one that
looks like a file folder with a small arrow above it—on the panel shown in
Figure 22-2.

5. When prompted for an assembly file, browse for your compiled application, and
click the OK button. The assembly to use will be in the bin\Release subdirectory
within your project’s source code directory.

6. Select the File ➝ Build menu command to generate the obfuscated assembly.
You will be prompted to save the Dotfuscator project file (an XML file) before
the build begins. Save this file to a new directory. When the build occurs, it will
save the output assembly in a Dotfuscated subdirectory in the same directory
that contains the XML project file.

7. The build completes, and a summary appears as shown in Figure 22-3. Your
obfuscated file is ready to use. The process also generates a Map.xml file that
documents all the name changes made to types and members within your appli-
cation. It would be a bad thing to distribute this file with the assembly. It is for
your debugging use only.

To prove that the obfuscation took place, use the IL Disassembler tool that comes
with Visual Studio to examine each assembly. (On my system, this program is
accessed via Start ➝ [All] Programs ➝ Microsoft Windows SDK v6.0A ➝ Tools ➝ IL
Disassembler.) Figure 22-4 shows the global variables included in the Library
Project’s General.vb file. The obfuscated version of these same variables appears in
Figure 22-5.

I will not be performing obfuscation on the Library Project through this book’s tuto-
rial sections. Feel free to try it out on your own.

The Library Licensing System
The tools and procedures we will use to design the Library Project’s licensing system
can be built from featuresMapMap.xml file.xml file alreaMap.xml filedy Map.xml
filediscussed in previous chapters:

• The license file contains XML content. (Chapter 13)

• The license appears as a separate file in the same directory as the Library.exe
assembly. The Library software reads content from the license file. (Chapter 15)

• The license will include a digital signature, which is based on public-private key
encryption. (Chapter 11)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Library Licensing System | 619

Figure 22-3. Summary of the obfuscation, with some advertising thrown in

Figure 22-4. Global variables before obfuscation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

620 | Chapter 22: Licensing Your Application

Each time the Library application runs, it attempts to read the license file. If the file
doesn’t exist, or if it contains invalid data or an invalid signature, the program down-
grades its available features, disabling those features that are considered licensed.

Designing the License File
The Library Project’s license file contains some basic ownership and rights informa-
tion related to the user who purchased rights to the software. Here’s the XML con-
tent I’ve come up with:

<?xml version="1.0" encoding="utf-8"?>
<License>
 <Product>Library Project</Product>
 <LicenseDate>1/1/2000</LicenseDate>
 <ExpireDate>12/31/2999</ExpireDate>
 <CoveredVersion>1.*</CoveredVersion>
 <Licensee>John Q. Public</Licensee>
 <SerialNumber>LIB-123456789</SerialNumber>
</License>

That seems sufficient. The process that builds the digital signature also stores an
encrypted signature within the XML content.

Generating the License File
In the “Project” section of this chapter, we’ll build a new application that exists solely to
generate license files for the Library application. It will have three primary components:

1. Generate and manage the public and private keys used in the signature process.

Figure 22-5. Global variables after obfuscation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Summary | 621

2. Prompt the user for the license date, expiration date, covered version, licensee
name, and serial number for a single license. These are the values that appear in
the license file’s XML content.

3. Output the XML license file and digitally sign it using the private key.

Installing the License File
The “Project” section of this chapter will show you how to generate a generic license
file. This XML file will be distributed and installed with the Library application using
the setup program that we will build in Chapter 25. The file will be named
LibraryLicense.lic (by default) and will always appear in the same directory as the
Library.exe application file.

If I were developing a real application for paying customers, and I had a web site that
supported a web service (which I’ll talk about in Chapter 23), here is one design for
installing the license file that I might use:

1. Run the setup program to install the application on the user’s workstation.

2. During installation, the setup program prompts the user for the license details
that will ultimately appear in the XML license file.

3. The setup program contacts the web service on my vendor web site, and passes
the user-supplied values to that registration service.

4. The registration service returns a digitally signed XML file that contains the
licensing content.

5. The setup program installs this file along with the application.

6. If for any reason the licensing cannot complete successfully during setup, the
main application contains identical licensing code, and can communicate with
the registration service itself.

Using the License File
Whenever the Library application runs, it reads in the XML license file and performs
many checks to ensure that the license is valid for the current application installa-
tion. If the license is invalid for any reason, the application blocks access to the
enhanced administrative features included in the Library system.

Summary
Since you will often spend dozens or hundreds of hours designing and developing a
quality Visual Basic application, it is important to use appropriate licensing and
obfuscation technology to protect your hard work. Licensing is another one of those
common programming tasks that didn’t make it into the .NET Framework as an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

622 | Chapter 22: Licensing Your Application

easy-to-use class—unless you are building and distributing design-time controls. For
the rest of us, it’s make-it-up-as-you-go time. Fortunately, .NET has great support
tools, so adding licensing support isn’t too difficult.

Project
In this chapter’s project code, we’ll follow two of the four licensing steps discussed in
the section “The Library Licensing System,” earlier in this chapter: generating the license
file and using the license file. The design we created previously is good enough for our
needs, although we still need to record it in the project’s technical documentation. We
won’t formally install the license file until we create the setup program in Chapter 25.

Update Technical Documentation
Since we’ll be adding a new external file that will be processed by the Library Project,
we need to document its structure in the project’s Technical Resource Kit. Let’s add
the following new section to that document.

License File

The Library Project reads a customer-specific license file generated by the
Library License Generation support application. That program generates a digi-
tally signed XML license file that includes licensee information. Here is a sample
of the license file content:

<?xml version="1.0"?>
<License>
 <Product>Library Project</Product>
 <LicenseDate>1/1/2000</LicenseDate>
 <ExpireDate>12/31/2999</ExpireDate>
 <CoveredVersion>1.*</CoveredVersion>
 <Licensee>John Q. Public</Licensee>
 <SerialNumber>LIB-123456789</SerialNumber>
 <Signature>

Digital signature appears here (not shown)
 </Signature>
</License>

The <LicenseDate> and <ExpireDate> tags indicate the first and last valid dates of
the license. <Licensee> indicates the name of the license owner. <SerialNumber>
includes the vendor-defined serial number associated with this license. The
<CoveredVersion> tag contains data similar to the assembly version number
included in .NET applications. It has up to four dot-delimited parts:

<major>.<minor>.<build>.<revision>

Each component can include a number from 0 to 9999, or the * character, which
indicates all valid values for that position.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 623

The <Signature> section contains the generated digital signature. Its format is
dependant on the XML Cryptography tools in .NET that generate this section.
To ensure a proper digital signature, always use the Library License Generation
support application to build license files.

That support application generates a public and private key pair for use in digi-
tal signing. The public portion of this key (as an XML file) must be added as a
resource named LicensePublicKey to the Library application. The private por-
tion must be kept private. For consistency, the same key pair should be used
throughout the lifetime of the Library Project’s availability.

We will also store the location of the license file as an application setting in the main
program. We need to record that setting with the other application settings already
added to the User Settings section of the Resource Kit.

LicenseFileLocation
The path to the Library License file on this workstation. If not supplied, the
program will look for a file named LibraryLicense.lic in the same folder as
the application.

Library License Helper Application
Generating license files and digital signatures by hand using Notepad would be...well,
let’s not even think about it. Instead, we’ll depend on a custom application to create the
files and signatures for us. I’ve already developed that custom tool for you. You’ll find it
in the installation directory for this book’s code, in the LibraryLicensing subdirectory.

This support application includes two main forms. The first (KeyLocationForm.vb,
shown in Figure 22-6) locates or creates the public-private key files used in the digi-
tal signature process.

Figure 22-6. Support form for digital signatures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

624 | Chapter 22: Licensing Your Application

Most of the form’s code helps to locate and verify the folder that will contain the two
key files (one private, one public). Some of the code in the ActGenerate_Click event
handler creates the actual files.

Dim twoPartKey As RSA
Dim publicFile As String
Dim privateFile As String

...some code skipped here, then...

' ----- Generate the keys.
twoPartKey = New RSACryptoServiceProvider
twoPartKey = RSA.Create()

' ----- Save the public key.
My.Computer.FileSystem.WriteAllText(publicFile, _
 twoPartKey.ToXmlString(False), False)

' ----- Save the private key.
My.Computer.FileSystem.WriteAllText(privateFile, _
 twoPartKey.ToXmlString(True), False)

That’s really simple! The System.Security.Cryptography.RSA class and the related
RSACryptoServiceProvider class do all the work. All you have to do is call the RSA.Create
method, and then generate the relevant XML keys using the ToXmlString method,
passing an argument of False for the public key and True for the private key. If you
want to look at some sample keys, open the LicenseFiles subdirectory in this book’s
source installation directory. You’ll find two files, one for the public key and one for
the private key. I’d print one of them here, but it all just looks like random characters.

The other support form is MainForm.vb, which generates the actual end-user license
file, and appears in Figure 22-7.

Figure 22-7. Support form for license file generation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 625

As with the first form, most of this form’s code simply ensures that the public and
private key files are intact, and that the user entered valid data before generation.
The ActGenerate_Click event handler is where the real fun is. First, we need some
XML content, which we build in the BuildXmlLicenseContent method. It creates the
content element by element, using the methods we learned about in Chapter 13. For
instance, here’s the part of the code that adds the serial number:

dataElement = result.CreateElement("SerialNumber")
dataElement.InnerText = Trim(SerialNumber.Text)
rootElement.AppendChild(dataElement)

Then comes the digital signature, via the SignXmlLicenseContent function, most of
which appears here:

Private Function SignXmlLicenseContent(_
 ByVal sourceXML As XmlDocument) As Boolean
 ' ----- Add a digital signature to an XML document.
 Dim privateKeyFile As String
 Dim privateKey As RSA
 Dim signature As SignedXml
 Dim referenceMethod As Reference

 ' ----- Load in the private key.
 privateKeyFile = My.Computer.FileSystem.CombinePath(_
 KeyLocation.Text, PrivateKeyFilename)
 privateKey = RSA.Create()
 privateKey.FromXmlString(_
 My.Computer.FileSystem.ReadAllText(privateKeyFile))

 ' ----- Create the object that generates the signature.
 signature = New SignedXml(sourceXML)
 signature.SignedInfo.CanonicalizationMethod = _
 SignedXml.XmlDsigCanonicalizationUrl
 signature.SigningKey = privateKey

 ' ----- The signature will appear as a <reference>
 ' element in the XML.
 referenceMethod = New Reference("")
 referenceMethod.AddTransform(New _
 XmlDsigEnvelopedSignatureTransform(False))
 signature.AddReference(referenceMethod)

 ' ----- Add the signature to the XML content.
 signature.ComputeSignature()
 sourceXML.DocumentElement.AppendChild(signature.GetXml())

 ' ----- Finished.
 Return True
End Function

Digital signing occurs via the SignedXml class (in the System.Security.Cryptography.Xml
namespace). This class uses a few different signing methods; the one I chose
(XmlDsigCanonicalizationUrl) is used for typical XML and ignores embedded
comments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

626 | Chapter 22: Licensing Your Application

This signature appears as tags and values in the XML output, added through the
AppendChild statement near the end of the routine. Since we don’t want the signature
itself to be considered when we later scan the XML file for valid content, the
SignedXml class adds the signature as a <reference> tag. This occurs in code by add-
ing a Reference object that is programmed for that purpose. It’s added through the
signature.AddReference method call.

Once we have the signature in the XML content, we write it all out to a file specified
by the user via the standard XmlDocument.Save method (in the ActGenerate_Click
event handler).

licenseXML.Save(LicenseSaveLocation.FileName)

Here’s a sample XML license file that includes a digital signature. This is the one that
I have included in the LicenseFiles directory in the book’s source installation direc-
tory (with some lines wrapped to fit this page).

<?xml version="1.0"?>
<License>
 <Product>Library Project</Product>
 <LicenseDate>1/1/2000</LicenseDate>
 <ExpireDate>12/31/2999</ExpireDate>
 <CoveredVersion>1.*</CoveredVersion>
 <Licensee>John Q. Public</Licensee>
 <SerialNumber>LIB-123456789</SerialNumber>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm=
 "http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/
 xmldsig#enveloped-signature" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/
 xmldsig#sha1" />
 <DigestValue>Dn6JYIBI/qQudmvSiMvuOvnVBGU=
 </DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>NULghI4WbzDLroIcf2u9aoybfSjXPJRN5
 0UMrCPYa5bup+c7RJnqTM+SzP4jmfJWPPs7pOvDC/fbdNY
 VMaoyXW0jL3Lk8du3X4JXpW3xp9Nxq31y/Ld8E+RkoiPO6
 KRGDI+RRZ8MAQda8WS+L2fMyenRAjo+fR9KL3sQ/hOfQX8=
 </SignatureValue>
 </Signature>
</License>

The digital signature appears as the scrambled content within the <SignatureValue>
tag. Now, if anyone tries to modify any of the license values, the license will no
longer match the signature, and the entire license will become invalid.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 627

Instead of using a digital signature, we could have just encrypted the entire licensing
file with the private key, and later used the public key to decrypt it and examine its
contents. But I like the digital signature better, since it allows anyone to open the
license file and check the parameters of the license itself while still preventing any
changes.

Adding the License to the Library Program
Let’s return to the Library application already in progress.

PROJECT ACCESS

Load the Chapter 22 (Before) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. To see
the code in its final form, load Chapter 22 (After) Code instead.

The program will adjust its behavior depending on whether it is licensed or not. But
to make that determination, it needs to ensure that the contents of the licensing file
are valid and haven’t been tampered with. To do this, it needs a way to unscramble
the signature and compare it with the rest of the license to make sure it matches. We
built the signature using the private key; we must unscramble it using the public key.

We could store the public key in its own file outside the program, but then it might
get lost (just like my real keys). Instead, we’ll store the public key as an application
resource, found externally in the source code’s Resources folder. I’ve already added
the resource to your copy of the program, and named it LicensePublicKey. With this
key embedded in the application, any regeneration of the public and private keys will
require modification of this resource. In code, we refer to the XML content of the pub-
lic key using its resource name:

My.Resources.LicensePublicKey

Some of the security features use classes found in the System.Security.Cryptography.Xml
namespace. This is not one of the namespaces included by default in new Visual
Basic applications, so we’ll have to add it ourselves. Open the project properties win-
dow and select the References tab. Just below the list of References, click the Add
button, and then select System.Security from the .NET tab of the Add Reference win-
dow that appears.

Since we have the project properties window still open, click over to the Settings tab.
Add a new String setting and use “LicenseFileLocation” for its name. We’ll use this set-
ting to store the path to the license file. Save and close the project properties window.

Our general licensing needs throughout the application are pretty simple. We only
need to know the current status of the licensing file, and have access to a few of the
licensing values so that we can display a short message about the license. We may

http://lib.ommolketab.ir
http://lib.ommolketab.ir

628 | Chapter 22: Licensing Your Application

need to do this in various parts of the program, so let’s add some useful generic code
to the General.vb module. Open that module now.

Right at the top of that file, the code already includes a reference to the System.
Security.Cryptography namespace, since we include code that encrypts user pass-
words. But this doesn’t cover the standard or secure XML stuff. So add two new
Imports statements as well.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 1.

Imports System.Xml
Imports System.Security.Cryptography.Xml

We’ll use an enumeration to indicate the status of the license. Add it now to the
General module.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 2.

Public Enum LicenseStatus
 ValidLicense
 MissingLicenseFile
 CorruptLicenseFile
 InvalidSignature
 NotYetLicensed
 LicenseExpired
 VersionMismatch
End Enum

Let’s also add a simple structure that communicates the values extracted from the
license file. Add this code to the General module.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 3.

Public Structure LicenseFileDetail
 Public Status As LicenseStatus
 Public Licensee As String
 Public LicenseDate As Date
 Public ExpireDate As Date
 Public CoveredVersion As String
 Public SerialNumber As String
End Structure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 629

By default, the license file appears in the same directory as the application, using the
name LibraryLicense.lic. Add a global constant to the General module that identifies
this default name.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 4.

Public Const DefaultLicenseFile _
 As String = "LibraryLicense.lic"

All we need now is some code to fill in the LicenseFileDetail structure. Add the new
ExamineLicense function to the General module.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 5.

Public Function ExamineLicense() As LicenseFileDetail
 ' ----- Examine the application's license file, and
 ' report back what's inside.
 Dim result As New LicenseFileDetail
 Dim usePath As String
 Dim licenseContent As XmlDocument
 Dim publicKey As RSA
 Dim signedDocument As SignedXml
 Dim matchingNodes As XmlNodeList
 Dim versionParts() As String
 Dim counter As Integer
 Dim comparePart As String

 ' ----- See if the license file exists.
 result.Status = LicenseStatus.MissingLicenseFile
 usePath = My.Settings.LicenseFileLocation
 If (usePath = "") Then usePath = _
 My.Computer.FileSystem.CombinePath(_
 My.Application.Info.DirectoryPath, DefaultLicenseFile)
 If (My.Computer.FileSystem.FileExists(usePath) = False) _
 Then Return result

 ' ----- Try to read in the file.
 result.Status = LicenseStatus.CorruptLicenseFile
 Try
 licenseContent = New XmlDocument()
 licenseContent.Load(usePath)
 Catch ex As Exception
 ' ----- Silent error.
 Return result
 End Try

http://lib.ommolketab.ir
http://lib.ommolketab.ir

630 | Chapter 22: Licensing Your Application

 ' ----- Prepare the public key resource for use.
 publicKey = RSA.Create()
 publicKey.FromXmlString(My.Resources.LicensePublicKey)

 ' ----- Confirm the digital signature.
 Try
 signedDocument = New SignedXml(licenseContent)
 matchingNodes = licenseContent.GetElementsByTagName(_
 "Signature")
 signedDocument.LoadXml(CType(matchingNodes(0), _
 XmlElement))
 Catch ex As Exception
 ' ----- Still a corrupted document.
 Return result
 End Try
 If (signedDocument.CheckSignature(publicKey) = False) Then
 result.Status = LicenseStatus.InvalidSignature
 Return result
 End If

 ' ----- The license file is valid. Extract its members.
 Try
 ' ----- Get the licensee name.
 matchingNodes = licenseContent.GetElementsByTagName(_
 "Licensee")
 result.Licensee = matchingNodes(0).InnerText

 ' ----- Get the license date.
 matchingNodes = licenseContent.GetElementsByTagName(_
 "LicenseDate")
 result.LicenseDate = CDate(matchingNodes(0).InnerText)

 ' ----- Get the expiration date.
 matchingNodes = licenseContent.GetElementsByTagName(_
 "ExpireDate")
 result.ExpireDate = CDate(matchingNodes(0).InnerText)

 ' ----- Get the version number.
 matchingNodes = licenseContent.GetElementsByTagName(_
 "CoveredVersion")
 result.CoveredVersion = matchingNodes(0).InnerText

 ' ----- Get the serial number.
 matchingNodes = licenseContent.GetElementsByTagName(_
 "SerialNumber")
 result.SerialNumber = matchingNodes(0).InnerText
 Catch ex As Exception
 ' ----- Still a corrupted document.
 Return result
 End Try

 ' ----- Check for out-of-range dates.
 If (result.LicenseDate > Today) Then
 result.Status = LicenseStatus.NotYetLicensed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 631

 Return result
 End If
 If (result.ExpireDate < Today) Then
 result.Status = LicenseStatus.LicenseExpired
 Return result
 End If

 ' ----- Check the version.
 versionParts = Split(result.CoveredVersion, ".")
 For counter = 0 To UBound(versionParts)
 If (IsNumeric(versionParts(counter)) = True) Then
 ' ----- The version format is
 ' major.minor.build.revision.
 Select Case counter
 Case 0 : comparePart = _
 CStr(My.Application.Info.Version.Major)
 Case 1 : comparePart = _
 CStr(My.Application.Info.Version.Minor)
 Case 2 : comparePart = _
 CStr(My.Application.Info.Version.Build)
 Case 3 : comparePart = _
 CStr(My.Application.Info.Version.Revision)
 Case Else
 ' ----- Corrupt version number.
 Return result
 End Select
 If (Val(comparePart) <> _
 Val(versionParts(counter))) Then
 result.Status = LicenseStatus.VersionMismatch
 Return result
 End If
 End If
 Next counter

 ' ----- Everything seems to be in order.
 result.Status = LicenseStatus.ValidLicense
 Return result
End Function

That’s a lot of code, but most of it just loads and extracts values from the XML
license file. The signature-checking part is relatively short.

publicKey = RSA.Create()
publicKey.FromXmlString(My.Resources.LicensePublicKey)
signedDocument = New SignedXml(licenseContent)
matchingNodes = licenseContent.GetElementsByTagName(_
 "Signature")
signedDocument.LoadXml(CType(matchingNodes(0), XmlElement))
If (signedDocument.CheckSignature(publicKey) = False) Then
 ' ----- Invalid
End If

The SignedXml object—which we also used to generate the original license file—
needs to know exactly which XML tag in its content represents the digital signature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

632 | Chapter 22: Licensing Your Application

You would think that having an element named <Signature> would be a big tip-off, but
perhaps not. Anyway, once you’ve assigned that node using the SignedXml.LoadXml
method, you call the CheckSignature method, passing it the public key. If it returns
True, you’re good. I mean, not in a moral sense; the code doesn’t know anything
about you. But the signature is good.

Display the License on the About Form
When we added the About form to the project a few hundred pages ago, we included
a Label control named LabelLicensed. It currently always displays “Unlicensed,” but
now we have the tools to display a proper license, if available. Open the source code
for the About.vb form, and add the following code to the start of the AboutProgram_Load
event handler.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 6.

' ----- Prepare the form.
Dim licenseDetails As LicenseFileDetail

' ----- Display the licensee.
licenseDetails = ExamineLicense()
If (licenseDetails.Status = LicenseStatus.ValidLicense) Then
 LabelLicensed.Text = _
 "Licensed to " & licenseDetails.Licensee & vbCrLf & _
 "Serial number " & licenseDetails.SerialNumber
End If

Figure 22-8 shows the About form in use with details displayed from the license file.

Just for fun, I changed the version number in my license file from “1.*” to “2.*” with-
out updating the digital signature. Sure enough, when I displayed the About form
again, it displayed “Unlicensed,” since the check of the signature failed. How did I
test the code this early? I copied the LibraryLicense.lic file from the book’s installed
LicenseFiles subdirectory and placed that copy in the bin\Debug subdirectory of the
project’s source code. Later on, you’ll be able to put the file anywhere you want and
browse for it, but we’re getting ahead of ourselves.

Enforcing the License
At some point, a missing or invalid license should have a negative impact on the use
of the application. When that happens, we should give the user a chance to correct
the problem by locating a valid license file. We’ll do this through the new
LocateLicense.vb form. I’ve already added the form to your project. It appears in
Figure 22-9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 633

This form starts up with a call to its public ChangeLicense function, which returns
True if the user changes the license. Most of this form’s code manages the display,
presenting detailed reasons why a license is valid or invalid using the results of the
ExamineLicense function. If for any reason the license is invalid, a click on the Locate
button lets the user browse for a better version.

Private Sub ActLocate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActLocate.Click
 ' ----- Prompt the user for a new license file.

Figure 22-8. Displaying a valid license

Figure 22-9. The gentle way to enforce a product license

http://lib.ommolketab.ir
http://lib.ommolketab.ir

634 | Chapter 22: Licensing Your Application

 If (LocateLicenseDialog.ShowDialog() <> _
 Windows.Forms.DialogResult.OK) Then Return

 ' ----- Store the new path.
 My.Settings.LicenseFileLocation = _
 LocateLicenseDialog.FileName
 LocationModified = True

 ' ----- Update the display.
 DisplayLicenseStatus()
 LicensePath.Text = My.Settings.LicenseFileLocation
End Sub

The LocationModified form-level variable gets sent back to the caller as a trigger to
refresh the status of the license.

For the Library Project in particular, I didn’t see a point in enforcing the license on
startup, since it’s not the patrons’ fault that the library stole this important work of
software. Instead, I delay the verification process until an administrator or librarian
tries to access the enhanced features of the application. Then, if the license check
fails, the user should be able to browse the disk for a valid license file.

I think the best place to add the license check is just after the administrator success-
fully supplies a password. If we checked before that point, it would give ordinary
patrons the ability to browse the disk, which is probably a no-no, since anyone and
her uncle can walk up and use a patron workstation. Open the source code for the
ChangeUser.vb form, locate the ActOK_Click event handler, and locate the “Success-
ful login” comment.

' ----- Successful login.
LoggedInUserID = CInt(dbInfo!ID)
LoggedInUserName = CStr(dbInfo!LoginID)
...

Just before this block of code, add the following license-checking code.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 7.

' ----- Don't allow the login if the program is unlicensed.
Do While (ExamineLicense().Status <> _
 LicenseStatus.ValidLicense)
 ' ----- Ask the user what to do.
 If (MsgBox("This application is not properly licensed " & _
 "for administrative use. If you have access to " & _
 "a valid license file, you can verify it now. " & _
 "Would you like to locate a valid license file " & _
 "at this time?", MsgBoxStyle.YesNo Or _
 MsgBoxStyle.Question, ProgramTitle) <> _
 MsgBoxResult.Yes) Then
 dbInfo.Close()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 635

 dbInfo = Nothing
 Return
 End If

 ' ----- Prompt for an updated license.
 Call LocateLicense.ChangeLicense()
 LocateLicense = Nothing
Loop

This code gives the user an unlimited number of chances to locate a valid license file.
Once the license is validated, the code moves forward and enables administrative
access.

Daily Item Processing
The last major set of code to be added to the Library Project isn’t related to licens-
ing, but it’s important nonetheless: the processing of fines for overdue items. We’ll
add a common method that will perform the processing, and then call it where
needed throughout the application.

Add the new DailyProcessByPatronCopy method to the General module.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 8.

Public Sub DailyProcessByPatronCopy(_
 ByVal patronCopyID As Integer, ByVal untilDate As Date)
 ' ----- This routine does the most basic work of
 ' processing overdue fines. All other daily
 ' processing routines eventually call this routine.
 Dim sqlText As String
 Dim dbInfo As SqlClient.SqlDataReader
 Dim daysToFine As Integer
 Dim lastProcess As Date
 Dim fineSoFar As Decimal

 On Error GoTo ErrorHandler

 ' ----- Get all of the basic values needed to process
 ' this entry.
 sqlText = "SELECT PC.DueDate, PC.ProcessDate, " & _
 "PC.Fine, CMT.DailyFine FROM PatronCopy AS PC " & _
 "INNER JOIN ItemCopy AS IC ON PC.ItemCopy = IC.ID " & _
 "INNER JOIN NamedItem AS NI ON IC.ItemID = NI.ID " & _
 "INNER JOIN CodeMediaType AS CMT ON " & _
 "NI.MediaType = CMT.ID " & _
 "WHERE PC.ID = " & patronCopyID & _
 " AND PC.DueDate <= " & DBDate(Today) & _
 " AND PC.Returned = 0 AND PC.Missing = 0 " & _
 "AND IC.Missing = 0"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

636 | Chapter 22: Licensing Your Application

 dbInfo = CreateReader(sqlText)
 If (dbInfo.Read = False) Then
 ' ----- Missing the patron copy record. Oh well.
 ' It was probably because this item was not
 ' yet overdue, or it was missing, or something
 ' valid like that where fines should not increase.
 dbInfo.Close()
 dbInfo = Nothing
 Return
 End If

 ' ----- If we have already processed this record for today,
 ' don't do it again.
 If (IsDBNull(dbInfo!ProcessDate) = False) Then
 If (CDate(dbInfo!ProcessDate) >= untilDate) Then
 dbInfo.Close()
 dbInfo = Nothing
 Return
 End If
 lastProcess = CDate(dbInfo!ProcessDate)
 Else
 lastProcess = CDate(dbInfo!DueDate)
 End If

 ' ----- Fines are due on this record. Figure out how much.
 daysToFine = CInt(DateDiff(DateInterval.Day, _
 CDate(dbInfo!DueDate), untilDate) - _
 DateDiff(DateInterval.Day, CDate(dbInfo!DueDate), _
 lastProcess) - FineGraceDays)
 If (daysToFine < 0) Then daysToFine = 0
 fineSoFar = 0@
 If (IsDBNull(dbInfo!Fine) = False) Then _
 fineSoFar = CDec(dbInfo!Fine)
 fineSoFar += CDec(dbInfo!DailyFine) * CDec(daysToFine)
 dbInfo.Close()
 dbInfo = Nothing

 ' ----- Update the record with the latest fine and
 ' processing information.
 sqlText = "UPDATE PatronCopy SET " & _
 "ProcessDate = " & DBDate(untilDate) & _
 ", Fine = " & Format(fineSoFar, "0.00") & _
 " WHERE ID = " & patronCopyID
 ExecuteSQL(sqlText)
 Return

ErrorHandler:
 GeneralError("DailyProcessByPatronCopy", Err.GetException())
 Resume Next
End Sub

This code examines a PatronCopy record—the record that marks the checking out of
a single item by a patron—to see whether it is overdue, and if so, what penalty needs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 637

to be added to the record. Each record includes a ProcessDate field. We don’t want
to charge the patron twice on the same day for a single overdue item (no, we don’t),
so we use the ProcessDate to confirm which days are uncharged.

There are a few places throughout the application where we want to call this process-
ing routine without bothering the user. The first appears in the PatronRecord form,
the form that displays the fines a patron still owes. Just before showing that list, we
should refresh each item checked out by the patron to make sure we display the most
up-to-date fine information. Open that form’s source code, locate the PatronRecord_
Load event handler, and add the following code, just before the call to
RefreshPatronFines(-1) that appears halfway through the routine.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 9.

' ----- Make sure that each item is up-to-date.
For counter = 0 To ItemsOut.Items.Count - 1
 newEntry = CType(ItemsOut.Items(counter), PatronDetailItem)
 DailyProcessByPatronCopy(newEntry.DetailID, Today)
Next counter

The overdue status for an item must also be refreshed just before it is checked in.
Open the source code for the MainForm form and locate the ActDoCheckIn_Click event
handler. About halfway through its code, you’ll find a comment that starts with
“Handle missing items.” Just before that comment, insert the following code.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 10.

' ----- Bring the status of the item up-to-date.
DailyProcessByPatronCopy(patronCopyID, CheckInDate.Value)

Checkout needs to refresh the patron’s fines as well, just before letting the patron
know whether there are, in fact, any fines due. Move to the MainForm.
ActCheckOutPatron_Click event handler, and add the following declarations to the
top of the routine.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 11.

Dim dbTable As Data.DataTable
Dim dbRow As Data.DataRow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

638 | Chapter 22: Licensing Your Application

In this same method, find a comment that starts with “Show the patron if there are
any fines due.” As usual, it’s about halfway through the routine. Insert the following
code just before that comment.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 12.

' ----- Bring the patron record up-to-date.
sqlText = "SELECT ID FROM PatronCopy WHERE Returned = 0 " & _
 "AND Missing = 0 AND DueDate < " & DBDate(Today) & _
 " AND (ProcessDate IS NULL OR ProcessDate < " & _
 DBDate(Today) & ") AND Patron = " & patronID
dbTable = CreateDataTable(sqlText)
For Each dbRow In dbTable.Rows
 DailyProcessByPatronCopy(CInt(dbRow!ID), Today)
Next dbRow
dbTable.Dispose()
dbTable = Nothing

In addition to automatic fine processing, the Library Project also allows an adminis-
trator or librarian to perform daily processing of all patron items at will. This occurs
through the Daily Processing panel on the main form (see Figure 22-10).

Currently, the panel doesn’t do much of anything, so let’s change that. The first task
is to update the status label that appears at the top of the panel. Add a new method
named RefreshProcessLocation to the MainForm form’s class.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 13.

Figure 22-10. Daily administrative processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 639

I won’t show its code here, but it basically checks the CodeLocation.LastProcessing
database field either for all locations, or for the user-selected location, and updates
the status display accordingly.

The user selects a location for processing with the ProcessLocation drop-down list,
but we haven’t yet added any code to populate that list. Find the TaskProcess
method in the main form’s source code, and add these declarations to the top of its
code.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 14.

Dim sqlText As String
Dim dbInfo As SqlClient.SqlDataReader

On Error GoTo ErrorHandler

Then add these statements to the end of the method.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 15.

' ----- Refresh the list of locations.
ProcessLocation.Items.Clear()
ProcessLocation.Items.Add(New ListItemData(_
 "<All Locations>", -1))
ProcessLocation.SelectedIndex = 0
sqlText = "SELECT ID, FullName FROM CodeLocation " & _
 "ORDER BY FullName"
dbInfo = CreateReader(sqlText)
Do While dbInfo.Read
 ProcessLocation.Items.Add(New ListItemData(_
 CStr(dbInfo!FullName), CInt(dbInfo!ID)))
Loop
dbInfo.Close()
dbInfo = Nothing
RefreshProcessLocation()
Return

ErrorHandler:
 GeneralError("MainForm.TaskProcess", Err.GetException())
 Resume Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

640 | Chapter 22: Licensing Your Application

Each time the user selects a different location from the list, we need to update the
status display. Add the following code to the ProcessLocation_SelectedIndexChanged
event handler.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 16.

' ----- Update the status based on the current location.
RefreshProcessLocation()

Daily processing occurs when the user clicks on the Process button. Add the follow-
ing code to the ActDoProcess_Click event handler.

INSERT SNIPPET

Insert Chapter 22, Snippet Item 17.

' ----- Process all of the checked-out books.
Dim sqlText As String
Dim dbTable As Data.DataTable
Dim dbRow As Data.DataRow
Dim locationID As Integer

On Error GoTo ErrorHandler
Me.Cursor = Cursors.WaitCursor

' ----- Get the list of all items that likely need processing.
sqlText = "SELECT PC.ID FROM PatronCopy AS PC " & _
 "INNER JOIN ItemCopy AS IC ON PC.ItemCopy = IC.ID "& _
 "WHERE PC.Returned = 0 AND PC.Missing = 0 " & _
 "AND IC.Missing = 0 AND PC.DueDate < " & DBDate(Today) & _
 " AND (PC.ProcessDate IS NULL OR PC.ProcessDate < " & _
 DBDate(Today) & ")"
If (ProcessLocation.SelectedIndex <> -1) Then
 locationID = CInt(CType(ProcessLocation.SelectedItem, _
 ListItemData))
 If (locationID <> -1) Then sqlText &= _
 " AND IC.Location = " & locationID
Else
 locationID = -1
End If
dbTable = CreateDataTable(sqlText)
For Each dbRow In dbTable.Rows
 DailyProcessByPatronCopy(CInt(dbRow!ID), Today)
Next dbRow
dbTable.Dispose()
dbTable = Nothing
Me.Cursor = Cursors.Default
MsgBox("Processing complete.", MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Information, ProgramTitle)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 641

' ----- Update the processing date.
sqlText = "UPDATE CodeLocation SET LastProcessing = " & _
 DBDate(Today)
If (locationID <> -1) Then sqlText &= _
 " WHERE ID = " & locationID
ExecuteSQL(sqlText)

' ----- Update the status display.
ProcessStatus.Text = " Processing is up to date."
ProcessStatus.ImageIndex = StatusImageGood
Return

ErrorHandler:
 GeneralError("MainForm.ActDoProcess_Click", Err.GetException())
 Resume Next

To try out the code, run it, locate a valid license file, and test out the different admin-
istrative features.

This marks the end of primary coding for the Library Project. Congratulations! But
there’s still plenty to do, as you can tell by the presence of four more chapters. Now
would not be the time to close the book and call it a day. But it would be a good time
to learn about ASP.NET, the topic of the next chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

642

Chapter 23CHAPTER 23

Web Development 23

When Sir Tim Berners-Lee (knighted in 2004!) invented the World Wide Web in
1989, it really wasn’t a big deal. As the primary designer of HTTP and HTML, he
certainly was no slouch. But most of the technologies that went into structuring and
transporting web pages had been around for years, even decades. SGML (the basis of
HTML) and hyper-linking systems had been around since the 1960s, and Internet-
based transmission of data between clients and servers was already common among
university campuses and some businesses. Still, here we are in the 21st century, and
the World Wide Web is the focus of so much computer technology that it makes my
head spin. Thank you, Mr. B-L.

Microsoft promotes .NET as the system for developing web pages and related soft-
ware. And it really is a great system. As we get into the code, you’ll find that about
90% of what you do to write web applications in Visual Studio is identical to what
you do when writing desktop applications. It’s easy to do, and kind of fun, so you’ll
probably want to write some programs using it. And that’s what we’ll do in this
chapter. But first, let’s briefly review what happens in the world of client-server
World Wide Web communication.

How the Internet Works
Before .NET, developing applications for “the Web” was cumbersome and boring.
And with good reason: the World Wide Web was not designed as a programming or
logic-processing platform. It was originally all about sending specially formatted text
files from one computer to another. No programming languages to learn, no custom
logic; just plain text, and maybe a binary graphics image or two.

Early web browsers were really just glorified file-copy programs. When you started
up the Mosaic browser (pretty much all there was back then) and requested a web
page from another computer, here is what would happen:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How the Internet Works | 643

1. The web browser determined the IP address of the remote system.

2. The web browser contacted the remote system via TCP/IP port number 80.

3. The remote system accepted the connection.

4. The web browser said, “Hey, I’m looking for a file named index.html. Could you
send it to me?”

5. The remote system said, “I have it,” and immediately sent it.

6. The remote system closed the connection.

Much of this process is hidden from view, but you can actually see it happen. If you’re
interested, open the Windows command prompt and type the following command:

telnet www.google.com 80

This runs the Telnet program, a terminal emulation program that lets you connect to
remote systems through a text interface. (Telnet is installed on Windows XP by
default, but it is optional in Windows Vista. You can add it to Vista through the
Control Panel’s Programs and Features applet.) Telnet usually connects to TCP/IP
port 23, but you can specify any port you want, as we did here with the default
WWW port of 80.

Your screen may go blank, or it may just sit there, looking dead. If you’re lucky,
you’ll see a “connected” message, but perhaps not. And that’s OK. Your system is
connected to Google’s web server. Type the following command:

GET / HTTP/1.0

Don’t miss the spaces surrounding the first slash. Follow this command with two
light taps on the Enter key. This command asks the remote system to send the
default web page at the top of that server’s web hierarchy. And because you asked, it
will.

HTTP/1.0 200 OK
Cache-Control: private
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: PREF=ID=1c1dd342e463f3f1:TM=1199325226

:LM=1199325226:S=Pl-4f1fg4yh8Mvw7;
expires=Sat, 02-Jan-2010 01:53:46 GMT;
path=/; domain=.google.com

Server: gws
Date: Tue, 01 Jan 2008 01:30:00 GMT
Connection: Close

<html><head>
...rest of HTML web page content here...

</body></html>

Connection to host lost.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

644 | Chapter 23: Web Development

Of course, you do not normally see all this. The web browser carries on this dialog
for you, and nicely formats the response as a web page. This is actually all there is to
the World Wide Web. You have just experienced the major features involved: the
transfer of basic data through a TCP/IP port. So, where does programming come in?

Programming the Internet
Static pages were good for a while, but then the Internet became humdrum. Finally
someone had a bright idea: “We have a program running on our web server that is
responding to clients, and feeding them requested pages. What if we could enhance
that program so that, for certain pages, it would call a program or script that would
generate the HTML content on the fly, and have that content returned to the cli-
ent?” So, they changed the server process. Now, when the client asked for a web
page ending with the extension .cgi, the web server process ran a separate script that
generated the content. The system also provided a means for some client-supplied
content to make its way to the script, making possible customization and personal-
ization features.

From there it was a short step to a generic solution. On the Microsoft platform,
Internet Information Server supported add-ins that could be called based on the file
extension of the requested file. This led to Active Server Pages (ASP), a solution that
allowed developers to embed server-side script (often using VBScript, a variation of
Visual Basic) right in the HTML content, and have it adjust the content before it was
sent to the client.

Someone else said, “If we can write scripts on the server side, couldn’t we also
include a ‘client-side script’ right in the HTML content that a smart web browser
could process?” Before long, client-side and server-side developers were battling it
out in the streets, but the battle didn’t get very far because all the programmers were
exhausted. The cause? Programming in script! Whether it’s embedding script in
HTML (the client side) or generating HTML from script (the server side), script pro-
gramming is cumbersome, slow, high in “bad” cholesterol, and almost impossible to
debug interactively.

Some web script programmers hadn’t used a language compiler for years, and were
on the verge of lapsing into fatal script-induced comas. You could compile some
server-side logic into a DLL and use it to process web pages, but it was far from easy,
and these DLLs were still often linked into the HTML content via short scripts.

Then came .NET and its support for compiled server-side application development.
Script programmers breathed a collective sigh of relief from their hospital beds; they
could now use the full power of Visual Studio and .NET languages to build HTML
content. And this new system, ASP.NET, was designed so that you could craft
entire web applications without even looking at a single HTML tag. The design
goal: to make web development nearly identical to desktop application development.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ASP.NET Features | 645

And Microsoft largely succeeded. It didn’t solve the client scripting problem (maybe
soon!), but some of the new server-side features included in ASP.NET greatly
reduced the need for custom client-side scripts.

The pages you build in ASP.NET are called Web Forms, and because they are so
closely tied together, I sometimes use ASP.NET and Web Forms interchangeably.
But they aren’t exactly the same thing: ASP.NET includes Web Forms.

ASP.NET Features
ASP.NET includes many new advances in web development technology. Here are
just a few of the more famous ones:

Compiled code
All of the code you write for ASP.NET applications is fully compiled into stan-
dard .NET DLL assemblies. When the client makes a request for a file with an
.aspx extension, Internet Information Server locates this file (which contains
HTML or combined HTML/ASP.NET content) and the associated compiled
DLL, and uses them together to process the page content. You can precompile
the DLL before deployment, or you can let ASP.NET compile it on the fly the
first time the .aspx file gets called (although this incurs a bit of a performance
hit).

.NET support
ASP.NET applications can access the full .NET Framework Class Libraries
(FCLs), except those that specifically target desktop development. Any of the
cool features and classes you have in desktop .NET applications are right there
in web applications as well.

Object-based
HTML tags, such as the <textarea> tag, are really just text strings within a larger
HTML text file. Pre-.NET server-side scripting was an exercise in string concate-
nation, building up a larger file from smaller content strings. ASP.NET treats all
web-page elements as true objects, complete with properties and events. And
some of these objects implement complex client-side controls, backed up by
hundreds of lines of client-side script that you get for free.

Deployment simplicity
Managing server-side scripts and custom DLLs before .NET was not very fun.
Certain types of changes required a full shutdown of Internet Information
Server, or at least of the portion that controlled the application being changed.
ASP.NET lets you make changes on a production system without impacting
active users. If you replace a compiled DLL, ASP.NET will start using it immedi-
ately, but will still keep the older version around until all existing clients have
detached from it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

646 | Chapter 23: Web Development

Browser independence
The web-page objects that you use in ASP.NET take responsibility for generat-
ing their own HTML and client-side script content. Many of them take the cli-
ent’s browser type and version into account, enhancing or reducing features
automatically when needed. As an ASP.NET developer, you don’t even have to
know which browser is being used.

Extensibility
If you want to enhance a web-page element, you can derive from its class and
add the new enhanced features, just as you do with any other .NET class.

Of course, there are more great features than the few I listed here. But you’re proba-
bly ready to see ASP.NET in action. Let’s get started.

Trying Out ASP.NET
Let’s build a very simple ASP.NET application, and examine it and its parts to dis-
cover what it’s all about.

If you are using Visual Basic 2008 Express Edition, you will not be
able to fully follow these instructions directly since that product does
not include any ASP.NET or web development features. Instead, you
need to download Visual Web Developer 2008 Express Edition from
the Microsoft MSDN web site (http://msdn.microsoft.com/express). Its
user interface, though streamlined, offers much of the same function-
ality as the full Visual Studio product. The tutorial included here was
written using Visual Studio 2008 Professional Edition.

Start Visual Studio and select the File ➝ New Web Site menu command. The New
Web Site form appears (see Figure 23-1). Unlike desktop applications, you must
immediately tell Visual Studio where you are going to store the files. We’ll choose a
location on the local filesystem, but this form also lets you work on a remote web site
via FTP or HTTP. Choose the ASP.NET Web Site template, enter a directory path
where you want to store the files, and click the OK button.

Figure 23-2 shows Visual Studio ready to start your new web application (the tool-
bars displayed are per my preferences).

The Solution Explorer panel already shows three files and a folder included in the
project. If you browse to the project’s directory—the default location in Windows
Vista is C:\Users\username\Documents\Visual Studio 2008\WebSites\WebSite1—you’ll
see these same files. The web.config file is an XML file that contains application-specific
settings; it’s related to the app.config file used in desktop applications. Default.aspx is
the web page itself, which will contain a mixture of HTML and special ASP.NET tags
and directives. The related Default.aspx.vb file contains the Visual Basic “code
behind” source code that will eventually be compiled to a DLL.

http://msdn.microsoft.com/express
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Trying Out ASP.NET | 647

Visual Studio also creates another folder at C:\Users\username\Documents\Visual
Studio 2008\Projects\WebSite1. This folder contains the solution files normally cre-
ated with any Visual Studio project. They’re put out of the way so that they don’t get
included with the deployed web site.

Figure 23-1. Creating a new ASP.NET application

Figure 23-2. A blank form is sometimes a good sign

http://lib.ommolketab.ir
http://lib.ommolketab.ir

648 | Chapter 23: Web Development

The blank area you see in Visual Studio is a web page, just waiting for text and con-
trol content. If you want proof, click the Source section button in the bottom-left
corner of the display, or use the View ➝ Markup menu command. The window
changes to HTML source code.

<%@ Page Language="VB" AutoEventWireup="false"
CodeFile="Default.aspx.vb" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

Well, most of it is HTML. There’s a line at the top that starts with <%@ that doesn’t
look like real HTML—and it’s not. This is an ASP.NET page directive. It includes
properties that help guide ASP.NET in the processing of the page. Borrowing a
standard from its ASP predecessor, ASP.NET uses the <%...%> bracket pair to mark
ASP.NET-specific commands and code. (You might also recognize these markers
from Chapter 13, since they are used in XML Literals.)

That’s enough HTML. Who wanted to see it anyway? Click the Design section but-
ton, or use the View ➝ Designer menu command to return to the blank page.

Let’s create an application that multiplies two user-supplied numbers together and
displays the product. For such a simple feature, we could just write some JavaScript
and include it as a client-side script, but we’re trying to avoid doing stuff like that.
Type the following into the web page:

To multiply two values together, enter them in the
text fields, and click the Multiply button.

I made the word Multiply bold by using the Ctrl-B key sequence, just as I would do
in a word processor. Press Enter once. By default, the web page lays out all elements
like a word processing document, a method called flow layout mode. You can also
use absolute positioning of individual elements to place them at a specific location on
the page.

There’s another way to organize elements on the page: through an HTML table.
Let’s add one now. Use the Table ➝ Insert Table menu command. When the Insert
Table dialog appears, specify a custom table that is three rows by two columns. Then
click OK. The table should immediately appear in the body of the web page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Trying Out ASP.NET | 649

Type Operand 1: in the upper-left cell and type Operand 2: in the cell just below it.
Your page should look like Figure 23-3.

It’s not much to look at, but it will get better. So far, we haven’t done much more
than we could do in Notepad. But now we’re ready to add some controls. If you
open the toolbox, you’ll see controls that look a lot like those found in a Windows
Forms application (see Figure 23-4).

The controls are grouped by functionality:

Standard
You will generally use the controls in this section to build the user interface of
your web page. Many of these controls represent standard windows controls,
with direct parallels in the Windows Forms world. For instance, the ListBox
entry implements a standard Windows ListBox control within the web page. To
you, the programmer, these controls look like standard .NET control classes,
with properties, methods, and events. To the end-user, they look like standard
web-page controls, delivered using ordinary HTML. Some of these controls are
composite controls, which are single controls built from multiple HTML con-
trols working together, possibly with client-side scripting doing some of the
work.

Figure 23-3. Just getting started on this application

Figure 23-4. Some of the Web Forms toolbox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

650 | Chapter 23: Web Development

Data
The data controls handle bound database interactions. As you may remember
from previous chapters, I am not a big fan of bound controls in standard applica-
tions. But when you are communicating static data through a web page, they
actually turn out to be a great timesaver. Some of these controls perform the data
binding, while others perform the actual data presentation.

Validation
Users are a lot of fun, especially when they enter wacky data into your quality
software. Verifying the data they enter is hard enough in desktop applications,
but it’s even more cumbersome when the client system talks to the application
host only a few dozen seconds per hour. The validation controls remove some of
the burden. They test for the most common types of data entry mistakes, and
notify the user of problems, all without extra code on your part. When you do
need to perform some custom validation logic, the CustomValidator control lets
you add this logic as an event handler or client-side script.

Navigation
This group includes a few controls designed to help the user move from page to
page or section to section within your web site.

Login
These controls encapsulate login and password management features so that the
user can create a new user account, provide an authenticated password, or per-
form other security-related actions.

WebParts
WebParts are control containers that the user rearranges using drag-and-drop
within the web page. This reorganization of the display allows the user to per-
sonalize the display to fulfill the selfish wants that cloud his mind. You can
record the state of the WebParts for redisplay the next time the user returns to
the site or page.

AJAX Extensions
The handful of controls in this section helps to support ASP.NET’s Ajax func-
tionality. Ajax (Asynchronous JavaScript and XML) is a set of web-based tech-
nologies that can help make web pages more responsive, especially through
partial-page updates. Ajax is beyond the scope of this book.

Reporting
Here you’ll find the ReportViewer control, the web version of the report technol-
ogy we discussed in Chapter 21. It displays reports using the same RDLC files
you built for your desktop application.

HTML
These are the standard HTML controls, such as <textarea>, that web page devel-
opers have been using for years. Visual Studio does provide some IntelliSense
and property validation for you, but using these controls is identical to typing
the matching HTML tag directly into the page markup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Trying Out ASP.NET | 651

Let’s add a few controls from the Standard section of the toolbox to the web page. In
the bottom-left cell of the table we added earlier, add a Button control, give it the
name ActMultiple, and set its Text property to Multiply.

Add two TextBox controls to the top two cells in the righthand table column. Name
one of them FirstOperand and name the other one SecondOperand.

Add a Label control to the bottom-right corner cell of the table. Name it Product, and
set its Text property to 0 (that is, zero).

Did you notice how setting each property for these controls was no different from
what you did in the main Library application? Simple! By now, your web page
should look like the one in Figure 23-5.

Return briefly to the HTML markup for this page by clicking on the Source section
button at the bottom of the page. If you’re familiar with HTML, you’ll notice the
<table> tag for the table we added. But you’ll also find something unfamiliar within
the first table row.

<table class="style1">
 <tr>
 <td>
 Operand 1:
 </td>
 <td>
 <asp:TextBox ID="FirstOperand"
 runat="server"></asp:TextBox>
 </td>
 </tr>

It’s that <asp:TextBox> tag. It looks something like other HTML tags, but there are
no HTML tags that start with “asp.” This is a special ASP.NET tag that represents a
Web Forms control class. These controls, and the runat="server" attributes strewn
throughout the markup, are what make ASP.NET pages what they are. As ASP.NET
processes the .aspx page, it strips out these custom control tags and calls on the
related controls to generate their own browser-neutral HTML.

Figure 23-5. The completed user interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

652 | Chapter 23: Web Development

The user interface is done; let’s add the logic. We want the program to multiply the
two operands together when we click on the Multiply button. Return to the web
page design and double-click on the Multiply button. It jumps to the code template
for a button’s Click event, just as you expected it to do.

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub ActMultiple_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActMultiple.Click

 End Sub
End Class

The design goal of ASP.NET was to have code that was as close to desktop applica-
tion code as possible, and this is it. Add the following logic to the event handler:

' ----- Multiply the two numbers.
Product.Text = Val(FirstOperand.Text) * _
 Val(SecondOperand.Text)
If (Val(Product.Text) < 0) Then
 Product.ForeColor = Drawing.Color.Red
Else
 Product.ForeColor = Drawing.Color.Black
End If

As you were typing, did you notice all of the IntelliSense responding to your every
keystroke? I couldn’t tell that this was a web-based application, and that’s great.

Press the F5 key to start the application. You’ll be prompted to turn on debugging,
which you want to do. This will modify the application’s web.config file to support
debugging. Later, you’ll want to disable that feature so that your users won’t be able
to debug the application. If you open the web.config file, you’ll see this line:

<compilation debug="true" strict="false" explicit="true"/>

Just change the debug attribute to false to turn off debugging.

ASP.NET is a server application; it requires a living, breathing web server before pages
can be processed. You may or may not have Internet Information Server installed on
your system, but that’s OK. Visual Studio 2008 includes its own “ASP.NET Develop-
ment Server” that exists just so that you can test your ASP.NET applications.
Figure 23-6 shows it popping up in the system tray.

Figure 23-6. Your built-in web server endeavors to give good service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

More About Events | 653

Figure 23-7 shows the application running in my default web browser, Internet
Explorer. (Dear web browser companies, for information on product placement in
this page, contact me directly.)

If you don’t like how the table spreads way across the page, you can adjust it using
the CSS Properties panel. Back in Visual Studio, select the View ➝ CSS Properties
menu command. The panel opens, and adjusts itself depending on which page ele-
ment you currently have selected. To eliminate the table’s love affair with the right
border, select the table itself, scroll down to the Position/Width property, and
remove the “100%” value from that property entry.

More About Events
So far, our application looks just like a desktop application; the form displayed our
initial drag-and-drop and property settings, and it responded to a button click by
returning to the processing computer for the logic. But let’s be honest. There’s no
way that a web application can ever be truly as responsive to events as a desktop
application. What happens when the Internet connection goes down or it is just
plain slow? How do you handle things such as TextChanged events in text fields? You
can’t have the web page go back to the web server every time the user presses a key.

The ASP.NET TextBox control has a TextChanged event, but it does not trigger for
each keystroke. In fact, it doesn’t trigger at all (by default) until something (such as a
button click) causes the page to go back to the server. And there are a lot of other
control events that work like this. They are all saved up until the user does some-
thing to bring the whole page back to the web server for processing. At that time,
these delayed events finally fire, and processing continues as normal.

Figure 23-7. Wow, a whole web application in fewer than 10 lines of code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

654 | Chapter 23: Web Development

So, there are really two types of events: regular and premium. I mean postback and
non-postback. Postback events are those that cause the web page to immediately
return to the server for processing. Non-postback events delay their event handlers
until something else causes a return to the server. Most events are one or the other,
but some can be changed. The CheckBox control has a CheckedChanged event that fires
in a non-postback way when the user alters the state of the checkbox. However, if
you set the control’s AutoPostBack property to True, the page will immediately return
to the server anytime the user clicks the checkbox.

Besides control events, the entire page has a few events. The most significant is the
Page_Load event. This is analogous to Windows Forms’ Form_Load event; it’s a great
place to configure initial control properties, fill in drop-down lists, and so on. I’m
going to add the following code to my page’s Load event:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Initialize the data.
 Product.Text = "No Data"
End Sub

Now the Product label will display “No Data” the first time the page appears. The
thing about the Load event handler is that it runs every single time the web page is dis-
played. Since this test application keeps using the same page over and over again for
its results, the Load event handler will run afresh each time. For this test program,
it’s not really a big deal; the code in the ActMultiply_Click event handler overrides
its initial “No Data” value. But in other applications, you might not want to keep
reinitializing the data. Fortunately, the Load event will let you know whether this is
the first time through via a page-level member called IsPostBack.

' ----- Initialize the data, but only the first time.
If (Me.IsPostBack = False) Then Product.Text = "No Data"

State and View State
Wait a minute. If I am reloading the page from scratch every time with the need to
initialize values in the Page_Load event handler, how is it that the two text boxes kept
the user-entered values when the page reloaded? We didn’t add any code to save and
restore those values during initialization.

Here’s the story. Although the Page_Load event does give you the opportunity to ini-
tialize the page every time the page loads, for most fields the page will remember
what was in each field. Remember, ASP.NET is designed so that you think it is run-
ning just like a Windows Forms application. You would never be happy if the fields
on your desktop form kept clearing out every time the user clicked a button. You
wouldn’t be happy if they cleared out in a Web Forms application either.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Validation | 655

Because web pages are disconnected from the web server most of the time, each web
page needs some way to retain the state—the current property and data settings—of
each control between page loads. The Web Forms system does this through a fea-
ture called View State. Here’s how it works: each ASP.NET web page includes a hid-
den static field that contains a serialized version of all important state information for
the controls. When the user makes changes to each control and triggers some event
that returns the page to the web server, it returns with both the embedded View State
(built up from the previous construction of the page) and all the current settings for
every control. Using this combined information, ASP.NET is able to reconstruct the
true client-visible state of every control, and communicate that correctly to you in
your server-side event handler code.

When you run an ASP.NET application, use the View ➝ Source menu command in
Internet Explorer or your favorite browser of the month, and you’ll see something
like the following:

<input type="hidden" name="_ _VIEWSTATE" id="_ _VIEWSTATE"
value="/wEPDwUKMTEyMTc3MTQwNg9kFgICAw9kFgICBw8P
FgIeBFRleHQFB05vIERhdGFkZGQME+xLedutk85TvXy9OJd
kQF02YA==" />

That’s the View State. Don’t ask me how it works; I won’t tell you (since I don’t know).
But it’s not important to know how it works. It’s only important that ASP.NET knows
how it works so that it can keep your application working like the Windows Forms
system it truly isn’t.

As you add controls to your page, the View State will increase in size. Since all of the
web page’s content must be transported repeatedly over the Internet, a larger View
State results in longer transmission times. It is possible to turn off View State for spe-
cific controls using their EnableViewState property. If you don’t need a control’s
value retained from page use to page use, it’s a good idea to turn it off.

Data Validation
Because this sample code uses the Visual Basic Val function to preprocess the user-
supplied data, it almost always works without error. Any data considered invalid is
simply converted to zero. Another option would be to chastise the user for invalid
entry before processing occurs, to validate the supplied values. The five validators in
the Validation section of the Web Forms toolbox help you do just that:

• The RequiredFieldValidator confirms that the user supplied any value at all in a
control.

• The RangeValidator complains if a control’s value does not fall between two values.

• The RegularExpressionValidator lets you compare a control’s value against a regu-
lar expression pattern. For instance, you could compare the user’s entry of a serial
number to a pattern to ensure that it included two letters followed by five digits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

656 | Chapter 23: Web Development

• The CompareValidator involves two controls, comparing the value between them.
The control also doubles as a data type validator, confirming that a single field
contains the proper type of data, such as a date value or an integer.

• The CustomValidator lets you perform any type of validation you want through
code you supply.

All of these controls perform server-side validation, and they optionally do their data
check using client-side scripts (the default). Having the client-side check reduces the
need to go back to the web server just to ensure that a required field has data. Hav-
ing the server-side check ensures that the data is valid even if the client has disabled
scripting support.

The validators display their own error messages, so you place them on the page where
you want the error message to appear. You can also have multiple validators display
their collective issues in a single location by using a ValidationSummary control.

Let’s add some validation to the two input fields in the multiplication sample. We
want to ensure that the data is supplied, and that both values are valid integers. To
do this, we must add both a RequiredFieldValidator and a CompareValidator for each
field. Right-click in the bottom-right cell of the table, just after the Product label, and
choose Insert ➝ Column to the Right from the shortcut menu that pops up. In the new
upper-right cell, add a RequiredFieldValidator control. Set the following properties:

• Set ControlToValidate to FirstOperand.

• Set Display to Dynamic. This lets the size of the validator shrink to nothing when
there is no error to display.

• Set ErrorMessage to Missing.

Just to the right of that validator, in the same table cell, add a CompareValidator, and
set these properties:

• Set ControlToValidate to FirstOperand.

• Set Display to Dynamic.

• Set ErrorMessage to Must be an integer.

• Set Operator to DataTypeCheck.

• Set Type to Integer.

Add a similar pair of validators to the second table row, using SecondOperand for the
ControlToValidate. Your web page should look like Figure 23-8.

Run the program and just try to enter faulty data in the input cells. The page will
complain immediately when you click the Multiply button.

That’s all the multiplying we’ll do for now. I’ve saved a copy of the project for you in
the WebSite1 subdirectory in the main directory where you installed this book’s sam-
ple code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Database Integration | 657

Database Integration
Connecting ASP.NET pages to a database, especially if you use some of the wizard-
style features of Visual Studio, is extremely easy. That’s because many of the con-
trols included with ASP.NET are specifically designed to display and interact with
data from tabular data sources. We’ll try out a quick wizard example here, and do a
lot more database integration in this chapter’s “Project” section.

In Chapter 20, the first of the five built-in reports we created for the Library system
displayed a list of all checked-out items. We designed an RDLC report for it, and
since ASP.NET includes an RDLC Report Viewer control, we could reuse that for a
web-based report. But instead we’ll display the report using one of the Web Forms
controls, GridView. Here’s the query that retrieves the checked-out items:

SELECT PA.LastName + ', ' + PA.FirstName AS PatronName,
 PA.Barcode AS PatronBarcode,
 PC.DueDate, IC.CopyNumber, IC.Barcode AS ItemBarcode,
 NI.Title, CMT.FullName AS MediaName
FROM Patron AS PA
 INNER JOIN PatronCopy AS PC ON PA.ID = PC.Patron
 INNER JOIN ItemCopy AS IC ON PC.ItemCopy = IC.ID
 INNER JOIN NamedItem AS NI ON IC.ItemID = NI.ID
 INNER JOIN CodeMediaType AS CMT ON NI.MediaType = CMT.ID
WHERE PC.Returned = 0
 AND PC.Missing = 0
 AND IC.Missing = 0
ORDER BY NI.Title, IC.CopyNumber, PA.LastName, PA.FirstName

That should look familiar. Create a new ASP.NET web site through Visual Studio.
Type the following line at the top of the content page:

ACME Library Checked Out Items

Feel free to embellish it to make it look nicer. I added <h1> tags around it in the
markup to make it stand out. Below that title line, add a new GridView control to the
page. I found it in the Data section of my Visual Studio Toolbox. The control’s smart
tag opens and shows a panel of GridView Tasks, as shown in Figure 23-9.

Figure 23-8. Bulking up on the validation support

http://lib.ommolketab.ir
http://lib.ommolketab.ir

658 | Chapter 23: Web Development

If you want to click on the Auto Format task and change the look of the grid, you
can, but the important task for now is Choose Data Source. Select <Add New
Source> from the list. Our old friend the Data Source Configuration Wizard appears
again, although with some changes specific to ASP.NET. Select Database for the data
source type and click the OK button. When prompted for the connection, you
should already have a Library database connection in the list. Select it (or create a
new connection) and click Next.

You’ll be asked to save the connection string in the application configuration file. If
you do, it will add an entry to the <connectionStrings> section of the web.config file
created for the ASP.NET application. If you like to play power games with your sys-
tem administrator, leave the field unchecked. But if you want an easy way to modify
the connection information later, you had better leave the field as it is, giving the
entry a reasonable name. Then click Next.

The wizard prompts you for table and field details. Select “Specify a custom SQL
statement or stored procedure,” click Next, and type in the checked-out-item query
shown a few paragraphs back. Click Next again. The wizard gives you one last
chance to test the query before you click the Finish button.

Now here’s the simple part. Visual Studio connects to the database, reads the
schema, and creates columns in the grid perfectly designed for the query. Your appli-
cation is complete. Press F5 to run it.

We’re going to stop there for now and pick this up in the “Project” section.

Windows Communication Foundation
Have you ever wanted to extract one piece of data from a web site for use in your
Visual Basic application? No? Well let me tell you: it’s called “screen scraping,” and
it’s a pain in the neck. Most web sites with valuable content are designed by selfish
people, programmers who think only about their own company’s needs and nothing

Figure 23-9. A short list of tasks for the GridView control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows Communication Foundation | 659

about other developers who need to pilfer essential data from—I mean, who need to
add value to their own applications by enhancing it with content from a trusted third
party.

Screen scraping is generally a bad thing. Not only is the HTML content ludicrously
difficult to parse, but you never know when the web site owner is going to up and
change the content without the courtesy of contacting you first. Fortunately, Win-
dows Communication Foundation provides a solution to this problem. This core
Microsoft technology, formerly code-named Indigo, exists to transport meaningful
data between applications and systems, local or remote.

Windows Communication Foundation, usually abbreviated as WCF, joins several pre-
viously distinct technologies into a unified whole: message queues (such as MSMQ),
web services (see the upcoming note), distributed transactions (such as MSDTC),
and .NET Remoting. Since each of these technologies involved moving information
from one application to another, it was a no-brainer for Microsoft to spend more
money than you’ll ever see on a merged service.

If a site has content or processes that need to be used by external applications, it can
include a “service” on the site that makes screen scraping unnecessary. WCF imple-
ments the intersystem-based equivalent of function calls, complete with parameters
and return values, all of which can be accessed remotely. They are based on pub-
lished standards such as Simple Object Access Protocol (SOAP) that use plain text
and XML to simulate the function call between two systems.

Before Visual Studio 2008, .NET developers used a system called XML
Web Services that provided functionality similar to the services por-
tion of WCF. If you want to use XML Web Services, it is still available
in Visual Studio 2008. However, Microsoft is recommending that new
software use WCF instead of XML Web Services.

A lot of technologies are involved in making WCF possible, but you don’t really need
to know them. Instead, you will implement one or more Visual Basic methods based
on an interface you define. This interface, marked up with WCF-specific attributes,
establishes the “service contract” that makes the functional communication between
two systems possible.

WCF services appear as .svc files on your web site. In Visual Studio, you can either
create a new web site and select WCF Service as the project type, or add a WCF Ser-
vice item to an existing web site project. When you do, Visual Studio adds the neces-
sary files to your project. The first is the actual .svc file. It’s a smart interface conduit
between the web site and the actual web service code. Here’s what I found in my
Service.svc file:

<%@ ServiceHost Language="VB" Debug="true" Service="Service"
CodeBehind="~/App_Code/Service.vb" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

660 | Chapter 23: Web Development

This directive refers the caller to the Service class in the associated Service.vb source
code file. That file is much more interesting. Here’s a portion of that file:

Public Class Service
 Implements IService

 Public Function GetData(ByVal value As Integer) _
 As String Implements IService.GetData
 Return String.Format("You entered: {0}", value)
 End Function
End Class

This looks like sample code to me, and you’ll replace it when you write your own
service. The Service class in the code implements the members of the IService inter-
face, found in the related IService.vb file.

<ServiceContract()> _
Public Interface IService
 <OperationContract()> _
 Function GetData(ByVal value As Integer) As String
End Interface

As shown, this interface also contains a meaningless sample member, GetData, which
must be replaced. It’s marked up with the WCF-focused attribute
<OperationContract> which, along with the interface’s <ServiceContract> attribute,
declare, “There be WCF Services here.” Remember that an attribute adds metadata
to an assembly so that the compiler or some other program will do something spe-
cial with the marked items. In this case, the <OperationContract> attribute tells WCF
to treat the GetData method (when implemented) as a service member. WCF
responds by connecting up all of the plumbing code that makes the service possible.

I’m going to replace the GetData function with another one that at least pretends to do
some real work. First, I’ll change the IService interface so that it defines the contract.

<ServiceContract()> _
Public Interface IService
 <OperationContract()> _
 Function NumberToText(ByVal sourceNumber _
 As Integer) As String
End Interface

Then, in the Service class, I’ll implement the interface and its NumberToText member.

Public Class Service
 Implements IService

 Public Function NumberToText(ByVal sourceNumber As Integer) _
 As String Implements IService.NumberToText
 Select Case sourceNumber
 Case 0 : Return "Zero"
 Case 1 : Return "One"
 Case 2 : Return "Two"
 Case 3 : Return "Three"
 Case 4 : Return "Four"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows Communication Foundation | 661

 Case 5 : Return "Five"
 Case 6 : Return "Six"
 Case 7 : Return "Seven"
 Case 8 : Return "Eight"
 Case 9 : Return "Nine"
 Case Else : Return "Out of range"
 End Select
 End Function
End Class

If you run this application in Visual Studio, your web browser opens with the (par-
tial) page shown in Figure 23-10.

WCF services are methods, and a web browser isn’t a typical medium for running
subroutines and functions, so the page in Figure 23-10 appears instead. Its informa-
tional content shows you how you can test or use the service, either through a utility
designed for that purpose, or through Visual Basic or C# code.

Since I have this service running on my system using my test ASP.NET web server,
I’ll write a desktop application to call the NumberToText method. Start a separate
instance of Visual Studio and create a new Windows Forms project. Select the
Project ➝ Add Service Reference menu command. The Add Service Reference form
appears; it’s a tool you use to locate local and remote WCF services.

You can specifically request the service if you know its address. To determine this,
double-click on the ASP.NET Development Web Server icon in the system tray. The
Root URL field will provide the base of the address. On my system at this particular
moment, it says “http://localhost:49210/WebSite2,” although by default it will
change port numbers if I restart the service. Add to this the name of the .svc file for
your service.

http://localhost:49210/WCFService1/Service.svc

Figure 23-10. A WCF service running in your web browser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

662 | Chapter 23: Web Development

Enter this address in the Add Service Reference form’s Address field, and click Go. If
successful, the form locates the service and displays its contracts in the Services field.
Figure 23-11 shows the located NumberToText operator. You can provide named
access to the service in your code by changing the Namespace field. Then click the
OK button.

To test out the service, I added a TextBox control and a Button control to Form1, and
added the following code (I used the default service namespace of ServiceReference1):

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 MsgBox((New ServiceReference1.ServiceClient). _
 NumberToText(CInt(Val(TextBox1.Text))))
End Sub

Running the program, typing in a number from 0 to 9, and then clicking the button
correctly calls the web service and returns the English version of the number. And it
would have worked just as well if the NumberToText service were running on a web
server at one of the research facilities at the South Pole.

Figure 23-11. A recognized web service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 663

Summary
I really used to hate writing ASP applications. It was a pain to embed VBScript within
HTML content. Although ASP.NET still supports a variation of this method, it’s
much better to use the code behind features of Web Forms. This makes web
development only slightly more difficult than desktop application development.
Windows Communication Foundation also makes interactions between web server-
housed code and desktop code as easy as developing a class with methods.

When Microsoft first came out with the .NET Framework, its marketing department
really went full strength on the web development aspects of Visual Studio. I was
dubious. And although I am still mainly a desktop application developer, I no longer
lose up to a week of sleep when I contemplate the building of Internet applications.

Project
For this chapter’s project, I built a simple multipage web site that (1) lets the user
look up items in the Library database; and (2) duplicates the Library Statistics report
created in Chapter 21, but without the RDLC component. I went ahead and included
the completed project in your installed source code directory, in the LibraryWebSite
subdirectory. You can open it by locating its directory with the File ➝ Open Web Site
menu command in Visual Studio.

As shown in Figure 23-12, the project includes 11 files and two subdirectories.

Figure 23-12. The Library web site project files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

664 | Chapter 23: Web Development

Here’s a quick rundown of each file and subdirectory:

App_Code
The directory for all project code that is not code behind for an actual ASP.NET
web page. All of your general modules and classes for a project appear here.

General.vb
A code module with six methods that I stole almost verbatim from the main Library
Project’s General.vb file. I made just a few changes, mostly to deal with not having
the LibraryDB global variable sitting around with its connection information.

BoundSchemas.vb
When we started the checked-out-item report earlier in this chapter, we bound a
GridView control to a database query. The GridView control, like most of the
Web Forms controls, can also bind to any class that supports the IList inter-
face, including the generic collection classes. The classes in this file will be used
for instances within a generic collection in two of the web pages.

App_Data
This directory normally contains data needed by the application. It was created
automatically by Visual Studio. I don’t use it in this project.

Default.aspx and Default.aspx.vb
This is the entry point of the Library web site. The client browser requests the
Default.aspx web page to start the library experience. The page includes a link to
the statistics report, plus fields that let you look up library items by title or
author.

SearchResults.aspx and SearchResults.aspx.vb
Searches performed from the Default.aspx page end up here, with queries pro-
cessed in code and then bound to a grid.

SearchDetail.aspx and SearchDetail.aspx.vb
Each search result includes a link to this page. It provides additional detail for an
item, in the same format used in the main Library project’s ItemLookup.vb file.

Statistics.aspx and Statistics.aspx.vb
This page displays the Library Statistics report as a bound web page.

web.config
Every ASP.NET project includes a web.config file used to specify project-specific
settings in the development and production environments.

Configuring the Database
The web.config file contains a place for database connection strings. I’ve added an
entry within it for the Library database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 665

<connectionStrings>
 <add name="LibraryConnection" connectionString=

"Data Source=MYSERVER\SQLEXPRESS;
Initial Catalog=Library;Integrated Security=True" />

</connectionStrings>

Modify the “MYSERVER\SQLEXPRESS” portion to the name of your SQL Server
database instance, and modify the other parts of the connection string as needed. All
four of the web pages use the Library database, and they all access the connection
string from this entry, via the ConfigurationManager object:

Public LibraryDB As System.Data.SqlClient.SqlConnection

...and later...

LibraryDB = New SqlClient.SqlConnection(_
 ConfigurationManager.ConnectionStrings(_
 "LibraryConnection").ConnectionString)
LibraryDB.Open()

...and later still...

LibraryDB.Close()

The Default Page
The Default.aspx page is the starting point for the Library web application, and
appears in Figure 23-13.

Figure 23-13. The Library web site’s default page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

666 | Chapter 23: Web Development

Its code is not much to talk about. It simply fills in the Media Type drop-down list
with the available types from the database.

sqlText = "SELECT ID, FullName FROM CodeMediaType " & _
 "ORDER BY FullName"
dbInfo = CreateReader(sqlText, LibraryDB)
Do While dbInfo.Read
 SearchMediaType.Items.Add(New WebControls.ListItem(_
 CStr(dbInfo!FullName), CStr(dbInfo!ID)))
Loop
dbInfo.Close()

The page itself is a little more interesting. When we built the sample ASP.NET web
application earlier, each click on the Multiply button sent the page back to itself. It
was a one-page application. Most web applications would be useless with only a sin-
gle page, so button clicks and links need to jump elsewhere in the project. The report
link at the bottom of this page is a standard hyperlink to Statistics.aspx, another page
within the application. In the search portion of the page, the Search button
(ActSearch) also jumps to another project page, SearchResults.aspx. It does this
through its PostBackUrl property, which is set to ~/SearchResults.aspx. The new
page will have indirect access to all of the field selections on this starting page.

Search Results
The SearchResults.aspx page displays any matching results from the Default.aspx
item search section. As shown in Figure 23-14, it includes a GridView control for the
listing of results, plus a Label control that shows a count of the matches.

Figure 23-14. The Library web site’s search results page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 667

Unlike the GridView populated earlier, this one does not connect directly to a data-
base query. Instead, I hand-build instances of the BoundSchemaSearchResults class
(from BoundSchemas.vb), collect them into a generic List, and bind them to the
fields in the GridView. Actually, binding in this way is a snap. Each column I config-
ured in the GridView control looks for a property in the incoming records that
matches a specific field name. These columns are defined through the Column Edi-
tor (see Figure 23-15), accessed via the control’s Columns property.

Figure 23-15 shows the properties for the first bound data column, “Item Name.” It’s
bound to a field in the data named ItemData via the DataField property. The next
two columns are configured similarly but use the incoming data fields AuthorName
and MediaType. The fourth column provides a hyperlink to the SearchDetail.aspx
for each matching record. To build this column, I added it as a HyperLinkField
column instead of a BoundField column. I set its Text property to Detail, which
will appear on every record. Clicking on the link will pass the ID of the matching
item (I set the DataNavigateUrlFields to ID) to the target page via a query string.

Figure 23-15. Editing columns in a GridView control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

668 | Chapter 23: Web Development

The DataNavigateUrlFormatString property contains a string that will be sent to
the String.Format method, along with the fields listed in DataNavigateUrlFields.
Here is the format string:

SearchDetail.aspx?ID={0}

The {0} part gets replaced with the value of each record’s ID field.

This page’s Load event handler is triggered by a call from the Search button on the
Default.aspx page. When a Web Forms page calls itself, it can directly examine the
values in its controls. But the controls on the Default.aspx page don’t exist here in
the SearchResults.aspx page. Fortunately, the previous page’s controls are sent as
data to the new page. You can access them through the PreviousPage object. The fol-
lowing code extracts the values from each of the search fields:

' ----- Get the title search text.
sourceTextBox = CType(PreviousPage.FindControl(_
 "SearchTitle"), TextBox)
If (sourceTextBox IsNot Nothing) Then _
 useTitle = Trim(sourceTextBox.Text)

' ----- Get the last name search text.
sourceTextBox = CType(PreviousPage.FindControl(_
 "SearchLastName"), TextBox)
If (sourceTextBox IsNot Nothing) Then _
 useLastName = Trim(sourceTextBox.Text)

' ----- Get the first name search text.
sourceTextBox = CType(PreviousPage.FindControl(_
 "SearchFirstName"), TextBox)
If (sourceTextBox IsNot Nothing) Then _
 useFirstName = Trim(sourceTextBox.Text)

' ----- Get the media type value.
sourceMediaType = CType(PreviousPage.FindControl(_
 "SearchMediaType"), DropDownList)
If (sourceMediaType IsNot Nothing) Then _
 useMediaType = sourceMediaType.SelectedValue

Amazingly, the previous page didn’t just send its fields as string values. Instead, they
retained their existence as true objects. Using the CType function to convert them to
TextBox and DropDownList controls was enough to access their control properties.

I use the user-supplied values to build a SQL statement and query the database for
results. If there are any, the resultant data is massaged into a list of objects.

Dim oneEntry As BoundSchemaSearchResults
Dim reportData As Collections.Generic.List(_
 Of BoundSchemaSearchResults)

Do While dbInfo.Read
 ' ----- Add it to the report data.
 oneEntry = New BoundSchemaSearchResults
 oneEntry.ID = CInt(dbInfo!ID)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 669

 oneEntry.ItemName = CStr(dbInfo!Title)
 If (IsDBNull(dbInfo!LastName) = True) Then _
 useLastName = "" Else _
 useLastName = CStr(dbInfo!LastName)
 If (IsDBNull(dbInfo!FirstName) = True) Then _
 useFirstName = "" Else _
 useFirstName = CStr(dbInfo!FirstName)
 If (useFirstName <> "") Then
 If (useLastName <> "") Then useLastName &= ", "
 useLastName &= useFirstName
 End If
 oneEntry.AuthorName = useLastName
 oneEntry.MediaType = CStr(dbInfo!MediaName)

 reportData.Add(oneEntry)
Loop

The results are bound to the grid, and a count is displayed to the user.

ResultsGrid.DataSource = reportData
ResultsGrid.DataBind()
MatchCount.Text = reportData.Count & " matching items."

You must call the GridView control’s DataBind method or you won’t see any results.

Search Detail
When the user clicks on one of the Detail links in the search results, it sends the ID
of the selected NamedItem record to the SearchDetail.aspx page as a query string. The
page itself, which I won’t show here, includes many Label controls that attempt to
mimic the output on the detail panel of the ItemLookup.vb form in the main Library
application. I even use almost the same Cascading Style Sheet (CSS) instructions in
this page that I use in the application.

When the page’s Load event handler fires, it first examines the query string to extract
the supplied NamedItem ID. A missing ID results in a return to the main search form.

itemID = Val(Page.Request.QueryString("ID"))
If (itemID <= 0) Then
 Response.Redirect("Default.aspx")
 Return
End If

Most of the formatting code for this page comes from the ItemLookup.vb file in the main
application. It queries the database for details of the specified NamedItem record, and
updates each label using these values. The only thing that is interesting—besides the
fact that this seems all too easy for web-page development—is the creation of the table
of item copies near the bottom of the page. In the ItemLookup.vb version of the code, I
hand-crafted an HTML <table> set and filled in its columns with the status of each
available copy of the named library item. I thought it was a shame to ignore all of that
great code, so I just copied it nearly unchanged into the code for SearchDetail.aspx.vb.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

670 | Chapter 23: Web Development

So far, I haven’t had to do anything with HTML itself, except when I wanted to add
<h1> tags around the page titles. But since I had written the HTML-generating code,
and since ASP.NET applications target HTML, I thought I could use it.

And I can. One of the Web Forms controls is Literal, a control that exists only so
that you can set its Text property to properly formatted HTML content. After build-
ing up the table structure in a StringBuilder object named copyTable, I assign that
HTML content to the Literal control.

' ----- Add the table to the output.
PutTableHere.Text = copyTable.ToString()

Statistics Report
The Statistics.aspx page displays the same summary information included in one of
the reports from Chapter 21. In the original statistics report, I displayed record
counts from six different tables, and presented them as a list in an RDLC report for-
mat. In this web page, I do those same six queries, build a generic list of the results,
and bind that list to—surprise—a GridView control, which is quickly becoming our
favorite. Here’s the code for the page in its entirety:

Imports System.Data

Partial Class Statistics
 Inherits System.Web.UI.Page

 Public LibraryDB As System.Data.SqlClient.SqlConnection

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Prepare the data for the report.
 Dim sqlText As String
 Dim reportData As Collections.Generic.List(_
 Of BoundSchemaStatistics)
 Dim oneEntry As BoundSchemaStatistics
 Dim resultValue As Integer
 Dim counter As Integer
 Dim tableSets() As String = {"Author", "Publisher", _
 "Subject", "NamedItem", "ItemCopy", "Patron"}
 Dim tableTitles() As String = {"Authors", "Publishers", _
 "Subject Headings", "Items", "Item Copies", "Patrons"}

 ' ----- Connect to the database.
 LibraryDB = New SqlClient.SqlConnection(_
 ConfigurationManager.ConnectionStrings(_
 "LibraryConnection").ConnectionString)
 LibraryDB.Open()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 671

 ' ----- Build the report data. It's all counts from
 ' different tables.
 reportData = New Collections.Generic.List(_
 Of BoundSchemaStatistics)
 For counter = 0 To UBound(tableSets)
 ' ----- Process one table.
 sqlText = "SELECT COUNT(*) FROM " & _
 tableSets(counter)
 resultValue = CInt(ExecuteSQLReturn(sqlText, _
 LibraryDB))

 ' ----- Add it to the report data.
 oneEntry = New BoundSchemaStatistics
 oneEntry.EntryName = tableTitles(counter)
 oneEntry.EntryValue = CStr(resultValue)
 reportData.Add(oneEntry)
 Next counter

 ' ----- Finished with the connection.
 LibraryDB.Close()

 StatisticsGrid.DataSource = reportData
 StatisticsGrid.DataBind()
 End Sub
End Class

I included only a minimum set of features in this web site, and don’t start cracking
jokes about my web page design skills. If I were planning to deploy this web site, I
would certainly enable some links on the SearchDetail.aspx page so that the user
could click to search for other items by the same author, publisher, series, and so on.
I would also add patron-specific features that would let users check their current
checked-out items and any fines due. Another great feature to add would be online
help content that told the patron or administrator how to use the system. And that
just happens to be the topic for the next chapter. Lucky you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

672

Chapter 24CHAPTER 24

Adding Online Help 24

If there’s one thing I’ve learned in nearly 25 years of programming, it’s that users
often need some help to run software on their systems. Programmers need help, too,
but getting back to computers: it’s rare that you find a technically conversant user. If
you write applications that target businesses and departments within organizations
(that’s what I do), you find that the users are very skilled at their jobs, but not neces-
sarily skilled at using a computer. That’s why it is imperative that you make your
programs as straightforward to use as possible.

You should also add online help to your applications. These ready documents act as
the first wave of support for your users’ software needs. Of course, they seldom read
it, and so you (or your technical support staff) will actually become the first wave of
support. But it’s somewhat refreshing to be able to say, “Did you check the online
help, which covers this issue in detail?”

In this chapter, we’ll discuss the online help options available to you in Visual Basic
and focus in on HTML Help 1.x, Microsoft’s standard Windows XP help system.

Windows Online Help Options
Online help has been a part of Windows since its initial release, back in the days
when applications and operating systems still shipped with printed manuals and
never required more than two floppy disks. I really miss those days. That sense of
touch; the cold, smooth pages in my hands. I remember the first Windows software I
ever purchased, a newly released “Personal Information Manager.” It had everything
I needed, including a 400-page user’s guide and reference manual. Sheer delight.

Those days are gone, replaced by online help systems and HTML readme files. Now
you buy books such as this one to bring back that included-user’s-guide feeling. But
you can do a lot with online help, especially these days with the ability to include
dynamic, active content in online help pages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows Online Help Options | 673

WinHelp
The original Windows help system was WinHelp. It included simple formatted help
pages with hyperlinks to other pages. A separate “contents” file added table-of-contents
support; you had to ship the .cnt contents file with the .hlp file as a set. These basic
help files were (and in many ways, still are) good enough for most users’ needs, and
they are still supported by all releases of Microsoft Windows.

WinHelp files were designed using Rich Text Format (RTF), a word-processing for-
mat supported by many vendors. Because of this, the content was easy to build,
although hyperlinks and other help-specific features required bizarre text and for-
matting combinations. But WinHelp met the needs of Windows users for years.

HTML Help
RTF documents are so 1980s. When the Internet started sweeping the world with its
ability to generate beautifully formatted pages through the common HTML tag-
based language, Microsoft decided to upgrade its help system to one that used stan-
dard HTML documents: HTML Help. As its name implies, HTML Help is truly
HTML-based. Anything that generates HTML can generate HTML Help content:
third-party web-page designer tools, word processors, your own custom applica-
tions, even Notepad. As expected, some vendors designed tools specifically targeting
the HTML Help system.

HTML Help is better than WinHelp, due to its dependence on HTML and other
related technologies. Each page of your online help file is a separate HTML page/file.
Hyperlinks to other help pages are standard HTML hyperlinks. And HTML Help
employs most of the features used in any web page, including Cascading Style Sheets
(CSS) and Java scripting.

Compiled HTML Help files have a .chm extension, and a single file includes primary
content, the table of contents, and a predefined index of terms. We will use HTML
Help technology to add online help content to the Library Project. I’ll skip the details
of the system until a little later in the chapter.

Microsoft Help 2
Most applications sold as of this writing use HTML Help, but not all. One big excep-
tion is Visual Studio itself. Its help system—Microsoft Help 2 (a.k.a. HTML Help 2.x)—
combines HTML and XML content into a set of collections that work together as
one. If you’ve installed the full version of SQL Server on a system with Visual Studio,
they together share a common help interface. You can even search for pages in both
collections at the same time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

674 | Chapter 24: Adding Online Help

Microsoft makes a “Help Integration Kit” available for developers who wish to merge
their own content into the Microsoft Help 2 system. This is most useful for vendors
who develop third-party controls and tools that integrate with .NET or SQL Server.
Microsoft Help 2 is rarely used for typical end-user software.

Assistance Platform
Windows Vista uses a new help system called Assistance Platform (AP). All of the
online help that comes with Vista is written using AP, but not much else is. That’s
because Microsoft decided not to release the file format for other vendors to use.
Well, there are a few big companies and OEMs using AP as guided by Microsoft, but
you and I are not two of them.

Other Methods
Not every application uses these Microsoft-defined help systems. Some applications
include no online help at all because they are designed by bad people. No, I’m just
kidding. There may be instances where online help adds no value to a program. But
it’s usually best to include some sort of written assistance.

Standalone HTML pages are just one step down from HTML Help files, and are a
viable alternative for simple applications, or those hosted on a web site. You can use
other standard formats, such as word processing or text documents, if you just don’t
have the resources to generate true online help files. And of course there are books,
which will get my attention.

Visual Studio includes a feature that lets you generate documentation from the XML
comments added to each member of your class. (I don’t discuss this in this book; see
the Visual Studio online help—aren’t you glad it’s there?—for additional informa-
tion on “XML Comments.”) Don’t even consider using this for your own user docu-
mentation needs unless you are developing class-based components for use by other
developers.

Designing HTML Help
HTML Help files are built from multiple source files:

• Content files, especially standard HTML files, communicate core information to
the user, either through static text and graphics or through advanced web-page-
style behaviors and scripts normally available in web pages.

• The Help Contents file uses .hhc for its file extension. Using standard HTML
and tags, the file specifies the hierarchical table of contents used by the help
file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Designing HTML Help | 675

• The Help Keywords file uses an .hhk file extension, and documents the index
used to access help pages from specific predefined keywords.

• The Help Project file, using an .hhp file extension, defines an entire help project
and its target .chm file. This INI-style text file identifies all the other files that
will be compiled into the target help file. It also defines a few project-wide
options.

You can build the primary content files by hand using any standard HTML tool you
wish, as long as the output format matches what is expected by the HTML Help
Compiler (supplied by Microsoft). For the content files, it generally doesn’t matter
what tool you use since standard HTML is sufficient. Any hyperlinks that you
include in the content to other help pages in the same directory will become stan-
dard help links in the compiled help file.

The non-content files require a very precise format; they are all based on HTML,
except the Help Project file, which is an INI file. You will need to either design these
files by hand using the expected format, or use a tool that can generate these files for
you in the right format.

Microsoft provides a free tool that helps you create the non-content files, and joins
together the content files with them for final compilation. You can download HTML
Help Workshop directly from Microsoft’s web site. Go to the Microsoft Download
Center at http://www.microsoft.com/downloads and search for “HTML Help Work-
shop.” You will receive a few results, but the first one in the list (when sorted by pop-
ularity) should be the one you need. Figure 24-1 shows the main page of the HTML
Help Workshop application with an active project file open.

Figure 24-1. Giving help to those who really need it

http://www.microsoft.com/downloads
http://lib.ommolketab.ir
http://lib.ommolketab.ir

676 | Chapter 24: Adding Online Help

In the rest of this section, we’ll use HTML Help Workshop to build a simple HTML
Help file that contains two pages: a welcome page and a “more information” page.
You can find this sample help project in the HTMLHelpSample subdirectory of the
book’s installation directory.

Content Files
Our mini project includes two content files: welcome.htm and moreinfo.htm. Ever the
technology maven, I crafted them in Notepad. Here’s the content for welcome.htm:

<html>
 <head><title>Welcome to My Help</title></head>
 <body>
 Welcome to My Help. For more information,
 click here.
 </body>
</html>

The moreinfo.htm file is a lot like it.

<html>
 <head><title>My Help Additional Info</title></head>
 <body>
 Not much more to say. For a greeting,
 click here.
 </body>
</html>

You can add graphics files (such as JPEG and GIF files) and link them in as you nor-
mally would in a web page. Be sure to store the graphics files in the same directory
(or subdirectory) as the main file for easy access.

Help Project File
Let’s generate the remaining files through HTML Help Workshop. Start it up, and
use the File ➝ New menu command to create a new project. Using the New Project
Wizard, identify the location and name of your new .hhp file. I’ll create a file named
Simple.hhp in the same folder as the two content files. The wizard prompts you for
files already created. Check the “HTML files” field, as shown in Figure 24-2.

Add the two HTML files in the next step and complete the wizard. The project file is
created with references to your two files.

The project is pretty empty; it doesn’t even have a window title defined for the com-
piled help file. You can set the title and other general settings through the project
options, accessed through the topmost button in the toolbar that runs on the left side
of the main window. You can also double-click on the [OPTIONS] item in the
project details list. When the option window appears, enter Simple Help in the Title
field, and then click OK.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Designing HTML Help | 677

Here is what the project file contains at this point:

[OPTIONS]
Compatibility=1.1 or later
Compiled file=Simple.chm
Default topic=welcome.htm
Display compile progress=No
Language=0x409 English (United States)
Title=Simple Help

[FILES]
welcome.htm
moreinfo.htm

[INFOTYPES]

The file will change as we add the other two non-content files, but not by much.

Compiling the file right now (using the File ➝ Compile menu command) and run-
ning it displays a very simple help window, as shown in Figure 24-3.

Help Contents File
A table of contents will help the user peruse this massive online help experience. To
add a contents file, click on the Contents tab on the left side of the main form, and
respond to the prompt that you wish to create a new file, naming it Simple.hhc. The
form changes to display a table-of-contents editor. Another way to create the con-
tents file is by using the File ➝ New menu command, and choosing Table of Con-
tents from the New selection form. This is less direct, as it doesn’t immediately
connect the contents file with the project.

Figure 24-2. Locate the files now, or you can do it later

http://lib.ommolketab.ir
http://lib.ommolketab.ir

678 | Chapter 24: Adding Online Help

Use the new toolbar buttons running down the left side of the window to add and
modify content entries. First, use the top button (“Contents properties”) to edit the
options for the table of contents. On the Table of Contents Properties form, uncheck
the “Use folders instead of books” field and click OK.

The next two buttons—the book button (“Insert a heading”) and the page/question
mark button (“Insert a page”)—are the main buttons used to add new entries to the
contents. I clicked the “Insert a page” button to get to the Table of Contents Entry
form shown in Figure 24-4.

Figure 24-3. A little help; very little

Figure 24-4. Adding a help page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Designing HTML Help | 679

As shown in the figure, I set the entry title (“Welcome”), and selected the Welcome
to My Help (welcome.htm) file through the Add button. I did the same for the
moreinfo.htm file, giving it a title of “More Information.” I also added a heading
entry using the “Insert a heading” toolbar button on the main form, naming it
“Other Pages.” I used the arrow toolbar buttons to move the moreinfo.htm entry into
this heading section. Then I took a much-needed break and looked at my completed
table of contents in Figure 24-5.

If you compile and run the file, it now includes the table of contents in a separate
panel, plus a toolbar (see Figure 24-6).

Help Keywords (Index) File
An index file lets the user access specific pages by searching for a concept or subject
from a list. There is a many-to-many relationship between these keywords and the
help pages: one keyword can lead to one or more pages, and a single page can be the
target of multiple keywords.

Create an index by clicking on the Index tab on the left half of the main form, and
respond to the prompt that you want to create a new index file, calling it Simple.
hhk. As with the Contents editor, the Index editor includes a small vertical toolbar.

Figure 24-5. The full table of contents

Figure 24-6. New and improved TOC; same great content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

680 | Chapter 24: Adding Online Help

Use the second button in the toolbar, the one with the key image, to create new key-
word entries. I will add three keywords:

• basic, linking to welcome.htm

• advanced, linking to moreinfo.htm

• everything, linking to both pages

The Index Entry editor form works just like the Table of Contents Entry form, allow-
ing you to specify the target pages for each keyword.

Saving and compiling the project adds index features to the compiled help file.

Formatting Help Windows
On my system, running the compiled help file displayed the content in a little win-
dow in the upper-right corner of the screen. But my help content is important; I want
it to appear much closer to the middle of the screen, and in a larger window. Fortu-
nately, you can control the windows used to display the content. Return to the
Project tab and click on the third toolbar button down on the left side of the win-
dow. This “Add/modify window definitions” button lets you define one or more
windows to use for distinct help pages in your file. When prompted, add a New
Window Type named SimpleWindow.

The Window Types dialog that appears has many options for getting just the win-
dow you want, although you’re probably being too picky if you need more than, say,
243 different window types. The Position tab is a lot of fun. It includes an Autosizer
button that lets you drag a window to the desired size. Adjust the size to something
reasonable, add a “Title bar text” of “Simple Help” back on the General tab, and
click OK. Since this is the only defined window, it becomes the default, and will be
used for the main help display the next time you compile and run the file.

Accessing HTML Help
Visual Studio provides two primary methods of integrating online help into desktop
applications. The first uses the HelpProvider control, found in the Components sec-
tion of the Visual Studio Toolbox. The second uses the Help.ShowHelp method of the
Windows Forms package. Both methods let you display specific pages or portions of
a compiled HTML Help file.

HelpProvider Control
The HelpProvider control can be added to a form to enable access to online help. It
provides two primary online help experiences: (1) standard access to compiled
HTML Help files; and (2) pop-up help. Both methods put the focus on individual
controls of a form, and on the specific help features to be tied to each control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Accessing HTML Help | 681

Accessing HTML help files

To use the HelpProvider control with compiled HTML Help files, set the control’s
HelpNamespace property to the location of a valid help file. Then adjust the properties
of other controls on the form to refer to specific features within the help file. The
HelpProvider control impacts other controls by adding several additional properties to
each. Figure 24-7 shows the four additional properties (HelpKeyword, HelpNavigator,
HelpString, and ShowHelp) automatically added to a Button control.

The HelpNavigator property added to each control defines what features of the help
file to access when the user presses the F1 key while that control has the focus. To
access a specific page within the help file (such as welcome.htm), you set the target
control’s HelpNavigator property to Topic and set the related HelpKeyword property to
the filename of the page (welcome.htm).

The HelpNavigator property for a control can be set to access non-page sections of
the online help file as well. The value TableOfContents displays the file’s contents
outline; Index jumps to the keyword index. There are a few other choices as well.

Showing pop-up help

The HelpProvider control also enables “pop-up” help on individual controls. This
help variation causes a small tool tip window to appear just above a control, display-
ing a short message that provides usage information for that control, as shown in
Figure 24-8.

Figure 24-7. Adding help support to individual controls

Figure 24-8. Pop-up help on a button control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

682 | Chapter 24: Adding Online Help

Pop-up help works when you enable the “Pop-up button” in the form’s title bar. To
set pop-up help for a control, follow these steps:

1. Add a HelpProvider control to the form, but don’t bother setting its
HelpNamespace property to a file.

2. Set the form’s HelpButton property to True.

3. Set the form’s MaximizeBox and MinimizeBox properties to False.

4. Set the HelpString on HelpProvider1 property to some informational text on each
control that will display its own pop-up help.

The user displays pop-up help by first clicking on the question-mark “help” button
in the form’s title bar, and then clicking on a control.

ShowHelp Method
The System.Windows.Forms.Help.ShowHelp method displays specific portions of a
compiled HTML Help file based on the arguments passed to the method. It’s quite
similar to the file-based help portion of the HelpProvider control, but in method
form. To display a specific page within a help file, use this syntax:

Windows.Forms.Help.ShowHelp(Me, "Simple.chm", _
 HelpNavigator.Topic, "moreinfo.htm")

The first argument is a reference to the form calling the method.

A common way to use this method is to monitor the form for the F1 key, and call
ShowHelp from the form’s KeyDown event handler.

Private Sub Form1_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles Me.KeyDown
 ' ----- Call online help.
 If (e.KeyCode = Keys.F1) Then
 Windows.Forms.Help.ShowHelp(Me, "Simple.chm", _
 HelpNavigator.Topic, "moreinfo.htm")
 End If
End Sub

You must set the form’s KeyPreview property to True to trigger the form-level KeyDown
event. Otherwise, all keys go to the active control and bypass the form-level events.

The ShowHelp method offers a lot more control over the user’s online help experience
since you (and not the HelpProvider control) determine exactly when to access the
help file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 683

Summary
If it is your plan to stand over the shoulder of each user and give running verbal
instructions while they sit before your software, by all means skip the writing of any
online help or other user documentation. But if you plan to have a life, make it eas-
ier by including usage support right in the application. These are not the bad old
days when you had to provide your own method of online help display, or needed to
dig through the Windows API library to find the function that accessed the help file.
This is .NET! It has all the help features you need built right in.

Crafting compiled HTML files is not too difficult with the HTML Help Workshop
tool. But if you will work on any sizable help file, or if you want to add enhanced fea-
tures consistently, you should think about plunking down a few hundred dollars on
a third-party help development tool.

Project
Once you have access to an online help file, you have access to every page of it.
That’s usually a good thing, because users are curious. (I mean that they are inquisi-
tive and not merely objects of curiosity.) But in the case of the Library Project, that
curiosity could lead to topics that are really no business of ordinary patrons. Most of
the features in the Library application are for administrative use only. To keep things
as calm as possible, the Library Project includes two online help files:

• LibraryBasic.chm, a patron-focused help file that describes only the parts of the
program the patron can access

• LibraryAdmin.chm, a file targeting administrators and librarians that fully
describes the features of the application

This section builds both of these online help files, and integrates them into the
Library application.

Building the Help Files
I’ve written the content for both online help files for you. You’ll find it all in the
Online Help subdirectory in the primary install directory for this book, with distinct
directory branches for Basic and Admin files. Figures 24-9 and 24-10 list the files
found in each directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

684 | Chapter 24: Adding Online Help

Most of the HTML files have a one-to-one link with specific forms in the applica-
tion. For instance, the ItemLookup.htm file contains the online help content for the
ItemLookup.vb form in the application. And this help page shows up in both the
basic and administrative versions of the file. When the user presses F1 from the Item
Lookup form, the application tries to show the online help page ItemLookup.htm. If
the user is a standard patron, it accesses this page in the LibraryBasic.chm file;
administrative users access the same page name, but from the LibraryAdmin.chm file
instead.

Each help source folder contains .hhp, .hhc, and .hhk files that define the project, the
contents, and the index details, respectively. The administrative version also includes
a few GIF graphics files.

I’ve already compiled each file and placed a copy of the .chm file in these directories.

Adding Help Support to the Application
To keep things simple and somewhat centralized, we’ll employ the ShowHelp method
described earlier to display online help for each form in the application. Because of
the busywork nature of the changes involved in this chapter’s project code, I’ve
already made all of the updates to the project. Most of the changes involve making
the same change to every form in the project, all of which I’ll describe soon.

Figure 24-9. The files for patron-level online help

Figure 24-10. The files for administrator-level online help

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 685

PROJECT ACCESS

Load the Chapter 24 (After) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. This
chapter does not include a “Before” variation of the project code.

The Maintenance.vb form already provides a way for the administrator to specify the
location of each online help file. It updates two settings through the My.Settings
object.

My.Settings.HelpFile = Trim(RecordBasicHelp.Text)
My.Settings.HelpFileAdmin = Trim(RecordAdminHelp.Text)

Those settings also get stored in two global variables.

MainHelpFile = RecordBasicHelp.Text
MainAdminHelpFile = RecordAdminHelp.Text

That means we only need to call ShowHelp from each form and access one of the two
files whenever the user presses F1.

But what if the administrator never uses the Maintenance.vb form to configure the
locations of the help files? Since the help files will probably be installed in the same
folder as the Library.exe program file, we should look there automatically. The
InitializeSystem method in General.vb already sets the two global variables to the
values stored in the settings.

' ----- Locate the online help files.
MainHelpFile = My.Settings.HelpFile & ""
MainAdminHelpFile = My.Settings.HelpFileAdmin & ""

Just in case these settings don’t exist, let’s add some code just after these lines to pro-
vide default access to the files.

If (MainHelpFile = "") Then MainHelpFile = _
 My.Computer.FileSystem.CombinePath(_
 My.Application.Info.DirectoryPath, "LibraryBasic.chm")
If (MainAdminHelpFile = "") Then MainAdminHelpFile = _
 My.Computer.FileSystem.CombinePath(_
 My.Application.Info.DirectoryPath, "LibraryAdmin.chm")

Since we need to continuously adapt to the current user state of the application
(whether the user is a patron or an administrator), a centralized routine that displays
help from the correct file seems best. Here’s the code for OnlineHelp, a new method
in the General.vb file:

Public Sub OnlineHelp(ByVal whichForm As _
 System.Windows.Forms.Form, _
 ByVal contextName As String)
 ' ----- Show the online help. Differentiate between the
 ' basic and the administrative online help usage.
 Dim fileToUse As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

686 | Chapter 24: Adding Online Help

 ' ----- Which file to use.
 If (LoggedInUserID = -1) Then
 fileToUse = MainHelpFile
 Else
 fileToUse = MainAdminHelpFile
 End If
 If (fileToUse = "") Then
 MsgBox("Online help is not properly configured.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 ProgramTitle)
 Return
 End If

 ' ----- Show the online help.
 Try
 Help.ShowHelp(whichForm, fileToUse, _
 HelpNavigator.Topic, contextName)
 Catch
 MsgBox("An error occurred while trying to access " & _
 "the online help file.", MsgBoxStyle.OkOnly Or _
 MsgBoxStyle.Exclamation, ProgramTitle)
 End Try
End Sub

The biggest task in this chapter involves going to each form in the project and mak-
ing these two changes:

• Set the form’s KeyPreview property to True.

• Add a call to OnlineHelp from the form’s KeyDown event handler.

Here’s the code added to the ChangeUser.vb form:

Private Sub ChangeUser_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles Me.KeyDown
 ' ----- F1 shows online help.
 If (e.KeyCode = Keys.F1) Then _
 OnlineHelp(Me, "ChangeUser.htm")
End Sub

A few of the forms process online help requests a little differently from the others.
About.vb doesn’t include its own online help page. Instead, it displays Welcome.htm.
Splash.vb doesn’t show any online help since the user isn’t really supposed to inter-
act with it. ReportBuiltInViewer.vb, the form that shows each of the five built-in
reports, displays help for a related form via ReportSelect.htm. The CheckLookup.vb
form has two associated online help pages: one for checkout and one for check-in of
items. Its KeyDown event handler chooses the right page based on the current mode of
the form.

If (e.KeyCode = Keys.F1) Then
 If (CheckInMode = True) Then
 OnlineHelp(Me, "CheckLookup_In.htm")
 Else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 687

 OnlineHelp(Me, "CheckLookup_Out.htm")
 End If
End If

The Main.vb form is even more diverse, choosing from among nine distinct online
help pages when in administrative mode. Each panel on the main form is like a
whole separate form, so I added an online help page for each panel. Code in the
form’s KeyDown event handler shows the right page based on the currently displayed
panel.

If (PanelLibraryItem.Visible = True) Then
 OnlineHelp(Me, "MainForm_Library.htm")
ElseIf (PanelPatronRecord.Visible = True) Then
 OnlineHelp(Me, "MainForm_Patron.htm")
ElseIf (PanelHelp.Visible = True) Then
 OnlineHelp(Me, "MainForm_Help.htm")
ElseIf (PanelCheckOut.Visible = True) Then
 OnlineHelp(Me, "MainForm_Out.htm")
ElseIf (PanelCheckIn.Visible = True) Then
 OnlineHelp(Me, "MainForm_In.htm")
ElseIf (PanelAdmin.Visible = True) Then
 OnlineHelp(Me, "MainForm_Admin.htm")
ElseIf (PanelProcess.Visible = True) Then
 OnlineHelp(Me, "MainForm_Daily.htm")
ElseIf (PanelReports.Visible = True) Then
 OnlineHelp(Me, "MainForm_Print.htm")
Else
 OnlineHelp(Me, "MainForm_Basic.htm")
End If

The Help panel on the main form includes buttons designed to jump to the table of con-
tents and index of the current online help file. I added event handlers for these buttons.
The code for both MainForm.ActHelpContents_Click and MainForm.ActHelpIndex_Click is
just like the code in the generic OnlineHelp routine, except for the final call to ShowHelp.

Private Sub ActHelpContents_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles ActHelpContents.Click
 ' ----- Show the online help table of contents.
 ...
 Help.ShowHelp(Me, fileToUse, _

HelpNavigator.TableOfContents)
 ...
End Sub

Private Sub ActHelpIndex_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles ActHelpIndex.Click
 ' ----- Show the online help index.
 ...
 Help.ShowHelp(Me, fileToUse, HelpNavigator.Index)
 ...
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

688 | Chapter 24: Adding Online Help

Once the online help (.chm) files are in place, and once the application is properly
configured to locate those files on the workstation, the user can access help from any
form by pressing the F1 key. Figure 24-11 shows help accessed from the Library
Items panel of the main form.

Speaking of correctly configuring the .chm files, we still have to figure out how to get
the entire application—including the online help files—onto the client workstation,
and at a cost that will put food on the table. We’ll look at these deployment issues in
the next chapter.

Figure 24-11. Answering the call for help

http://lib.ommolketab.ir
http://lib.ommolketab.ir

689

Chapter 25 CHAPTER 25

Deployment25

Although Aesop lived thousands of years ago, he has much to tell us about software
development. His story of the boy who cried wolf is a perfect example. It concerns a
young shepherd boy who tricks nearby villagers repeatedly by shouting, “Wolf!”
when no such danger exists. The trick was good for a few laughs, but then the boy
found out the consequences of his actions: he couldn’t get any villagers to buy his
sheep and he had to eat them all by himself. Yuck! If only the boy had learned how
to properly deploy his flock into the hands of the villagers instead of making up wolf-
based lies, he would never have come to such a tragic end.

So, Aesop clearly shows us how important deployment is. And Microsoft took this
lesson to heart by including several different options right in Visual Studio that let you
install your compiled applications and supporting files onto a target workstation. We’ll
look at these methods in this chapter, and use one of the methods to build a “setup”
program for the Library Project.

What’s Involved in Deployment?
In the days before Microsoft Windows, deployment wasn’t so difficult. Many pro-
grams were nothing more than an MS-DOS executable file, with perhaps one or two
supporting data and help files. That was it. Once you copied those files into some
folder on the client workstation and updated the PATH environment variable, you
were done.

Microsoft Windows applications (and large and complex MS-DOS programs) were
not as easy to install. They often had these DLL file things hanging off them—files
that had to be put in the proper places. And sometimes you didn’t know what that
proper place was, since a third-party vendor may have supplied the DLL without suf-
ficient documentation. Then there were the configuration files, supporting data files,
user-specific and workstation-specific changes to the system registry, shortcuts on
the desktop and in the Start menu, uninstall settings and programs, two sets of forms
(in triplicate) to the Library of Congress, online help files, the readme and license

http://lib.ommolketab.ir
http://lib.ommolketab.ir

690 | Chapter 25: Deployment

agreement files for the distribution CD, special fonts that may be required for the
program, and on and on and on.

I don’t think I even included half the files you need to deploy a full-bodied Windows
application, but you can already see how involved it is. Fortunately, Visual Studio
will share the burden with you in exchange for some simple configuration on your
part.

The deployment features in Visual Studio provide you with the basic functionality
you need to distribute standard desktop and web-based applications. If your deploy-
ment needs are complex, you can also purchase a third-party “setup and deploy-
ment” tool that includes advanced features such as scripting support.

Deployment Methods Within Visual Studio
With the early releases of Visual Basic, if you wanted to install your custom software
using a setup program, you had to either write it yourself or use a purchased tool.
Deployment tools did eventually appear in Visual Basic, especially the infamous
“Package and Deployment Wizard.” This canned setup program was written in
Visual Basic, and you could enhance it to meet your own custom deployment needs.
But it wasn’t easy. And the rest of the world was already adopting the new “Win-
dows Installer” platform for standardized deployment via .msi files. The Package and
Deployment Wizard used the older .cab file format. Even for someone like me who
actually enjoyed programming, the need to write effective installation programs
sometimes made life ugly.

When Visual Basic .NET 2002 came out, life became beautiful again. Visual Studio
included tools that let you target the Windows Installer technology, just like the big
boys used. Sure, it was a stripped-down version that let you release only the simplest
of applications, but third-party vendors have to have some fun.

These days, Visual Studio includes several deployment methods, a tribute to the dif-
ferent types of applications, the different types of users, and the different types of
secure environments that a programmer may need to target. Read through each of
the available methods to see which one best meets the needs of your program. I’ve
already made my selection for the Library Project, which I’ll reveal in a public cere-
mony about halfway through this chapter.

Direct ASP.NET Deployment
ASP.NET applications are clearly different from desktop applications. One big differ-
ence is that, for the final user, ASP.NET applications don’t really have any deploy-
ment. You just browse to the right web site and you’re using the application. But
deployment still is needed for the hosting web server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deployment Methods Within Visual Studio | 691

If your web server has Microsoft FrontPage Extensions installed, you can install a
compiled ASP.NET application right from the comfort and safety of your develop-
ment environment. I just glossed over it back in Chapter 23, but Visual Studio pre-
sents you with the option of putting a web application on a real live web site when
you first try to create the ASP.NET application. In the New Web Site form, you can
select an HTTP URL as the development location, as shown in Figure 25-1.

Since you will be interactively developing your web site, you might not want to use
this method on a production server. Instead, you can develop locally in a directory or
on a development web server, and then later publish the site to the production server.
This is just as easy as setting the HTTP location from the start. With the web site
open in Visual Studio, select the Build ➝ Publish Web Site menu command, and
specify the URL of the new web site. No separate setup program is required.

ASP.NET is careful about how it handles the files in your application. It will not pub-
lish your source code. It will copy your web.config file to the server (it’s a required
file), which may contain your database connection string. But a properly configured
ASP.NET web server will keep this file from prying eyes.

XCopy Deployment
Compiled .NET assemblies contain a manifest that fully describes the assembly and
its needs. This means that you can copy any assembly to another system that has the
correct version of the .NET Framework installed, and as long as the other files the
assembly needs are copied as well, the program will run. This is called “XCopy deploy-
ment” because you can use the command-line XCopy command to move the files.

Figure 25-1. Getting an early start on that web site

http://lib.ommolketab.ir
http://lib.ommolketab.ir

692 | Chapter 25: Deployment

You may be thinking, “Well, duh! An EXE assembly is a real Windows program. Of
course it will run when I copy it to a new system.” Well, that’s true. But it wasn’t
true for older Visual Basic applications. The ActiveX controls used by COM-based
Visual Basic applications had to be registered in the Windows Registry before they
could be accessed at runtime. Older Visual Basic programs also required that the
Visual Basic runtime libraries be installed. The .NET Framework must also be
installed for .NET programs, but since the framework is managed automatically by
the Windows Update system, this is not as big of a headache.

What I’ve taken too many sentences to say is that in most cases, you can install a .NET
application on a workstation just by copying the program, and maybe a few support
files, to a directory. I’m not saying that this is how you should install programs.
Actually, I would be shocked—shocked!—if I discovered any of my programming
friends using this method in a real business environment. But .NET makes this
deployment option available to you if you don’t want to be my friend anymore.

If you do use XCopy deployment, you probably won’t have any issues with security
or administrative limitations that may be imposed on the workstation. Chances are,
if you’re installing software using the XCopy command or by dragging-and-dropping
files, it’s probably because you are friends with the owner of the workstation, and it’s
really none of my business who you want to have as your friends.

Windows Installer Deployment
Windows Installer is the official installation system provided by Microsoft. It serves
as the base system for standard Visual Studio-generated installation packages, and
also provides the underpinnings for most popular third-party installation tools.

Before Windows Installer, each installation package vendor pretty much did things
as they saw fit. But this meant that installed products sometimes clobbered one
another, since one software package didn’t necessarily look out for files installed by
another tool. Repairing such damage was difficult for the user, who usually didn’t
even know which files were installed or updated.

Microsoft sought to change that with Windows Installer. One of the key features of the
system is its database of installed and updated files. It also supports a full uninstall/
restore and rollback capability so that any failure can be fully undone, restoring the
system to its previous state. Other features include support for patching, rebooting,
custom enhancements, some limited user interface and prompt design, the ability to
repair or “heal” a previously installed but damaged program, and install-on-demand,
which keeps features or full applications on the installation media until the user tries
to use that feature.

Windows Installer Version 4.x is the latest version for Windows Vista and other par-
allel Windows systems. (You can still get version 3.x for Windows XP, or 2.x for
some older Windows systems such as Windows 98.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deployment Methods Within Visual Studio | 693

The heart of the Windows Installer system is the “MSI” file (with an .msi file exten-
sion), the single file that contains all the files and instructions needed to install,
update, and uninstall a software product. Visual Studio can create setup projects
based on the MSI standard, although you can’t use some of the more advanced fea-
tures of Windows Installer through Visual Studio. Still, if your needs are simple—
and most business-level software written in Visual Basic has simple installation
needs—Visual Studio is probably all you require.

Building a setup project is just as easy as creating regular Visual Studio development
projects. But first, I need something to set up. For the discussion in this section, I’ve
created a desktop application. Well, not a very good one. I simply created a new
WindowsApplication1 project with its default Form1, and saved it to my C:\temp
folder. All it does when you run it is display Form1.

To create an MSI installation file for a Visual Basic project, open that project in
Visual Studio and use the File ➝ Add ➝ New Project menu command to add a setup
project to the entire solution that contains your original project. Figure 25-2 shows
the Add New Project dialog. Select the Setup and Deployment project type, and then
the Setup Wizard template to create a setup program for the active project. Set the
Name and Location fields according to your needs, and then click OK.

The Setup Wizard appears, leading you through five steps to peace, harmony, and a
working MSI file.

Figure 25-2. Adding a setup project to your solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

694 | Chapter 25: Deployment

Step 1

The first wizard step just says “Welcome,” so click Next and get on with the real
work.

Step 2

Step 2 asks you for the type of setup project to generate. Personally, I think it could
have figured this out from the content of the already-loaded projects, but if the wiz-
ard did everything, why would the world need programmers like us? There are four
choices, shown in Figure 25-3.

The first two choices create full setup files for either desktop or web-based applica-
tions. (The web-based setup would be delivered to a web site administrator for
installation on the server.) Merge modules let you create a portion of an installation
that can later be merged into a full MSI file. This is a good choice if you are design-
ing a library that will be used for multiple applications, but it’s useless on its own.
The CAB file option creates an archive of files that can be installed using slightly
older file distribution technology. It’s also the distribution system used for handheld
devices. Since I’m targeting a desktop application, I’ll choose “Create a setup for a
Windows application” and click Next.

Step 3

Although you can create a setup program that simply installs miscellaneous files
scavenged from your hard disk, you usually build a setup project based on the files or
compiled output of other projects. The third wizard step prompts you to include ele-
ments from the other projects found in the active Visual Studio solution. I’ve chosen
to include the compiled EXE file from my desktop project, as shown in Figure 25-4.

I generally don’t want to include my source code in the setup project, so I’ll leave that
element unchecked. But the Content Files item may be useful. If my project had a com-
piled online help file (with a .chm file extension), I could have added it as a standard
content file to the main project via the Project ➝ Add Existing Item menu command.

Figure 25-3. Choosing the type of setup program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deployment Methods Within Visual Studio | 695

That file would be classified as Content, and could move into this setup project
through the Content Files selection. But there are other ways to include online help
in the installation, which we’ll see in the next step. For now, I’ll stick with the “Pri-
mary output” selection, and click the Next button.

Step 4

In this step, you can add any other non-project-specific files you want to the setup
project (see Figure 25-5). Readme files, online help content, license agreements, pic-
tures of your kids, and pretty much anything else can be included here. I’ve got noth-
ing more to add. Click Next.

Step 5

The final step displays a summary of the choices you made (see Figure 25-6). Well,
that wizard was pretty easy. We had to do work in only three of the five steps. Click
Finish to complete the wizard.

Figure 25-4. Choosing project elements to include in the setup

Figure 25-5. Add those other files that have always wanted a chance at setup project stardom

http://lib.ommolketab.ir
http://lib.ommolketab.ir

696 | Chapter 25: Deployment

After the wizard

Once the wizard completes, the primary interface for Visual Studio setup project
design appears in the development window. Figure 25-7 shows Visual Studio dis-
playing the newly generated setup project for WindowsApplication1, another project
that also appears in the Solution Explorer panel.

The main window in Figure 25-7 is one of several “editors” that let you customize
the setup project. You can access each editor through the View ➝ Editor menu com-
mand, or by using the toolbar buttons in the Solution Explorer panel.

Figure 25-6. Confirming our choices for the setup project

Figure 25-7. A setup project within the development environment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deployment Methods Within Visual Studio | 697

File System Editor
That’s the editor you already saw in Figure 25-7. It presents a standard folder/
item view of portions of the target system’s filesystem. Through this hierarchy,
you place files (the EXE output from your main project, help files, configuration
files, shortcuts to any of these files, etc.) into special folders (Application folder,
Desktop, 32- or 64-bit Program Files, Fonts, the Start Menu folder, and others).
If you don’t see a folder you want in the File System on Target Machine panel, use
the Action ➝ Add Special Folder menu command to include it in the list. Besides
the standard special folders, the Add Special Folder menu includes a Custom Folder
option that lets you create a specific folder anywhere on the target system.

Registry Editor
This editor displays a truncated hierarchy of the registry hives. Any keys or val-
ues added here will be created in the user’s registry during installation.

File Types Editor
This editor lets you define associations between a file extension (such as .txt)
and specific programs or actions. Any custom action, such as Open or Print, can
be linked to any command text you wish, including commands that target the
primary assembly being installed.

User Interface Editor
The default setup project includes a few forms that prompt for things such as
installation location and confirmation that the installation should occur. You
can insert additional dialog boxes into the flow of the installation. But beware:
you will not be adding full Visual Basic-enabled forms. Instead, you will choose
from a few predefined dialogs (such as the License Agreement dialog, or the 4
Radio Buttons dialog), and set the dialog properties to configure the display text
of each dialog field or prompt. Each user entry field/control includes a named
value that you use in the other editors to limit a specific installation action. For
instance, you could monitor the value of a user-prompted checkbox, and if the
user didn’t check it, you could withhold the installation of certain files that were
associated with that checkbox.

Custom Actions Editor
If you need the ultimate level of control, you can add a custom action, a call to an
external program or script, that runs at a certain point in the install (or uninstall)
process.

Launch Conditions Editor
If the target workstation must be in a certain state before you can successfully
install the project, this editor lets you define the limiting conditions. By default,
the installer adds the .NET Framework as an installation condition; the frame-
work must be installed before the project can be installed. You can look for spe-
cific files or registry keys that must be present before installation begins. For
instance, you might want to confirm that the target database drivers are on the
system before you install a database-dependent application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

698 | Chapter 25: Deployment

Generating the MSI file

Once you’ve set up your project through the various editors, you output the final MSI
file by building the solution via the Build ➝ Build Solution menu command. The MSI
file appears in the location specified in the setup project’s properties (Project ➝ Proper-
ties). This file contains all the instructions and content required to fully install the
application on the target workstation.

ClickOnce Deployment
Visual Studio 2008 includes a deployment method called ClickOnce. It is designed to
provide the ultimate in setup deployment ease for desktop (Windows Forms) appli-
cations. It still involves a wizard, darn it, but for basic installations, that’s all there is
to it. Once your application is “published” through ClickOnce, the user can install it
directly from a web site or other stored location.

This sounds like a standard MSI installation, but it is different in several ways:

• ClickOnce deployments can be installed even if the current user does not have
local administrative privileges. Many software installs affect key files in the
Windows and Windows\System32 folders, or in other important but restricted
folders. If you are a developer, it’s likely that you never experience this problem
because you are the administrator on your own workstation. But in IT department-
managed organizations with many users, there is a benefit to reducing the privilege
level of individual users. One negative side effect of this is that an administrator
must be present to install any software. But that’s not the case with ClickOnce.
Is your entire IT department out to lunch? (I mean that literally.) No problem.
Any ClickOnce-published application can be installed by any user. The software
is installed in a “sandbox” that protects the system and other applications from
the ClickOnce-installed program’s villainous intents.

• A ClickOnce-deployed application can trigger its own automatic software
updates. If configured in this way, the program will check the original deploy-
ment location for a new version each time it runs. If there is a new version, it will
be installed automatically without the user having to do a thing.

• ClickOnce applications are designed for ease of installation. With an MSI-
deployed application, you need to download the MSI file and process it through
the Windows Installer system. Although you also have to download a Click-
Once deployment, it happens more or less transparently. A ClickOnce-published
application can be configured so that it looks like an extension of a web page:
click a link, and the program immediately runs, displaying its main form to the
user. (There may be some delay as the program is downloaded over the Internet.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deployment Methods Within Visual Studio | 699

That sounds great. But it’s not all peaches and cream. Since ClickOnce-enabled
applications (by default) run in their own sandbox, they are limited in their access to
some local resources. Also, to fully support all of the automatic-updating features,
you must add code to your application that performs the actual update. (The My.
Application.Deployment property provides access to these features.)

To deploy your project via ClickOnce, use the Build ➝ Publish menu command in
Visual Studio. After asking you some very basic questions about where the user will
obtain the deployment file (from a web site, a network folder, or a CD/DVD), Visual
Studio generates the installation file and makes it immediately available for use.

Of course, that method gives you only the most basic installation options. It makes
the primary EXE or DLL of your project (and its dependencies) available for installa-
tion on the target workstation, but that’s about it. If you want more control over the
publishing process and the components it will include, use the Publish tab of your
project’s properties, as shown in Figure 25-8.

This panel includes fields that let you set the version number for the published instal-
lation package. If you modify this version number and republish the application, the
custom deployment code you added to the application can detect the new version
and initiate an update from the distribution location.

Figure 25-8. The world of publishing, just a mouse click away

http://lib.ommolketab.ir
http://lib.ommolketab.ir

700 | Chapter 25: Deployment

Summary
It’s really nice that Visual Studio provides a few different deployment methods for
your custom applications. Visual Basic and the larger Visual Studio environment
were designed as general-purpose programming systems that allow you to solve
almost any development problem facing you or your users. But that doesn’t mean that
every single feature in the system is applicable to all environments. By having a few dif-
ferent deployment options available, Visual Studio is even more general-purpose than
before, and I think that’s just great. Sure, you have to take five minutes and decide
between MSI and ClickOnce. But in most projects, the needs of the users will push
you in one direction or the other.

I promised you earlier in the chapter that I would tell you my choice for the Library
Project’s deployment method. I have decided on a standard Windows Installer
deployment with an MSI file. I’ll explain some of my reasons for choosing this
method in the next section.

Project
I chose a standard Windows Installer deployment because I thought it would match
more closely with the needs of the typical Library system user. The Library applica-
tion is meant to be a permanent feature on the target workstation, so it’s likely that
someone with IT knowledge or administrative privileges will perform the actual
installation. As it is a licensed product, there is little chance that I would be putting
copies of the Library installation out on my public web site. A CD distribution—
common for MSI installations—is the expected medium. Also, since it’s a quality
piece of software from a trusted vendor (that’s me), there isn’t a need for a protec-
tive sandbox. Still, the application does include several files, including two online
help files, so an XCopy installation would be a burden. All in all, a standard MSI
installation is the best deployment plan.

Planning the Deployment
The Setup Wizard automatically adds my project assembly to the MSI file, but I am
sure other files are needed to properly deploy the Library Project. A quick look
through the previous chapters reveals the following list of file requirements:

The .NET Framework 3.5
This must be installed on the target system to run the Library application. The
setup program will need to automatically install the framework if it isn’t already
on the target system.

Library.exe
This is the primary assembly. The install would be useless without it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 701

LibraryBasic.chm and LibraryAdmin.chm
These online help files will be installed in the same folder as the primary
application.

The bar code font
If you have obtained distribution rights for a bar code font, your setup program
can copy it directly to the target system’s Fonts folder.

LibraryLicense.lic
Ah, the license file—remember that this hand-generated file needs to be custom-
crafted for each customer purchasing the Library application. Compiling it
directly into the setup program seems extreme, since I would have to regenerate
Setup for each customer. Instead, I will put the file on the distribution media
(the CD), and have the user locate it when running the Library program.

ACME Library Resource Kit.pdf
This administrator-level file shouldn’t be installed by default on a workstation. It
will remain on the distribution CD instead.

Database Creation Script.sql
If I were developing a full end-user application, I would build a separate setup
system for the server portion, focusing mainly on the database setup. Since this
book is designed as an introduction only, I will just copy the database build
script to the distribution CD and assume that a qualified IT representative or
database administrator will take charge of this installation step.

The Library web site
As with the database creation script, I am just going to copy the web site files to
the CD and let the administrator figure things out.

Readme.htm
The CD should include an informational file right at the root that will tell the
user how to use the files on the CD. I haven’t written this file yet, but I will
before the chapter ends.

The generated Setup file will include only the first four items in that list (three if you
are excluding the font), and the first two are added automatically by the Setup Wiz-
ard. This won’t be too difficult.

Building the Setup Project
Earlier in the chapter, we added a new setup project to an existing project, combin-
ing them into a single solution. It is possible to build a setup project that appears
alone within Visual Studio. In such projects, you need to browse for the target
assembly (release\Library.exe) to include it in the Setup output. However, the Setup
Wizard doesn’t do much for you if you go that route. So, for the Library project, let’s
add a new setup project to a Library project already loaded into Visual Studio.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

702 | Chapter 25: Deployment

PROJECT ACCESS

Load the Chapter 24 (After) Code project, either through the New Project tem-
plates or by accessing the project directly from the installation directory. Then
save the project to a folder where you want to build the complete Setup solu-
tion. I have also included a Chapter 25 folder in the installation directory, but
not as a project template. This folder already contains a linked setup project. If
you want to view this finished solution, open the Library.sln file in the
Chapter 25 folder.

The first few steps parallel those we performed earlier in this chapter. Once you have
the Library project loaded and saved to its target folder, add a new setup project
using the File ➝ Add ➝ New Project menu command. Select Setup Wizard as the
template, enter LibrarySetup for the Name, and use the just-saved Library project’s
folder as the Location. Apply the following settings within the wizard:

• In step 2, select “Create a setup for a Windows application”.

• In step 3, select “Primary output from Library” from the list.

• In step 4, locate and add the LibraryBasic.chm and LibraryAdmin.chm files. In
this book’s installation directory, you can find them in the subdirectory named
Online Help.

Complete the wizard and use the File ➝ Save All menu command. When prompted
to save the solution file (Library.sln), just store it in the Library project directory,
which should already be selected.

As before, the setup project opens to the File System Editor. Before making any
changes within the editor, let’s set some Setup-wide properties. Click on Library-
Setup in the Solution Explorer panel, and modify the following properties in the
Properties panel:

• Set the Author property to “Tim Patrick” or your own name.

• Set the Manufacturer property to “ACME”.

• Set the ManufacturerURL property to “http://www.timaki.com” or any web site
you wish to use.

• Set the ProductName property to “ACME Library”.

• Set the Title property to “ACME Library Setup”.

Since the File System Editor is open, let’s make a few changes there. When we added
the Library.exe assembly through the wizard, it figured out all of the required depen-
dencies. Not only do the main program and help file items appear in the Application
Folder section, but three additional DLLs appear, all used to run the library reports
(see Figure 25-9).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 703

Since these three DLLs are supplied by Microsoft as part of .NET, it doesn’t make
much sense to store them in my own application’s installation directory. They
should go in the Global Assembly Cache (GAC), the special system folder that main-
tains shared .NET assemblies. The GAC isn’t one of the folder choices displayed in
the editor, but it can be. Make sure that the lefthand panel of the File System Editor
is selected (the one with File System on Target Machine) and then use the Action ➝ Add
Special Folder ➝ Global Assembly Cache Folder menu command. A new folder, Glo-
bal Assembly Cache Folder, appears in the left-side panel. Select the Application
Folder item again, and then drag the three DLL items into the new Global Assembly
Cache Folder item, as shown in Figure 25-10.

Let’s add two shortcuts to the user’s system during installation: one on the desktop
and one in the Start menu’s Programs section. Both shortcuts point to the main
Library.exe assembly. The Setup Wizard anticipated our needs by adding the User’s
Desktop and User’s Programs Menu folders to the File System Editor. All we have to
do is add a shortcut to each folder.

Let’s start with the desktop. Select the User’s Desktop folder and then right-click in
the right-side panel (where the files would appear). From the context menu, choose
the Create New Shortcut menu command. (This same command is available from
the main Action menu when the right-side panel is active.) The Select Item in Project
dialog, shown in Figure 25-11, appears. Browse into the Application Folder item and
select Primary Output from Library (Active). The new shortcut appears in the right-
side panel, waiting for you to give it a more meaningful name. Give it the name
“ACME Library”.

Figure 25-9. A lot more files than we bargained for

Figure 25-10. Make the three DLL files someone else’s responsibility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

704 | Chapter 25: Deployment

To create the same shortcut in the Start menu, follow all the steps in the previous
paragraph, but start from the User’s Programs Menu folder instead of the User’s
Desktop folder.

Adding those shortcuts was a good idea, but whenever I install new software, I
always immediately delete any shortcut that was added to the desktop. Adding an
icon to the Start menu’s Programs folder makes sense, but I like keeping a nice, clean
desktop. Laugh if you want, but keeping that desktop free from clutter is what helps
make me a world-famous author and developer.

What we need is a way to alter the behavior of the setup program so that it doesn’t
create the desktop icon if the user doesn’t want one. The setup project provides a
way to do this. First, we need to add a prompt where the user indicates a desktop-
icon preference, and then we need to act on that preference. The first step involves
altering the user interface of the setup program. Such changes occur through the
User Interface Editor. Display this editor with the View ➝ Editor ➝ User Interface
menu command. The User Interface Editor appears, as shown in Figure 25-12.

The User Interface Editor is divided into two main installation types: Install and
Administrative Install. The administrative branch is used only when an administra-
tor wants to store the setup image on a shared network folder. It doesn’t allow the
types of changes we want to make. So, let’s focus on the standard Install branch,
which manages standard user installations on a client workstation. Both branches

Figure 25-11. Adding a new shortcut to a target filesystem folder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 705

include step-by-step prompts that appear to the user during the setup process. Cus-
tom data collection prompts can only be added to the Start entry in the Install main
branch.

During actual setup, the user interface prompts the user in a wizard-like fashion.
During the initial Start phase, the setup program collects the user’s desires for the
remainder of the process. Once this section ends, the installation proceeds until it
completes or fails. What we want to do is insert a new step in the wizard process,
displaying a checkbox to the user that asks whether the desktop icon should appear
or not. Additional data collection fields such as these are added through new “dia-
logs.” And there just happens to be a dialog that includes a customizable checkbox.
In the Install branch, right-click on the Start item and select Add Dialog from the
context menu. The Add Dialog window, shown in Figure 25-13, displays the avail-
able dialogs. Select the Checkboxes (A) item from the list and click OK.

The new Checkboxes (A) item appears in the Install/Start section. Use the mouse to
drag it up until it appears between the Welcome and Installation Folders dialogs.
The Checkboxes dialog lets you display up to four checkbox selections with custom
captions. Make sure it is selected in the dialog outline, and then use the Properties
panel to set this new dialog’s properties:

• Set the BannerText property to “Installation Options”. This text appears near the
top of the dialog window, displaying a large main title.

• Set the BodyText property to “Select the options you wish to use for this
installation”.

Figure 25-12. The user interface editor displays each dialog and each prompt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

706 | Chapter 25: Deployment

• Set the Checkbox1Label property to “Add an icon for ACME Library to the desk-
top”. This defines the custom text for the first checkbox control.

• Set the Checkbox1Property property to “LIBRARY_DESKTOP_LINK”. This gives
the checkbox a name that we can use later to alter the install process.

• Set the Checkbox1Value property to “Checked”. This defaults the installation to
include the desktop icon.

• Set the Checkbox2Visible, Checkbox3Visible, and Checkbox4Visible properties to
“False”, hiding the other three unused checkboxes.

During the setup process, the user sees the new dialog prompt in Figure 25-14. It
includes the banner text, the body text, and the single checkbox as configured in the
custom dialog’s properties.

Now it’s time to use that checkbox setting. Close the User Interface Editor and
return to the File System Editor. Select the User’s Desktop folder in the left-side
panel, and then go to the Properties panel. One of the few listed properties is
Condition, which lets you define a Boolean condition that, when true, installs the
associated files on the user’s desktop. However, if the condition is false, no associ-
ated files will be placed on the user’s desktop during installation. Set this property to
the following text:

LIBRARY_DESKTOP_LINK

This is the name we gave to the first checkbox back in the dialog design. During
installation, the setup program checks the user’s selection, and alters the desktop
update as requested.

One thing I won’t be adding to my version of the setup program is the bar code font.
Sadly, I have not acquired a license to distribute a third-party font to you or anyone

Figure 25-13. A few different dialog options are available for setup customization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 707

else reading this book. The good news is that I just saved you $10 on the cost of the
book. The bad news is that I will have to tell you how to add the font, but not actu-
ally do it.

Actually, you can probably already guess how to do it. The Fonts folder is one of the
special folders available in the File System Editor. When the File System on Target
Machine item on the left-side panel is active, use the Action ➝ Add Special Folder ➝

Fonts Folder menu command. Then add the original font file (a TrueType .ttf file) to
the Fonts folder section. You won’t be able to add this font directly from your
Windows\Fonts folder. Instead, you will need to get the original .ttf file and use that.
On the target workstation, the setup program properly installs and registers the font
for use in Windows.

The setup project is complete. The only thing left to do is to generate the MSI file.
You might not have noticed it, but Visual Studio includes different “compilation
configurations” in every project. The two default configurations are Debug and
Release, and they each generate a different set and flavor of final output files when
you compile your application. Normally, your project is set to Debug, but you can
change it by using the Configuration Manager. In Visual Studio, select the Build ➝

Configuration Manager menu command to display the manager’s form (see
Figure 25-15). In this form, change the “Active solution configuration” setting from
Debug to Release, then click the Close button.

Figure 25-14. The sparse but useful checkbox dialog in action

http://lib.ommolketab.ir
http://lib.ommolketab.ir

708 | Chapter 25: Deployment

It’s time to build the MSI file. Right-click on the LibrarySetup root in the Solution
Explorer panel, and select Build from the context menu. In just a few seconds, your
MSI file will be baked and ready to eat. You’ll find it in the setup project’s Release
subdirectory. This directory also includes a Setup.exe file that acts as a bootstrapper.
Any workstation with the Windows Installer system present will work with just the
plain MSI file, but providing a Setup.exe file may add a level of comfort to novice
users.

The Distribution Media
I hate it when users come over to my office and try to copy the MSI file directly from
my hard drive. I find that providing the file on a CD tends to improve the vendor-
customer relationship. So, let’s build a CD for client use.

The distribution CD contains all of the content needed by the library IT staff to sup-
port the application. It contains distinct directories for each type of content. Here’s
what I am planning to put in the root of the CD:

• Readme.htm, an HTML file that displays information about the contents of the
CD.

• Database, a directory containing the database creation script, Database Creation
Script.sql.

• License, a directory containing the specific user’s license file, LibraryLicense.lic.

• Setup, a directory containing the main MSI file, LibrarySetup.msi.

• Technical, a directory containing the technical support documentation, ACME
Library Resource Kit.pdf.

• Web, a directory containing the full source code for the Library web site that we
created in Chapter 22. The administrator can use this as the basis for an
expanded Library web site.

Figure 25-15. The Configuration Manager form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Project | 709

I’ve put all these directories and their files in the book’s installation directory, in a
subdirectory named Library CD Contents.

The Readme.htm file contains the following administrator-friendly content.

Acme Library 1.0
Welcome to the Acme Library system. This product was developed as part of the
Programming Visual Basic 2008 book project, written by Tim Patrick. When
installed and configured properly, the application should give you years of library
management value.

The installation CD includes the following folders:

Database
The Database Creation Script.sql file contains a SQL Server script that you can use
to build a new ACME Library database.

License
The LibraryLicense.lic file contains the license for your site. Once you have
installed the Library application on a workstation, copy the license file to that
workstation. Using the Library application, log in as an administrator. You will be
prompted for the license file path at that time.

Setup
The LibrarySetup.msi file performs a standard client installation of the Library
product.

Technical
The ACME Library Resource Kit.pdf file contains technical information about the
ACME Library system, its configuration files, and its database.

Web
This directory contains a sample ASP.NET web-based application that you can
modify to allow patrons to interact with the ACME Library database through a
web browser.

This CD and its contents are © 2008 by Tim Patrick.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

710 | Chapter 25: Deployment

I want this file to appear automatically when the user inserts the CD into the work-
station drive. This requires one additional file named autorun.inf at the root of the
CD. This simple INI-style file supports the Auto Run feature used by Windows CDs.
Here is the content of the file that will display the Readme.htm file automatically:

[Autorun]
Open=explorer.exe Readme.htm

Copying all of these directories and files to a CD and adding a pretty label should
result in a happy librarian.

We’re quickly approaching the end of the book. Only one chapter remains. Turn the
page to find out what exciting content you’ll find there.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

711

Chapter 26 CHAPTER 26

Project Complete26

You’ve done it! You’ve completed the Library Project and met with acclaim from
users and fellow programmers alike. And you’ve also accomplished something that
few thought was possible: you slogged through all 26 chapters of this book. You’re
probably anxious to get on with your life as a highly paid software consultant, work-
ing just six months per year as the programmer who other programmers call when
systems fail. Well, I won’t keep you too long. But there are a few more issues to dis-
cuss concerning the Library Project and programming in general.

The Library Project
The Library Project is filled with features that target small library-style organiza-
tions. But it may not meet everyone’s needs. And that’s OK. The users know your
address and phone number; you’ll hear from them. When they call, you can tell them
that the software wasn’t designed for everyone; no software can be. All software, even
general-purpose applications such as Visual Studio, can never meet the needs of every
person or organization. What is important is that the features included in the project
meet the needs of the intended audience. That audience may be the card-catalog-using
public, or it may just be a small library with one part-time staff member.

Still, there is always room for improvement. Because the Library Project’s real target
audience was you—the student of Visual Basic and .NET—it did not have all the fea-
tures that most libraries would require. Looking quickly back through the source
code, I came up with at least the following changes that could be made to the project
to bring a lot more value to library administrators and users:

Error logging
The application includes rudimentary error detection and handling features, but
they could definitely be improved. The logging feature used in the application’s
GeneralError method (which includes a call to My.Application.Log.WriteException)
sends the written content to any registered log listener. We just used the default
listeners, but we could have added listeners to centrally collect error reports and
details in a database or file for later analysis.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

712 | Chapter 26: Project Complete

Error handling
When an error does occur, most of the Library code simply reports the error and
moves on. Some methods ignore errors completely. In general, the code could do
a better job of processing error results. Some errors are more fatal than others,
and specific errors should include additional options that the user can access to
better recover from the fault.

Multithreading
We did not discuss or take advantage of any of the threading features included in
the .NET Framework. Processor-intensive activities tend to kill the responsive-
ness of the user interface, but there are ways to mitigate the impact. In the
Library Project, two specific areas would benefit from the use of background
worker threads, either using the features of the System.Threading namespace
directly, or by using the BackgroundWorker control: (1) searching for library items
through the ItemLookup form; and (2) processing overdue and fine data for a sin-
gle day at all locations through the MainForm.ActDoProcess_Click event handler.

User interface and presentation
Although I included some cute graphics on the main Library Project form and
the Splash form, I didn’t do much beyond that. Mostly it was an issue of time
and effort, but I also have very little talent for the graphic arts. The program
could use an update in its general look and presentation. And with the new
graphics features available through the Windows Presentation Foundation
(WPF), you could enable some really amazing effects with little programming
effort.

User interface consistency
Although I tried to be careful, there are probably labels, controls, and error mes-
sages that use two different names for the same thing. Perhaps I used the word
book or DVD when I should have used the more general term item. Although
tracking down such inconsistencies is a lot of work, it increases the level of pro-
fessionalism in your application. It also makes the task of foreign-language trans-
lation easier when localizing the program.

Testing new databases
The LocateDatabase.vb form builds a connection string from the fields supplied
by the user, but it does not test the connection to see whether it works. Provid-
ing an option to test the entered values could reduce long-term errors. An even
better option would be to let the user search for the database, similar to the way
that SQL Server itself sniffs out and presents located servers and databases.

Numeric title searches
The checkout and check-in features let you locate an item either by name or by
bar code. If you enter a number, the program assumes that you have entered a
bar code and retrieves the matching item. But some book titles are numeric.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Library Project | 713

For instance, David McCullough’s book 1776 would cause the program some
difficulty if each copy did not include its own bar code. An enhancement to the
program would provide the user additional disambiguation options when a
numeric entry matched both a bar code and a title.

Enhanced item searches
Although I have much reason to be impressed by my item lookup code, the pro-
gram could do so much more. When you use the card catalog systems at larger
libraries, the lookup features include “proximity searches” that return results that
are alphabetically close to the search terms provided by the user. SQL Server also
has a “full text search” option that could be used to broaden the item lookups.

Reserves and holds
I started to add a “reserves” feature to the Library Project so that patrons could
add their names to a waiting list for checked-out library items, and have those
items placed aside by the library staff when they were returned by the previous
patron. Although this would be a cool and useful feature for a library, it didn’t
add any pedagogic value to the book, so I left it out. But I still hear the software
sniffling and crying once in a while when it thinks of the feature that might have
been. This would be a great enhancement for “version 2.”

Incomplete item history
On the PatronRecord.vb form, the Fines list shows a patron’s previously
checked-out library items only if those items had once been overdue and had
incurred fines. Items that were returned on time cannot be displayed in the list
using the current form logic. A satisfying change would add a “Show all returned
items” checkbox that would include these checked-in items. This would allow a
librarian to charge for things such as damage on items that were otherwise free
of fines.

Return of missing items
If an item is marked as missing, the library staff may charge the patron for the
loss of the book. If the patron later returns that item, the librarian can process a
reimbursement to the patron. But the program could make this task easier by
automatically marking the item as eligible for such a refund. This would require
a new status field on the PatronCopy database table to track this status.

Bar code design interaction
The BarcodeLabel.vb form is, I think, pretty amazing with its graphics preview of
the bar code. But the preview is unidirectional only; the user is not able to select
a display element by clicking on that element in the preview. Instead, it is neces-
sary to click on the related item in the DisplayItems list. Enhancing the program
to detect clicks on the preview and to translate those clicks into item selections
would make the program much more like other applications that support basic
drawing features.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

714 | Chapter 26: Project Complete

Database setup features
Although we built the setup program for the main Library application, we
skimped on the server side, only providing the database creation scripts as text
files on the installation media. A more professional system would provide a sepa-
rate installation program that could build and configure a new database from an
existing SQL Server installation.

Support for library standards
Just as the software development world has standard formats and protocols such
as XML, library systems also share common standards. Two accepted standards
are MARC (Machine-Readable Cataloging, a standard card catalog data format)
and the Z39.50 interface (a communications protocol used for inter-computer
searches and data retrieval). Incorporating these standards into a small library
system may be overkill, but they would bring a much higher level of automation
and convenience to the library staff.

Bug fixes
I probably left a few bugs in the application. No, wait. I think I put them in there
on purpose to test you, to see whether you were learning and growing in your
programming skills. Did you find them?

These are just some of the improvements that I thought of off the top of my head. If I
had gone all the way down to my shoulders, I could have come up with even more. If
your software will target the general population of users, you will probably release
updates on a regular schedule, such as annually, and charge appropriately for the
improved features. If you wrote the application for one specific customer, the updates
may be more frequent, even weekly or daily in some cases. Whatever the audience
size, your opportunities to improve and enhance the software will be regular and
ongoing.

Visual Basic Flexibility
I started using Visual Basic back when version 2.0 of the product was still in vogue.
As a result, I picked up some pre-.NET coding habits that have been hard to break,
even with my full-time focus on .NET code. I’ve reached a level of comfort in my
Visual Basic coding, and that comfort shows in my .NET programming style.

As I mentioned in earlier chapters, many of the features that previously existed in
Visual Basic before .NET were moved out of the language and into Framework
classes. The most noticeable of these were the mathematics features now found in
the System.Math class. But there were other non-math Visual Basic language key-
words that also became class methods. Many of these appear in the Microsoft.
VisualBasic namespace, including methods such as Left, Trim, and MsgBox.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic Flexibility | 715

When I wrote the Library Project code, I freely used some features found in the
Microsoft.VisualBasic namespace. Although I don’t have a problem with this prac-
tice, you may encounter other Visual Basic developers who don’t agree with how I’ve
written the code. They point out that most, and possibly all, of the features in
Microsoft.VisualBasic have Framework Class Library (FCL) equivalents, and these
should be used for reasons of compatibility with other .NET languages and systems.

A key example is the MsgBox function. I’ve used it throughout the Library source
code. The keyword MsgBox has always been a part of the Visual Basic language, but
beyond its continued existence in Microsoft.VisualBasic, it is not a part of the
Framework classes. Instead of MsgBox, other programmers (including C# program-
mers) use the System.Windows.Forms.MessageBox.Show method. It does offer more
options than MsgBox, and it displays a message box that is every bit as beautiful as the
Visual Basic version. But for me, my fingers have gotten used to typing the short six-
character MsgBox keyword. (MessageBox.Show has 15 characters!) Also, the arguments
passed to MessageBox.Show are slightly rearranged from those used in MsgBox. Using
both of them in a single program could result in some confusion.

Supporters of MessageBox.Show emphasize that if you ever needed to convert Visual
Basic code to C#, the presence of MsgBox would slow down the conversion. Although
I understand this and other concerns, I have not yet been fully convinced that there is
any problem using MsgBox. Any conversion tool that existed to change Visual Basic
code into C# would certainly know how to handle MsgBox.

Beginning with the 2008 edition, Visual Basic includes something
called “runtime agility.” This is a fancy marketing way of saying that
you can now compile and deploy Visual Basic applications without the
need for the Microsoft.VisualBasic namespace and related assembly.
Although this isn’t a big deal for most desktop or ASP.NET applica-
tions, the ability to compile a Visual Basic program with fewer depen-
dencies, and hence a smaller “footprint,” does have implications for
the quick download of custom logic over the Web through Microsoft’s
Silverlight product. If you will target this platform, it will be a good
idea to omit all references to features found in Microsoft.VisualBasic.

As another example, consider the older Exit Sub statement. It still exists in Visual
Basic for .NET, but the new Return keyword performs the same job of immediately
exiting from the current method. (Return had a different meaning in Visual Basic
before .NET, but now it only exits methods.) You can use either Exit Sub or Return
in your code; they are identical in functionality. There are programmers who con-
sider the older Exit Sub statement to be—well—older. But unlike my reticence to leave
my favored MsgBox method, I have wholeheartedly embraced the new Return statement.
If it were just an issue of Exit Sub versus Return, I might not have made the switch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

716 | Chapter 26: Project Complete

But there is the related issue of Exit Function versus Return. I was never happy with
the way that pre-.NET Visual Basic functions obtained their return values through an
assignment statement to the name of the function. I was ready to make the switch to
the newer Return statement. I did so for clarity; keeping the return value as close as
possible to the statement that triggers the return to the calling code is a good thing.
Before .NET, you might assign the return value, and then not leave the function for
dozens of lines. Combining the assignment and the return in a single statement
makes sense to me. From there, it was a short trip to replacing Exit Sub with Return.
You will not find (I hope) a single Exit Sub statement in the Library Project. My
transformation in this area is complete.

Why do I bring all this up? I do it to encourage you to make flexibility your friend
when it comes to the different coding variations that exist in Visual Basic. If two dif-
ferent ways of developing a block of code seem to be morally equivalent and you can
make the logic clear no matter which method you pick, choose and enjoy the coding
style that you are most comfortable with. Some programmers may tell you to do it
one way or another, and that’s OK. (If you are part of a development team, the entire
team should agree on a common style.) Remember that Visual Basic is a “general-
purpose” programming language, and it has a certain amount of flexibility built into
the language and related features. Experiment with the variations, and find patterns
that you enjoy and that increase your effectiveness as a developer.

The Programming Mindset
As you enter deeper into the world of software development, you will quickly dis-
cover that the application-building process is about much more than syntax, state-
ments, and logic. It is also about who you are as a programmer. The way that you
think about software, and the care with which you approach the task of program-
ming, have a direct impact on the quality of the code you write. This is certainly true
in other areas of life. If you are a portrait painter, but you don’t take your strokes
seriously, or if you are sloppy in your use of paints and brushes, it will show in the
low quality of your work.

In one of my previous books, The Visual Basic .NET Style Guide (Prentice Hall), I
wrote about three traits that provide a strong basis for the programming life:

Discipline
The act of self-training with a goal of increasing order, focus, and quality in your
projects and work ethic

Planning
The careful analysis and implementation of procedures and standards that
scream out for quality

Ethics
The inner character drive that shows itself through public and private honesty in
attitudes and actions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Summary | 717

If you are deficient in any of these three areas of your programming life, your appli-
cations and code will also be deficient by a similar factor. I have tried to sprinkle
some humor and fun throughout the pages of this book. But on this point, I make no
jokes. You need these three elements in your work life.

If you are serious about a career in software development, take the time to ask your-
self questions that focus on these three aspects. Do I employ regular discipline on the
way that I craft my software? Do I create reasonable and reliable plans, and then
stick to them during a project? Do I exhibit ethical standards in the way I communi-
cate with my customers, my employer, my coworkers, and even myself? If you are
not able to answer these questions to your satisfaction, find resources that can help
you overcome the lapses. It will make your programming work so much easier, and it
will positively impact the other areas of your life as well.

Summary
Now you’ve really reached the end of the book. You can read through the appen-
dixes and the index if you’re still hungry for more. But a better solution would be to
find out if I’ve come out with the next edition of the book and buy it. Ha!

I thank you for taking the time to read through Programming Visual Basic 2008. I
wrote it so that you might expand your understanding and expertise of a very practi-
cal and enjoyable subject: Visual Basic. And enjoyable is the key word. Nobody has
to be a computer programmer, no matter what historians say. You should take on
the role of a Visual Basic developer only if you truly take pleasure in helping other
people become more productive through specialized or general software. If, even
after reading this book, you find coding to be a bore and sheer drudgery, I recom-
mend the food services industry as an alternative.

For those of you still excited about Visual Basic programming, have as much fun
with it as possible. Microsoft is constantly updating the language and its Visual Stu-
dio shell so that you can really enjoy yourself as you program. Why do you think
Microsoft put in all of those animation features? Take time to go beyond the mun-
dane in your code and in your user interfaces. Challenge yourself by trying out new
features within the language and in the framework. And above all, smile each time
you successfully complete a project. Your author, and your users, will thank you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

719

Appendix A APPENDIX A

Installing the Software1

You are holding more than just a book. You are holding an idea. No wait, that’s what
you get when you hold a philosophy book. In this case, what you also get is soft-
ware—free software. And it’s all found on the publisher’s web site for this book:

http://www.oreilly.com/catalog/9780596518431/

When you download and run the setup program provided on the web site, the fol-
lowing items are added to your system:

• A directory structure with all chapter-specific source code and documentation.

• A “vsi” file that installs a set of Visual Studio Project templates. Each template
creates a new project based on “before” or “after” source code images for most
chapters in the book. Once you install this file, you will have the option of
accessing chapter-specific projects using the File ➝ New Project menu command
in Visual Studio.

• A directory of “code snippets” that let you follow along with the action in each
chapter’s “Project” section, all without the need to retype every line of code
printed in the book.

The installation requires approximately 50 MB of disk space. This appendix dis-
cusses the download and installation procedures.

Download the Software
To obtain the software for the book, browse to the book’s web site:

http://www.oreilly.com/catalog/9780596518431/

Locate the Source Code link on this page and click it. When prompted, save the
download file to your system using the standard file download features of your
browser. You can save the file, named Programming Visual Basic 2008.exe, to a tem-
porary area of your system. Once you complete installation, you will no longer need
this file, unless you wish to retain it as a backup.

http://www.oreilly.com/catalog/9780596518431/
http://www.oreilly.com/catalog/9780596518431/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

720 | Appendix A: Installing the Software

Install the Software
Double-click or run the downloaded Programming Visual Basic 2008.exe file. When
prompted, indicate the target directory to use for the installation of all project files.
Once the files are extracted, a readme file appears describing the final installation steps.

Install Project Templates
One of the files installed in the target directory is named Programming Visual Basic 2008
Templates.vsi. Double-click or open this file to install the project templates for the book.
The Visual Studio Content Installer window appears, as shown in Figure A-1.

To complete the installation, click the Next button, followed by a click on the Finish
button. The next time you run Visual Studio, all of the installed project templates
will appear when you use the File ➝ New Project menu command.

Figure A-1. The Visual Studio Content Installer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bar Code Support | 721

Install Code Snippets
Code snippets are installed from within the Visual Studio application. Start Visual
Studio, and run the Tools ➝ Code Snippets Manager menu command. The Code
Snippets Manager window appears, as shown in Figure A-2.

Click the Add button and browse to the directory where you extracted this book’s
downloaded content. Browse within the Code Snippets directory, select the
Programming Visual Basic 2008 subdirectory, and click the Select Folder button.
When control returns to the Code Snippets Manager form, click the OK button to
complete the installation.

Bar Code Support
The web site that hosts the project content also contains information on locating and
obtaining bar code font information. You may use one of the bar codes mentioned
on this site with the project code, or you may obtain your own valid bar code font.

Figure A-2. The Code Snippets Manager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

722

Appendix BAPPENDIX B

Software License Agreement 2

When you download and install the software provided with this book, you agree to
the terms of the software license agreement.

Terms of Use
The source code and software components provided with Programming Visual Basic
2008 (collectively known as the “software”) are designed for use with that book, and
are available only to those who obtain and use the book. As such, the software is
covered by the copyright and licensing of the book itself. However, there are a few
additional terms and conditions that should make the software even more useful to
your development and learning activities:

Using the software with the book
You may install and use the software in conjunction with your reading of the
text. If you use multiple workstations in your tutorial endeavors, feel free to
install the software on each of those systems.

Distributing the supplied software
You may not package, distribute, sell, or otherwise make available to others the
partial or complete applications provided with the book. Claiming that this work
is your own, and attempting to distribute or sell it as such, is wrong and an all-
around bad idea.

Using portions of the software in your projects
You may use portions of this software in your own applications and development
projects. If you include significant portions of the software in your derived work,
please give credit where credit is due, and make it known that your application
employs the useful content provided with Programming Visual Basic 2008.

Acknowledgments
The software was developed by Tim Patrick, author of Programming Visual Basic
2008. Tim Patrick and O’Reilly Media, Inc. gladly make this software available
to you for your education and enjoyment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Terms of Use | 723

Warranty
No warranty is provided with the software. Although every attempt has been
made to keep the software safe and benign when installed on any target system,
such safety is not guaranteed. Tim Patrick and O’Reilly Media, Inc. shall not be
liable for any harm or damage that comes to your system or to any data stored
on your system as a result of installing this software.

Other terms and conditions
There may be additional terms and conditions instituted on the download web
site where you obtained this software. Please read those carefully as they contain
important information concerning downloads accessed from the web site.

Enjoy
I hope that these terms and conditions didn’t scare you off. The software exists
to help you learn and to advance your understanding of Visual Basic software
development concepts. I think you’ll find the software to be quite useful in your
training, so download and enjoy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

725

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (ampersand)

&= (concatenation and assignment)
operator, 34, 172

button shortcuts, 148
string concatenation operator, 36, 48,

169
overloading, 334

< and > (angle brackets)
< (less than) operator, 170

overloading, 334
< > (not equal to) operator, 48, 170

overloading, 334
<< (shift left) operator, 48, 170

overloading, 335
<<= (shift left and assignment)

operator, 172
<= (less than or equal to) operator, 48,

170
overloading, 334

> (greater than) operator, 48, 170
>= (greater than or equal to)

operator, 48, 170
overloading, 334

>> (shift right) operator, 48, 170
overloading, 335

>>= (shift right and assignment)
operator, 172

<%@, ASP.NET page directives, 648
<%...%> bracket pair for ASP.NET-specific

commands and code, 648

<%= and %> symbols
bracketing LINQ-specific code, 462
embedded XML expressions, 376

<?xml...?>, XML document
declaration, 372

* (asterisk)
*= (multiplication and assignment)

operator, 171
multiplication operator, 48, 168

overloading, 332, 333
\ (backslash)

\= (integer division and assignment)
operator, 171

integer division operator, 48, 168
overloading, 333

^ (caret)
^= (exponentiation and assignment)

operator, 171
exponentiation operator, 48, 168

overloading, 334
{ } (curly braces)

enclosing array elements, 175
enclosing multiple generic

constraints, 438
. (dot)

descendant-member XML axis, 377
instance member access, 233
separating nodes in type hierarchy, 11
SQL syntax, 101

= (equals sign)
assignment operator, 47, 171
equal to operator, 48, 170

overloading, 334

http://lib.ommolketab.ir
http://lib.ommolketab.ir

726 | Index

– (minus sign)
–= (subtraction and assignment)

operator, 171
subtraction operator, 47, 168

overloading, 333
unary negation operator, 47, 168

overloading, 333
(number sign)

in date and time literals, 37
in directives, 135

() (parentheses)
grouping clauses in operands, 49
grouping in SQL statements, 104
subroutine calls, 50

% (percent sign), wildcard character in SQL
Server, 351

+ (plus sign)
+= addition and assignment

operator, 171
addition operator, 47, 168

overloading, 333
unary plus operator, 168

overloading, 333
? (question mark), suffix for nullable

instances, 441
" " (quotation marks, double)

surrounding string literals, 36
surrounding XML attributes, 366

' ' (quotation marks, single)
date and time literals in SQL

statements, 103
enclosing comments, 45
string literals in SQL statements, 103, 300

; (semicolon), ending SQL statements, 100
/ (slash)

/= (division and assignment) operator, 171
division operator, 48, 168

overloading, 333

Numbers
3D graphics, 507

A
abbreviations, namespace, 68
absolute positioning, 648
abstract classes, 237
abstraction, 220
acceptance criteria testing, 88
acceptance document for a project, 89
Access database, 99
access levels, 10, 161

access modifier keywords, 44
class members, 225
constants, 161
variables, 164

accessors, 60
accounting calculations, 179
Active Server Pages (ASP), 644

(see also ASP.NET)
ActiveX controls, 692
ActiveX Data Objects (ADO), 277
Activity entry, Data Sources panel, 286
ActivityBindingSource control, 288
Add button (NamedItem form), 357
Add Service Reference form, 661
AddHandler statements, 209
Add-ins (Office), 584
addition operator (see + [plus sign], under

Symbols)
AddressOf operator, 171
ADO (ActiveX Data Objects), 277
ADO.NET, 277–302

connecting to SQL Server, using Visual
Studio, 284–289

data sets, 281
pros and cons of using, 282

database access tools, 294–302
database transactions, 292
definition of, 278
Entity Framework, 293
interacting with SQL Server, in

code, 289–292
LINQ providers, 463–468
MARS support, 284
providers, 279–281

Advanced Encryption Standard (AES), 307
aggregate expressions in non-aggregate

queries, 460
aggregate functions, 105, 459

listed, 459
Aggregate keyword, 459
aggregate queries (LINQ), 459, 475
Ajax, 32
Ajax Extensions controls, 650
al.exe (Assembly Linker) program, 536
aliases in LINQ queries, 460
All function, 459
AllowCurrentPage control, 561
AllowSelection control, 561
AllowSomePages control, 561
alpha blend, 491
ALTER TABLE statements, 101
Alt-F4 key, exiting an application, 217

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 727

ancestor-descendant relationships, 230
AND and OR keywords, 104
And operator, 48, 169

overloading, 335
AndAlso operator, 48, 169
animation, user interfaces, 507
anonymous types, 450

use in LINQ queries, 454
Any function, 459
AP (Assistance Platform), 674
app.config file, 393, 395

changing log output location, 428, 429,
430

Apple Macintosh, 1
Application class, Run method, 191
Application Framework system, 212

Startup event for applications, 213
application programming interface

(API), 392
application settings, 392–415

bound, 400
My.Settings, 398–400
in Visual Basic 2008, 394–400

adding settings to a project, 395–398
applications

EXE files, assemblies and, 131
versioning, 15

architects, 86
arguments, 34, 58

events, 143
optional

for overloaded class members, 230
unlimited number for a method, 243

subroutine, 50, 226
arrays, 172–175

boundaries, 174
converting LINQ query results to, 459
initializing, 175
multidimensional, 174
ParamArray arguments, 243

As clauses, in generic placeholders, 437
AS clauses, SELECT statement, 105
As keyword, 43, 161, 453
AS keyword (SQL), 453
As New clause, 438
ASCII, 153
ASP (Active Server Pages), 644
ASP.NET, 644

advances in web development
technology, 645

connecting web pages to a database, 657
creating an application, 646–653

data validation, 655–656
direct deployment, 690
events and web applications, 653
state and View State, 654

<asp:xxx> tag, 651
assemblies, 13, 126–150

applications and, 131
compiled resource files as satellite

assemblies, 528
contents of, 128–130
creation and deployment, 17
directives and, 134–136
examining contents using reflection, 131
manually compiling satellite assemblies

from .resx files, 535–537
metadata, 13
moving a .resx file into a satellite

assembly, 535
multiple, foreign-language, generating

resources files for, 536
My namespace and, 132–134
.NET PE file contents, 128
obfuscating, 617
overview of, 126–128
setting version number, 146
versioning of shared components, 16

Assembly Linker program (al.exe), 536
AssemblyInfo.vb file, 147
AssemblyVersion attribute, 147
assignment, 34

default assignment by Visual Basic, 45
properties, 60
values to variables, 38

assignment operator (see = [equals sign],
under Symbols)

assignment operators, 171
Assistance Platform (AP), 674
asymmetric cryptography, 305, 309
attribute axis XML property, 377
attributes, 14

class, 510
WCF Services, 660
XML, 366
XmlAttribute class, 372

audio (in resource files), 529
authentication, 311
AutoCompletion (Visual Studio), 18
automatic updates, ClickOnce-deployed

applications, 698
autorun.inf file, 710
Average function, 460
axis properties (XML), 377

http://lib.ommolketab.ir
http://lib.ommolketab.ir

728 | Index

B
banded reports, 587
bar codes

fonts, 431, 721
support for reading, 349

Base Class Library (see BCL)
base classes, 27, 222

implementation of specific members,
forced in derived classes, 237

inheritance of members by derived
classes, 230

passing instance variables between derived
classes and, 233

shadowing members in derived class, 232
baselines of text blocks, 495
BASIC language, 31, 49

defining an object containing an entire
function, 253

BCL (Base Class Library), 11
namespace hierarchy and, 13
obsolete features, 14

BeginPrint event handler, 559
changing to correct starting page

number, 563
Berners-Lee, Tim, 642
beta versions, 87
bidirectional encryption, 306
bigint and smallint data types, 101
binary comparisons, 46
binary files, 361
binary operators, 47, 167, 331
binary values, 151

for characters, 153
BinaryReader class, 421
BinaryWriter class, 421
binding (see data binding)
bitmaps

associating Graphics object to, 489
Bitmap object, 489, 497
BMP files, 497
creating in a variety of formats, 498
drawing on a graphics surface, 498
drawing with GDI+, 487
image as drawn on a grid of bits, 498
loading and saving, 498
native BMP file format in Windows, 497
stretching, cropping, and generating

thumbnail while drawing, 499
text based on, 496
texture brushes, 491

bitwise conjunction operator (see And
operator)

bitwise disjunction operator (see Or
operator)

bitwise exclusion operator (see Xor operator)
bitwise negation operator (see Not operator)
bitwise operators

overloading, 335
(see also individual operators, under

Symbols)
black boxes, 222
block statements, 165
block-level scope, 165
body of a procedure, 59
Boolean algebra, 37
Boolean data type, 39, 156

conversions between integer values
and, 156

.NET, 153
Boolean values

compiler constant, 135
conditional statements resulting in, 51
representing in binary form, 153

bound settings, 400
main form position setting, 404
(see also data binding)

boundaries, array, 174
BoundField column, GridView control, 667
BoundSchemaSearchResults class, 667
boxing and unboxing, 158
branches in code, 51

If statements, 51
BrowsableAttribute attribute, 511
browser-based WPF programs, 507
brushes, 488, 491

Brush object, 490
drawing simple rectangles (example), 492
using in text output, 496

buffer overrun issues, 3
BufferedStream object, 419
business-level software, xvi
Button class, 15
Button control, 141

Click event handler, 208
Click event in Visual Basic, 207
monitoring event notifications, 208
source code (example), 208
typical event handler, 206

ByRef keyword, 58
Byte data type, 39, 154

conversions, 337
ByVal keyword, 58

parameters of partial methods, 240

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 729

C
c (denoting character literals), 36
C language, 49
C#, 31

Boolean values, 41
conversion to integers, 157

conversions of Visual Basic code, MsgBox
and, 715

Camel Casing, 166
CancelButton property, 141
canvas

generalization by GDI+, 488
Graphics objects, 488
in-memory printer canvas, 553

CAPI (Cryptography API), 311
Cartesian join, 106
CAS (Code Access Security), 304
Cascading Style Sheets (see CSS)
Case clauses, Select Case statement, 52
Case Else condition, 53
casing methods, String class, 341
casing rules for variables, 166
Catch clause, Try...Catch...Finally

statement, 266
CD distributions, 708

installation keys, 613
CDate operator, 537
Char data type, 40, 156
character literals, 36
characters

conversion to binary values, 153
data types in .NET, 153

CheckBox controls
Checkboxes dialog, 705
CheckedChanged event firing as

non-postback, 654
installation process checkbox, 705–707

checksums, 306
child-member XML axis property, 377
Church, Alonzo, 253
CInt operator, 339, 342
Class and End Class keywords, 214
Class keyword, 225
Class Library projects, 23
classes, 6, 9, 225

abstract classes defined by interfaces, 237
anonymous types, 451
attributes, 14, 510
class libraries, .NET, 10–13
constraining generic types, 437, 438
constructors, 28, 163

containing fields, local variables, and
constants, 164

creating instances of, 28, 232
data type, 153
derivation from System.Object, 157
dividing single class among multiple

source code files, 27
extension methods, 340
firing an event (example), 65
forms, 142
inheritance, 230–232, 244
killing instances, 235
members, 225–228

overloaded, and optional
arguments, 229

shared, 228
namespaces, 66
naming, 12
Object as root, 39
partial, 225
properties, 60
referencing a library of, 68
support by reference types, 158

Click event, 144
adding to a form, 198
Button control

adding SQL Server data source, 290
handler definition, 208

errors stemming from, 269
ClickOnce deployment, 698
client-side data validation, 656
client-side record sets, 282
client-side scripting, 644
clipping regions, 502
closure classes, 258
CLR (Common Language Runtime), 7, 35

final just-in-time (JIT) compilation of
MSIL assembly, 17

CLS (Common Language Specification), 8
Codd, Edgar, 95
Code Access Security (CAS), 304
code behind features of Web Forms, 646,

663
code examples from this book

“Before” and “After” version, 70
license agreement, 722

code snippets
inserting, 71
installing, 721

Code Snippets feature (Visual Studio), 70
collections, 440

converting LINQ results to, 459

http://lib.ommolketab.ir
http://lib.ommolketab.ir

730 | Index

colors, 488
Color property, TextBox controls, 593
predefined pens, 490
specifying for pens, 491

columns, 95
editing Columns collection for ListView

control, 357
editing in GridView control, 667

COM-based components and
applications, 564

ComboBox controls, 244
enhancing through owner draw, 505
filling lists, 247
Items collection, 245
tracking ID numbers in, 246, 342

command line
cmd.exe, 535
text-based applications, 23

Command object, 280
comma-separated values (CSV), 362
comments, 44

XML, 366
documentation generated from, 674

XmlComment class, 372
Commit method, 293
Common Type System (see CTS)
commonality, 82
CompareValidator, 656
comparison operators, 48, 170

overloading, 334
compilation configurations in projects, 707
compiled resource files, 528
compiler constants, 135

data types, 136
setting once for entire application, 136

compilers
adding constructors, 29
compiling Visual Basic source code, 17
generation of IL, 8
HTML Help, 675
object-oriented language, 219
version number of Visual Basic

compiler, 136
compile-time errors, 260
compression/decompression of data, 419
Condition property, 706

conditions, 50–54
If statement, 51–52
IIf and If functions, 53
including/excluding portions of source

code, 135
Select Case statement, 52, 53

.config files, 393
Configuration Manager in Visual Studio, 707
ConfigurationManager object, 665
Connection object, 280
connection strings, 289

saving in web.config file, 658
console applications, 23

Visual Basic source code, 8
#Const directive, 134
Const keyword, 43

access modifier keyword preceding, 161
defining constants, 160

constants, 43, 160
constant fields as class members, 226
declaration of, 43
declared outside a procedure, 164
naming conventions, 165

constraints, 101
classes constraining generic types, 437
interfaces constraining generic types, 437

constructors, 28, 42, 163, 234
custom, creating, 235

content (data values), 36
content files (HTML Help), 674, 676
Continue statements, 57
contract between interfaces and

implementing class or
structure, 237

Control class, 191, 197
Control Panel, Regional and Language

Options applet, 538
controls, 189, 191

ASP.NET web page, retaining state, 655
binding properties into settings

system, 400
code for design-time presentation, 318
CreateGraphics method, 489
data binding feature, 288
data region, in RDLC reports, 587
designing with WPF and XAML, 509

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 731

enhancing through owner draw, 505
events and delegates, 206–209
HTML Help, 680
properties common to forms and

controls, 197
PropertyGrid, 511
reporting controls in .NET, 584–597
Smart Tags, 200
supplying drawing code to (owner

draw), 488
Web Forms, 649–651

validators, 655
Windows Forms

adding, 15
available in Visual Studio, 200–205

conversion functions, 176
conversions

between bytes and characters, 420
custom, with overloaded CType

operator, 338
LINQ query results, 459
narrowing conversions, 337
simple data conversions by Visual

Basic, 45
widening conversions, 337

costs, approval for a project, 87
Count function, 460
CREATE TABLE statements, 100, 103
CreateGraphics method, 489
CreateReader function, 298
cross joins, 106
cryptography, 304–311

data encryption ensuring data
integrity, 305

encrypted installation key, 613
encryption in .NET, 306–311
encryption techniques, 305
idenfity verification with digital

signatures, 306
public-private key encryption, 613
public-private key pair, use in digital

signing, 623
Cryptography API (CAPI), 311
CryptoStream class, 307–309, 419
Crystal Reports, 583
CSS (Cascading Style Sheets), 480

adjusting web application layout, 653
support in Visual Studio 2008, 20

CSV (comma-separated values), 362
CTS (Common Type System), 9, 34
CType operator, 336

overloaded, 339
culture, 527

embedding in assembly, 537
format of dates, 551
settings for, 129
string manipulation for localized

display, 537
currency format, localizing, 537, 544, 548
current settings, 399
Custom Actions Editor, 697
custom-generated license key, 613
CustomValidator, 656
cyclical approach to project management, 84

D
DAO (Data Access Objects), 277
data, 151

defined, 79
and information needs, 79
interchange, enhancement through use of

standards, 3
nature of computer data, 151

data binding, 107, 288
combining report components, 589
controls’ feature, 288
search results to GridView control, 667

data context, 465
data controls, 650
data definition language (see DDL)
Data Encryption Standard (DES)

algorithm, 306, 307
data management system (CLR), 7
data manipulation, 4
data manipulation language (see DML)
data mapping, 293
data region controls (RDLC reports), 587
data security, 304
data sets, 279, 281

LINQ to DataSet, 463
pros and cons of using, 282
records tied to report data regions, 587

Data Source Configuration Wizard, 658

http://lib.ommolketab.ir
http://lib.ommolketab.ir

732 | Index

data sources
adding to RDLC report, 585
creating, 284–286
custom data, using in RDLC report, 593
linking to report region, 587
supplying custom for RDLC

report, 595–597
using, 286

data structures (see structures)
data types, 39, 152

anonymous, 450
character, 156
classes, treating instance as Object, 157
constants, 160
conversions, 45, 176
CTS (Common Type System), 9
decimal, 154
delegate, 207
enumerations, 161
exported type information

(assemblies), 129
generic type parameters, 436
generics as placeholders for, 433
integer, in .NET, 154
internal type information

(assemblies), 129
limiting a stack to a specific type, 441
literals, 159
naming conventions, 166
nested, in classes, 228
.NET, 153
non-generic, with generic members, 439
nullable types, 175
passing by value or by reference, 58
as resources, 529
settings, 395
SQL Server, 101
strongly typed languages, 166
value types and reference types, 39
variables, 35, 162
Visual Basic, 158

.NET equivalents, 158
interchangeable with .NET

equivalents, 159
data validation, 655–656
data values (XML), 366
DataAdapter object, 280
database integration, ASP.NET pages, 657
database tables

filling ComboBox lists, 247
ID fields, generation of, 292

databases, 95–125
ADO.NET Entity Framework, 463
database interaction tools, 277
database library for .NET (see ADO.NET)
documenting, 108
files stored in CSV format, 362
LINQ support for, 449
relational database systems, 95–97
SQL (Structured Query

Language), 100–107
SQL Server 2005, xvii, 98
SQL Server 2008, 20
using in Visual Basic applications, xvi, 107

DataBind method, GridView control, 669
DataContext class, 468
DataNavigateUrlFields property, 667
DataNavigateUrlFormatString property, 668
DataReader object, 280
DataRelation objects, 281
DataSet objects, 281

(see also data sets)
DataTable objects, 281, 463, 603
date and time literals, 37
date and time values, 153

culturally-sensitive setting, 551
data type in .NET, 153
date-related functions, 177
literal, in SQL statements, 103
localization, 537
System.DateTime data type, 156

Date class, 40, 178
DateTime class, 178
DayOfWeek enumeration, 162
dbml files, 465

underlying designer file, 467
DDL (data definition language), 97

statements, 100–103
DEBUG constant, 136
Debug object, 273
DebuggerNonUserCode attribite, 27
debugging

enhanced support in Visual Studio
2008, 21

support for JavaScript in Visual Studio
2008, 21

Decimal class, 40, 155
decimal numbers, 34, 152

.NET data types, 154
declarations

enumeration, 162
New keyword, combining with member

assignment, 259

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 733

operator, 332
operator overloads, 339
property, 60
Sub declaration statement, 58
supplied by Visual Basic, 45
variables, 38
XML documents, 372

Declare statements, 228
default constructor, 42, 234
default instances of project forms, 149
default location, setting, 360
default settings, 399
Default.aspx file, 646
Default.aspx.vb file, 646
deferred execution, 468
DeflateStream object, 419
delegates, 9, 207

class member, 227
linking functions to variables, 254
namespaces, 66
support for LINQ, 450

DELETE statements, 97, 104
DeleteFile method, 134
deliverables, 85

interim, identified by milestones, 86
deployment of applications, 3, 89, 689–710

ASP.NET, 645
assemblies and manifests, 13
involved process, 689
Library Project (example), 700–710
methods within Visual Studio, 690–700

ClickOnce, 698
direct ASP.NET deployment, 690
Windows Installer, 692–698
XCopy deployment, 691

side-by-side deployment, 16
Deployment property, 699
derived classes, 27, 222

constructors, 235
forced to implement specific base class

members, 237
inheritance of base class members, 231
partial classes, 230
passing instance variables between base

class and, 233
shadowing of base class members, 232

DES (Data Encryption Standard)
algorithm, 306, 307

descendent-member XML axis property, 377
DESCryptoServiceProvider class, 306,

307–309

design and planning, 85
design document, 85

approval by user and programmer, 86
designer file underlying dbml file, 467
DesignerGenerated attribute, 27
design-time presentation code, 318
desktop shortcuts, 703
destructors, 235
detail form, generic, 248–250
developer productivity, enhancement with

.NET, 3
development phase of projects, 87
DialogResult property, 149, 211
Dictionary collection, 459
Digital Signature Algorithm (DSA), 309
digital signatures, 306, 614

attached to assembly manifest, 13
generating for Library license

file, 623–626
generation of, 625
SignedXml class, 625
unscrambling and comparing with rest of

license, 627
validating (example code), 631

Dim keyword, 38, 44, 162
Dim statements

at beginning of procedures, 163
within block statements, 165

dimensions (arrays), 174
directives

ASP.NET page directives, 648, 660
assemblies and, 134–136

discipline (programmers), 716
disconnected data experience

(ADO.NET), 278
Dispose method, Graphics object, 489
Distinct clause, LINQ queries, 455
distributed transactions, 659
distribution of applications, 89

Library Project (example), 708
division operator (see / [slash], under

Symbols)
“DLL hell”, 3
.dll files, 13
DLLs

Class Library projects, 23
identifying file containing a namespace’s

types, 67
Library Project deployment, 702
raw printer support in Windows, 564
versioning, 127

http://lib.ommolketab.ir
http://lib.ommolketab.ir

734 | Index

DLR (Dynamic Language Runtime), 22
DML (data manipulation language), 97

statements, 103–106
Do...Loop statements

Do statements
Continue Do statement, 57
Exit Do statement, 56

Do While...Loop block, 34
Do...Loop loops, 55

Document Type Definition (DTD), 369
documentation

documenting the database, 108
generated from XML comments for class

members, 674
importance throughout entire project, 84
project-specific needs of user, 83

documents (XML), 372–374
creating with LINQ to XML, 461
XDocument object, 376

DoEvents method, 242
problems caused by overusing, 243

dongles, 614
Dotfuscator, 616
Double data type, 40, 155
drawing elements (GDI+), 488
Drawing namespace, 487
drawing system (see GDI+)
DROP TABLE statements, 101
DSA (Digital Signature Algorithm), 309
DSACryptoServiceProvider class, 309
DTD (Document Type Definition), 369
duplicates, eliminating from LINQ query

results, 455
Dynamic Language Runtime (DLR), 22

E
editing components (Visual Studio

Professional), 24
elements (XML)

attributes, 366
XElement class, 376
XmlElement class, 372

Else keyword
If statement, 51

ElseIf keyword, 51
If statement, 52

Emacs, 18
email, sending as result of LinkClicked

event, 145
embedded XML expressions, 376

empty strings (""), 34
encryption algorithms, 305
EncryptPassword routine (example), 316
End Class keyword, 214
End Enum line, 161
End If statements, 51, 52
End Namespace clause, 69
End statements, 52, 64
End Sub statement, 58, 59
EndPrint event, 559
entities, 293

inheritance, 293
LINQ to Entities, 463

Entity Framework, ADO.NET, 293, 463
availability of, 294

entity sets, 293
Enum statement, 162
enumerations, 9, 161

class member, defining, 226
defined as member of a type, 162
namespaces, 66

equal to operator (see = [equals sign], under
Symbols)

Equals keyword, 457
Equals method, overriding in ListBox control

lookups, 246
Err object, 264, 272

GetException method, 270
Raise method, 270

error handling, 260, 263
catchall, trapping unmanaged

exceptions, 268
disabling, 265
ingoring errors, 265
mixing unstructured and structured, 270
structured, 265–269
unstructured, 263–265

error messages
displayed by Web Forms validators, 656
generating and logging, 428

errors, 260–263
compile-time, 260
database interaction routines, 298
ErrorToString function, 273
generating, 269
generating and logging, 428
ignoring, 265
IsError function, 273
logic, 262
runtime, 261
unhandled, 267

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 735

escape sequences, 553
ethics (programmer traits), 716
event handlers, 64–66, 206

adding template for LinkClicked, 144
arguments, 65
attached to class instance, 65
Button control Click event, 207
defined, 64
linking to an event, 144
typical for Button control, 206
WPF and XAML application, 510
(see also events)

Event statements, 65, 207
using delegates instead of full argument

lists, 207
EventArgs class, 206, 207
events, 64–66, 143, 190

adding Click event to a form, 198
arguments, 143
button click, processing between action

and custom logic, 206
connecting to local instance of

PrintDocument, 554
connecting to a subroutine with

Handles, 74
controls, 206

Button control event handler, 206
defining for classes, 227
firing, 64
importance in .NET application

development, 209
indirect calls to a procedure, 64
Load event, 145
monitoring by event handlers, 207–209
using instead of partial methods, 241
web application, 653

exceptions
catching, 267
Exception class, 271
throwing, 270
(see also error handling; errors)

Exchangeable Image File (“EXIF”) files, 497
exclusive or (Xor) operator, 48, 169

overloading, 335
EXE files, 13, 131

versioning, 127
EXIF files, 497
Exit Function statements, 63
Exit statements, 56

Exit Sub statement, 715
Exit Try statement, 267
exponentiation operator (see ^ [caret], under

Symbols)
Express Edition of Visual Studio 2008, 18
express version of an application, 134
expressions, 49, 167

embedded XML expressions, 376
Expression design products, 508
Expression Editor, 591
expression trees, 256
Expressions namespace, 256
LINQ query, basic, 453–458
(see also lambda expressions)

eXtensible Application Markup Language
(see XAML)

eXtensible Markup Language (see XML)
Extension attribute, 341, 345
extension methods, 341

creating, 341
IEnumerable interface, 461
SqlDataReader class, 344, 473
support for LINQ, 450

external security (.NET), 304

F
fading effect, 524
False value, 37

conversion to integers, 156
FCLs (Framework Class Libraries), 11, 127

classes and objects in, 225
culture management features, 538
error generation, 269
namespace hierarchy and, 13
obsolete features, 14
version 3.5, 13

fields, 4, 43
database columns, 95
database, null values, 104
naming conventions, 166
properties and, 61
scope of, 165
variables and constants declared outside a

procedure, 164
file handles, 417
File System Editor, 697, 702

Fonts folder, 707
File Types Editor, 697
FileLogTraceListener class, 429

http://lib.ommolketab.ir
http://lib.ommolketab.ir

736 | Index

files and directories, 416–428
assembly file listing, 129
manipulating through streams, 418–424
My namespace and Visual Basic file

management, 424–426
reading and writing through My, 426
reading files via streams, 422
resource files, 529
traditional Visual Basic file

management, 417
FileStream object, 418
FileSystem object

file interaction features, 424–426
OpenTextFieldParser method, 427
OpenTextFileReader and

OpenTextFileWriter methods, 426
ReadAllText and ReadAllBytes

methods, 426
WriteAllText and WriteAllBytes

methods, 427
filesystems, 416
FillColor property, 518
FillListWithRecords method, 252
Finalize method, 236

suppressing, 237
Finally clause, Try...Catch...Finally

statement, 267
financial and accounting calculations, 179
firing an event, 64
fixed-point decimal values, 153
flat file database tables, 96
floating-point values, 37, 153
flow control

(see also conditional statements; loops)
flow control statements, 34, 61–64

End and Stop statements, 64
GoTo statement, 61
Return statement, 63

flow layout mode, 648
fonts, 493–496

bar code, 431, 512, 721
choosing, 493
complex manipulation with GDI+, 496
families, 493
Font class, 493
Fonts folder, 707
GDI+ drawing elements, 488
installed, loading list of, 409
lining up, 495
mixing and matching on an output

canvas, 494
For Each...Next loops, 55

For statements
Continue For statement, 57
Exit For statement, 56

For...Next loops, 54
GoTo statements and, 62

foreign references, 101, 463
Form class, 142, 193, 195

accessing, 68
ShowDialog method, 210

form surface, 138
Format function, 548
forms, 189, 191

adding code for events, 142–146
adding controls, 138–142, 198–205
Assembly Information form, 147
binding properties into settings

system, 400
closing, 149
CreateGraphics method, 489
enhancing ComBox control through

owner draw, 505
events and delegates, 206–209
generic type used with, 437
interesting properties and their

uses, 195–197
localizing within Visual Studio, 531–534
modifying properties through source

code, 197
PrintDocument control, 554

fractions, 152, 154
Framework Class Libraries (see FCLs)
Free Software Foundation, GNU General

Public License, 612
FreeFile function, 417
Friend statement, 28

friend access modifier, 223
Friend variables, 164
From clause, LINQ query expressions, 453
FrontPage Extensions, 691
full outer joins, 106
Func keyword, defining lambda

expressions, 254
function calls, 34
Function keyword, beginning lambda

expressions, 254
function methods, 227
functional programming, 253

(see also lambda expressions)
functions, 49, 59

built in, 176
complex, breaking into basic

functions, 257

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 737

conversion functions, 176
date-related, 177
intrinsic, 35
miscellaneous, 181
modifying LINQ query results, 454
numeric, 179
operators as, 331
return value, 50
string manipulation, 179

G
GAC (Global Assembly Cache), 13, 127
garbage collection, 236

reference types, 158
SuppressFinalize method and, 237

GDI (Graphics Device Interface), 486
(see also GDI+)

GDI+, 487–488, 511
brushes, 491
drawing text and graphics on printed

pages, 582
images, 497–499
owner draw, 505
pens and brushes, 490
placing text on your graphics

surface, 493–496
using in Library Project, 511–525
using to generate printed pages, 553, 563

generated custom license key, 613
generated general license key, 613
generators, public/private key pairs, 309
generic detail form, 248–250
generic summary form, 250–252
Generic.Dictionary collection, 459
Generic.List collection, 459
generics, 433–447

anonymous types, 451
constraint on type parameter, 437
data type and interface

constraints, 436–438
general placeholder (T), 434
multiple placeholders in a class, 436
nesting, 439
non-generic types with generic

members, 439
nullable types, 441
overloading types and members, 440

geometric transformations, 503
Get accessor, 60
GetData method, IService interface, 660

GetException method, Err object, 270
GetLowerBound method, 174
GetPrivateProfileString API call, 423
GetType operator, 171
GetUpperBound method, 174
GetXmlNamespace function, 378
GIF files, 497
Global Assembly Cache (see GAC)
Global keyword, 27, 66
globalization

changing Localizable property of a
form, 532

culture, user-interface and string
manipulation, 537

defined, 527
Globalization namespace, culture

management features, 538
GNU General Public License, 612
GO command, 100
goals, project, 85
GoTo statements, 61

limiting use of, 62
gradient brushes, 491
graphical user interfaces, 507

(see also user interface)
graphics

in eary display systems, 486
files added to HTML Help pages, 676
GDI+, 487, 487–488
.NET support for, 486

Graphics Device Interface (GDI), 486
(see also GDI+), 486

Graphics Interchange Format (“GIF”)
files, 497

Graphics objects, 488–490
canvas for output of GDI+ printer

command, 554
disposing of properly, 489
DrawImage method, 498

overloads, 499
DrawString method, 493, 523
methods, 499
methods applying transformations, 504
obtaining and creating, 489
owner draw, 488
passing drawing commands through

geometric transformations, 503
providing a canvas for drawing, 488

GraphicsPath class, 501
greater than operator (see < and > [angle

brackets], under Symbols)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

738 | Index

GridView controls
binding search results to fields, 666–669
editing columns, 667
statistics report list bound to, 670

grouping
adding to a report, 591
in SQL statements, 105, 599

GZipStream object, 419

H
Handles keyword, 65, 74, 208
hardware identity with license key, 614
hash value, 306
hashing algorithms, 306, 310

using for installation keys, 613
hashing functions, 305
hatch brushes, 491
Hawaii (upcoming release of Visual

Basic), 22
header, PE files, 128
“Hello, World!” code example, 8, 70–74
Help Contents file (HTML Help), 674
Help Integration Kit, 674
Help Keywords file (HTML Help), 675
Help Project file, 675, 676
Help.ShowHelp method, 682
HelpProvider control, 680–682

accessing HTML Help files, 681
pop-up help on individual controls, 681

Hex function, 317
.hhc files, 674
.hhk files, 675
.hhp files, 675
hierarchical query results (LINQ), 457
hierarchy, .NET types, 11
high-level languages, 33
hit testing, 503
HMACSHA1 class, 311, 316
HTML, 582

ASP.NET application source code, 648
assigning content to Literal control, 669
controls, 650
Default.aspx file, 646
generating from client- or server-side

scipting, 644
generating from XML data, 368
generation by ASP.NET, 644
improved editor, 20
item detail custom content, WebBrowser

control, 479–481
links for WebBrowser control, 481–482
(see also forms; web development)

HTML Help, 673
accessing, 680–682

HelpProvider control, 680–682
designing, 674–680

content files, 676
formatting help windows, 680
Help Contents file, 677
Help Keywords file, 679
Help Project file, 676

HTML Help Workshop, 675
Hungarian Notation, 165
HyperLinkField column, GridView

control, 667

I
IBM PCs, 1
ICO files, 497
icons

desktop, configuring in setup project, 704
ICO files, 497
in resource files, 529

IDENTITY keyword, 101
IDisposable interface, 236
IEnumerable interface, 55, 451

data sources used with
MicrosoftReportViewer control, 593

DataTable objects and, 463
extension methods, 461

IEnumerable(Of T) interface, 451, 459
If (ternary) operator, 51, 54
#If directive, 134
If statements, 51–52

conditions, 51
ElseIf clauses, 52
statement keywords, 52
variations for inline use, 53

IIf function, 53
IIS (Internet Information Server), 644
IL (Intermediate Language), 2, 8

compilation and decompilation, 17
MSIL code in .NET PE files, 128
obfuscation in .NET, 617

IL Disassembler tool, 618
ildasm.exe tool, 17
Image class, 497
images, 497–499

drawing on graphics surface, 499–501
file formats, 497
in resource files, 528
static, video, and animated user interface

images, 507
implementation, object, 6, 224

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 739

Implements keyword, attaching interfaces to
a class, 238

imported namespaces, 295
Imports statement, 68

defining XML namespace, 378
My namespace and, 69

In keyword (LINQ), 453
index (Help Keywords) file, 679
Index Entry editor form, 680
Indexed Sequential Access Method

(ISAM), 277
indexes (SQL Server), 101
IndexOf method, Items collection, 247
inferred types, with lambda expressions, 255
information, defined, 79
inheritance, 222

classes implementing interfaces, 238
entity, 293
MustInherit keyword, 237
support in Visual Basic, 230–232

Inherits keyword, 27, 230
INI files, 393

extracting a value from, 422
Help Project file, 675

InitializeComponent procedure, 28, 143, 193
defining Button control instance, 208

initializers
constants, 161
object, 259

inner joins, 105
LINQ query, 457

innovation versus commonality, 81
input and output devices, accessing stored

data, 4
INSERT statements, 97, 103

returning single field from a record
created via, 292

installation directory, 126
installation keys, 613
InstalledFontCollection object, 409
InstalledPrinters string collection, 557
instance members, 229
instances, 6

class, using shared members instead
of, 229

creating class instances, 232
instantiation, 41
Int16 data type, 154
Int32 data type, 154
Int64 data type, 154
integer division operators (see \ [backslash],

under Symbols)

integers, 34, 37
conversion of Boolean values to, 156
Integer class, 40
.NET data types, 153, 154

IntelliSense (Visual Studio), 18, 652
support for JavaScript in Visual Studio

2008, 21
transparent windows in Visual Studio

2008, 21
interaction with data, 4
interactive multimedia, 507
interface testing, 88
interfaces, 9, 222, 228

advantages of using, 238
constraining generic types, 437
contract with implementing class or

structure, 237
multiple, constraining a generic type, 438
namespaces, 66
object, 5, 224
(see also user interface)

Intermediate Language (see IL)
intermediate resource files, 528
internal members, 5
internal security (.NET), 304
Internet

how it works, 642
programming, 644

Internet Explorer
viewing ASP.NET application source

code, 655
WebBrowser control in applications, 479

interop, 564
Primary Interop Assemblies (PIA), 584

intrinsic functions, 35
Is operator, 48, 171
ISAM (Indexed Sequential Access

Method), 277
IsError function, 273
IService interface, 660
IsFalse operator, 336
IsNot operator, 48, 171
IsNumeric function, 184, 262
IsTrue operator, 336
ItemData array, 244
ItemProperties control, 522
Items collection, 245

IndexOf method, 247
iteration variables, 453
iterative approach to project

management, 84

http://lib.ommolketab.ir
http://lib.ommolketab.ir

740 | Index

J
Japanese language, form

localization, 533–534
JavaScript, 648

Ajax, 650
IntelliSense and debugging support,

Visual Studio 2008, 21
joins, 105

LINQ query sources, 456
Joint Photographic Experts Group (see JPEG

files)
JPEG files, 497

GDI+, 487

K
Kemeny, John, 31
key user, 75
keyboard events, 66, 189
KeyDown event handler, 217, 686
KeyPreview property, 217, 686
Keys enumeration, 217
keywords

Help Keywords file, 675
LINQ, 452
statement, 52

Kill command, 134
Kurtz, Thomas, 31

L
Label control, 139

simulating lines and rectangles, 140
labels, line, 61
lambda calculus, 253
lambda expressions, 253–259

complex, 257
defining a variable as a simple

function, 254
expression trees, 256
with inferred types, 255
support for LINQ, 450
variable lifting and closure classes, 258

Language Integrated Query (see LINQ)
language-culture selections, 532
languages, 527

Language property, 532
language settings, 129
translator converting a form to a specific

language, 534
last in, first out (LIFO), 440

Launch Conditions Editor, 697
Left function, 183
left outer joins, 105
Len function, 183
Length property, Stream object, 418
less than operators (see < and > [angle

brackets], under Symbols)
Let keyword (LINQ), 475
libraries

browser-based WPF programs, 507
(see also BCL; FCLs)

license agreements, 615
software for this book, 722

license-checking code (example), 634
LicenseStatus enumeration (example), 628
licensing, 611–641

controlled access, 614
custom-generated license key, 613
license key with hardware identity or

lock, 614
license-agreement-only method, 612
software, options for, 611

lifetime of a variable, 165
Like operator, 48, 170

overloading, 335
line continuation characters, LINQ to XML

code, 461
line labels, 61
linear approach to project management, 84
lines and shapes, adding to a form, 140
lines, geometric transformations, 503
LinkClicked event, 325
LinkLabel controls, 141

multiple web-style links, 145
links, 144

HTML Help files, 675
LINQ (Language Integrated Query), 32,

448–485
advantages of, 449
aggregate queries, 459
anonymous types, 450
conversions of query results, 459
deferred execution of queries, 468
disadvantages of, 449
LINQ for ADO.NET data, 463–468

LINQ to DataSet, 463
LINQ to Entities, 463
LINQ to SQL, 464–468

LINQ to Objects, 451
LINQ to XML, 461

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 741

query expressions, advanced, 460
query expressions, basic, 453–458

Distinct clause, 455
From clause, 453
joining sources, 456
Order By clause, 456
Select clause, 454
Skip and Take clauses, 458
Where clause, 455

supporting technologies, 450
updates of underlying data stores, 469
Visual Studio 2008 features, 20

LISP language, 4, 331
List array, 244
List collection, 459
List controls

with a field from the data set, 587
grouping data in a report, 591

ListBox controls, 244
DisplayMember property, 245
enhancing through owner draw, 514–516
example, 245
generic summary form, 250
ItemLookup form, 470
Items collection, 245
listing of installed font families, 493
override of Equals method, 247
providing custom drawing code for, 488
storing objects as items, 382
tracking ID numbers in, 342
ValueMember property, 245

ListItemData objects, 476
adding CType overload, 342
example, 246

lists, value comparisons against, 52
ListView control, modifying Columns

collection, 357
Literal control, 670
literals, 36, 159

Boolean, 37
character, 36
date and time, 37
not reusable, 37
numeric, in SQL statements, 103
string, 36

single quotes within, 45
XML (see XML Literals)

Load events, 145
Web Forms applications, 654

local constants, 164
local type inference, 166

support for LINQ, 450
turning on and off, 167

local variables, 164
declaration of, 43

Localizable property, 532
localization

currency formatting, 544, 548
dates in culture-neutral format, 551
defined, 527
displaying times, dates, and monetary

values, 537
features in .NET, 526
language localization with resource

files, 527–530
localizing forms within Visual

Studio, 531–534
Location property, 400
location, changing for logfile output, 429
locking of database records, 279
logic

errors in, 262
separation from presentation application

design, 508
translating for computers with

programming languages, 33
logical and physical views of data, 463
logical line, 34
logical operators, 48, 104, 169

overloading, 335
login controls, 650
Long data type, 40, 45
loops, 54–57

Continue statements, 57
Do...Loop, 55
Exit statement, 56
For Each...Next, 55
For...Next, 54
GoTo statements and, 62

lower bound of an array, 174

M
MAC (Message Authentication Code), 311
machine code, 2, 33
Macintosh, 1
Main method, 193

custom, 194
managed code, 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

742 | Index

Management Studio Express, 123
manifests, 13, 129
many-to-many relationship, 106
Map.xml file, 618
Mapping namespace, 468
mapping of data, 293
MARS (Multiple Active Result Sets), 284

including support in SQL Server
connection string, 290

Math class, 179
mathematical operators, 47, 168

overloading, 333
Max function, 460
MD5 hash algorithm, 311
Me keyword, 207

references to instance members, 233
members of a class, 4, 10, 225–228

naming conventions, 166
object, 221
overload members and optional

arguments, 229
shared, 228

memory leaks, 3
MemoryStream object, 419
Message Authentication Code (MAC), 311
message pump, 64, 189

including in Sub Main procedure, 194
in Visual Basic programs, 64

message queue, 64, 189, 659
MessageBox.Show method, 242
messages, 189
metadata, 13

.NET PE file, 128
Metafile class, 497
metafiles, 497
methodology framework for projects, 83
methods, 50

class member, subs and functions, 226
error handling, 271
extension methods, 341
form, accessing in source code, 197
generic, 439
naming conventions, 166
parameter array arguments, 243
partial, 239
(see also functions; subroutines)

Microsoft Access, 99
Microsoft Expression Blend, 508
Microsoft FrontPage Extensions, 691
Microsoft Help 2, 673
Microsoft Intermediate Langauage (see IL)

Microsoft Knowledge Base article on raw
printing support, 564

Microsoft Office
consumer licensing agreement, 616
integration of Visual Basic, 583
Primary Interop Assemblies (PIA), 584

Microsoft Solutions Framework (MSF), 84
Microsoft Visual SourceSafe, 89
Microsoft Windows (see Windows systems)
Microsoft Word, 361
Microsoft.Reporting namespace, 583
Microsoft.VisualBasic namespace, 12, 35

MsgBox method, 241
Microsoft.VisualBasic.dll assembly, 131
Microsoft.VisualBasic.Logging

namespace, 429
MicrosoftReportViewer control, 583

data sources implementing
IEnumerable, 593

downloading, 585
integration with SQL Server Reporting

Services, 584
using in a form, 588

milestones, 86
Min function, 460
MinimumSplashScreenDisplayTime

property, 214
Mod (modulo) operator, 48, 168

overloading, 334
modal forms, 210
modeless forms, 210
modifiers (see access modifier keywords)
modules, 9, 158, 182

namespaces, 66
in Visual Basic, 239

money (see currency format, localizing)
mouse clicks, 66, 189

testing for, 503
(see also Click event)

MSBuild tool, 136
MS-DOS, 187
MSF (Microsoft Solutions Framework), 84
MsgBox procedure, 50, 241, 715

displaying literals, 36
MsgBoxResult enumeration, 241
.msi files, 693
MSI installations, 693–698

CD distribution, 700
ClickOnce deployment versus, 698
generating file for Library Project, 707

MSIL (Microsoft Intermediate Language)
(see IL)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 743

multidimensional arrays, 174
multiline statements, 52
multimedia, 507
Multiple Active Result Sets (MARS), 284

including support in SQL Server
connection string, 290

multiplication operator (see * [asterisk],
under Symbols)

Must Inherit keyword, 248, 318
Must Override keyword, 248, 318
MustInherit keyword, 231, 237

disallowing direct instantiation, 248
Visual Studio’s problem with, 318

MustOverride keyword, 231, 237
Visual Studio’s problem with, 318

My namespace, 69
assemblies and, 132–134
DoEvents method, 243
file management, 424–426
major nodes of the hierarchy, 132

My.Application.Deployment property, 699
My.Application.Info.Version, 146
My.Computer.FileSystem object

DeleteFile method, 134
file interaction features, 424–426

My.Forms collection, 70, 149
My.MySettings object, 397
My.Resources object, 529
My.Settings object, 398–400, 410, 685
My.User object, 311
MyApplication_Shutdown event

handler, 298
MyApplication_Startup event, 297

loading database settings, 406
RefreshHolidays method, 447

MyBase keyword, 234
MyClass keyword, 233

N
Name property, My.User, 311
NameMyChild method (example), 258
names, variable, 38
namespace abbreviations, 68
Namespace statements, 69
namespaces, 11, 66–69

ADO.NET classes, 278
BCL and FCL classes, 13
Global keyword and, 27
importing, 68
My namespace, 69

My namespace and assemblies, 132
in your project, 69
WCF services, 662
XML, 370

including in XML content, 378
narrowing conversions, 45, 337

implicit, generating compile-time
errors, 260

Narrowing keyword, 338
navigation controls, 650
needs of users, 79–83

commonality versus innovation, 81
data and information, 79
process, 80
project-specific, 83
usability, 80

negation operators (see – [minus sign], under
Symbols; Not operator)

negative numbers, 152
nested classes, 10
nested loops, 57
nested types, 228
.NET Framework, xv, 1–29

assemblies, 126–150
assemblies and manifests, 13
before .NET, 1
benefits of, 2
class libraries, 10–13
CLR (Common Language Runtime), 7
CLS (Common Language

Specification), 8
CTS (Common Type System), 9, 34
data types and Visual Basic

equivalents, 158
history of, 31
implementation of Visual Basic data

types, 41
lack of raw printer support, 564
metadata and attributes, 13
objects, 3–7
printing system, 554–557
Remoting, 659
support of ASP.NET, 645
versioning, 15
versions supported by Visual Studio

2008, 21
Visual Basic development process, 16
Visual Studio 2008, 18
Visual Studio and Visual Basic, 17
(see also ADO.NET), 278

NetworkStream object, 419

http://lib.ommolketab.ir
http://lib.ommolketab.ir

744 | Index

New keyword, 28
As New clause, 438
assigning reference type instance to a

variable, 163
constructors, 234
creating instances of custom classes, 232
instantiating reference types, 42

New Project dialog (Visual Studio), 23
nodes

.NET type hierarchy, 11
XML document, 372

locating, 374
non-postback events, 654
normalization, 96
not equal to operator (see < and > [angle

brackets], under Symbols)
Not operator, 48, 169

overloading, 335
Notepad, 18
Nothing value, 175

assignment to variables, 162
comparing reference types to, 42
IF operator arguments evaluating to, 54
variables created with default

constructor, 235
NotInheritable keyword, 232
NotOverridable keyword, 231
NULL keyword, 104
null values, 104

passing in SQL statements, 299
nullable types, 175

generic, 441
Nothing value, 163
support for LINQ, 450

numbers
treating as Boolean values, 37
variables for, 34

numeric functions, 179
numeric literals, 159

in SQL statements, 103

O
O/R (Object Relational) Designer, 465–467

locating SQL Server database tables, 471
OBAs (Office Business Applications), 584
obfuscation, 17, 130, 616–618
Object class, 39, 40, 157

Finalize method, 236
generic type parameters, 436
ToString method, 245
weak typing, 434

object equal-to comparison operator (Is), 48
object initializers

support for LINQ, 450
using (example), 451

Object Linking and Embedding for Databases
(OLE DB), 277, 280

object not-equal-to comparison operator
(IsNot), 48

Object Relational Designer (see O/R
Designer)

object-oriented programming (OOP), 31,
219–241

classes in Visual Basic, 225
interfaces and implementation, 224
objects, 220
On Error statement and, 270
structured error handling, 265–267

object-oriented technologies, 2
objects, 3–7, 220

abstraction, 220
ASP.NET object-based technology, 645
defined, 4
inheritance, 222
initializers, 259
instances and, 6
interfaces and, 5
LINQ to Objects, 451
polymorphism, 223

ODBC (Open DataBase Connectivity), 277
implementation by Microsoft, 279
replacement by providers in .NET, 280

Office Add-In project templates, 584
Office Business Applications (OBAs), 584
OLE DB, 277, 280
On and Equals keywords, 457
On Error GoTo statement, 265
On Error Resume Next statement, 265

database interaction routines, 298
On Error statements, 270

enabling or disabling error handling, 264
one-to-one relationship, 106
OnInitialize method, 214
online help, 672–688

accessing HTML Help, 680–682
designing HTML Help, 674–680
Library Project (example), 683–688
Windows, 672–674

OOP (see object-oriented programming)
Opacity property, 524
Open DataBase Connectivity (see ODBC)
Open File dialog, 411
open source applications, 612

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 745

opening tag and matching closing tag
(XML), 364, 367

operands, 167
operating systems, 4

(see also entries under individual system
names)

Operator keyword, 332, 338, 339
operator overloading, 330–340, 342

caution with, 340
comparison operators, 334
CType operator, 336
declarations, 339
mathematical operators, 333
other issues, 338
overloading overloaded operators, 340

operators, 47, 167–172
assignment, 171
binary, 47
combining, operands as complex

expressions, 49
as functions, 331
grouping operands by, using expression

trees, 256
LINQ, 452, 454

extension methods corresponding
to, 461

summary of, 168–171
Option Compare statement, 46
Option Explicit statement, 45
Option Infer On statement, 256
Option Infer statement, 46
Option Infer statements, turning type

inference on or off, 167
Option statements, 45
Option Strict On statement, 233, 256

implicit narrowing conversions generating
errors, 260

Option Strict statement, 45
optional arguments, 50
Optional keyword, 230
options (SQL Server), 101
OR keyword, 104
Or operator, 48, 169

overloading, 335
Oracle, 279
OracleClient class, 278
Order By clause, LINQ queries, 456
ORDER BY clause, SELECT statement, 105
OrElse operator, 48, 169

overloading, 336
OUTPUT INSERTED clause, 292

overloaded subroutines, 50
overloading, 224

generic types and members, 440
Overloads keyword, 229

overloading overloads and, 340
Overridable keyword, 231
Overrides keyword, 231
overriding

inherited base class members, 222
MustOverride keyword, 237

owner draw, 488
enhancing controls, 505

P
page directive (ASP.NET), 648
Page_Load event, 654
pages, counting and numbering for

printing, 561
PageSetupDialog control, 554
paging results, LINQ queries, 458
Paint event, 489

bar code label preview control, 522
PictureBox control, 494

ParamArray arguments, 243
parameters

property, 60
subroutine, 58

parent-child relationship, database
tables, 106

partial classes, 225
Partial keyword, 27, 225
partial methods, 239

restrictions on, 240
support for LINQ, 450
using event system instead of, 241

Pascal, 49
Pascal Casing, 166
passing by value or by reference, 58
Password reserved keyword, 542
passwords

encrypting (example), 312–328
generation on Unix systems, 303
SQL Server, 290

paths, graphics, 488, 501
using to establish custom clipping

region, 502
pattern comparison (Like) operator, 48, 170

overloading, 335
PDF-like static document, 507
PE (Portable Execution) files, 128
Peek method, Stack class, 441

http://lib.ommolketab.ir
http://lib.ommolketab.ir

746 | Index

pens, 488
creating, 490
disposing of properly, 490
Pen object, 490
predefined, 490
System.Drawing.Pens class, 490

period (.)
separating nodes in type hierarchy, 11
(see also . [dot], under Symbols)

persisted settings, 399
personal computers (PCs), 1
pessimistic concurrency, 279
physical data model, abstraction into logical

view, 463
PIA (Primary Interop Assemblies), 584
PictureBox control, 213

Paint event handler, 493
properties, 494

planning
design and, 85
importance in programming mindset, 716

PNG files, 497
polymorphism, 223
pop-up help, 681
Portable Execution (PE) files, 128
Portable Network Graphics (“PNG”)

files, 497
Position property, Stream object, 418
postback events, 654
PostScript, 553
presentation, separation from logic in

application design, 508
PreviousPage object, 668
Primary Interop Assemblies (PIA), 584
primary key, 96
PRIMARY KEY clause, CREATE TABLE

statement, 101
PrintDialog control, 554, 558
PrintDocument class, 554, 557, 582

document page numbers and, 561
field-level instance, With Events clause in

definition, 554
PrinterSettings.PrintRange property, 561
PrintPage event handler, 561

printers, installed, 409
PrinterSettings class, 557

PrintRange property, 561
printing, 552–580

counting and numbering pages, 561
in .NET, 554–557
print preview, 559

printer controls for Windows Forms, 554
printer languages, 553
program that prints a

document, 557–559
in raw mode, 563
Windows printer drivers handling printer

variations, 553
PrintPage event handler, 559, 561

modifying code determining when to quit
print process, 563

PrintPreviewControl class, 555
PrintPreviewDialog class, 554, 560
Private modifier, 44

assemblies, 126
base class members, 223
variables, 164

procedural languages, 49
procedure-level scope, 165
procedures, 35

creating your own, 57–61
placement of, 61
variables and constants declared outside

of, 164
variables and constants declared

within, 164
window (see WndProc)

process, 80
Process object, 145

Start method, 390
processing of data, 4
Professional Edition of Visual Studio

2008, 19
professional version of an application, 134
programming

basic tasks performed by computers, 4
unified environment in .NET, 2

programming languages
lambda calculus, use of, 253
.NET, 2

programming mindset, 716
programs

examples in this book, xvi
source code for examples in this

book, xvii
using code examples from this book, xviii

project acceptance document, 89
project approval document, 87
project design document, 85
project goals, 85
project kickoff, 84

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 747

project lifecycle, 83–89
acceptance criteria testing, 88
acceptance of the project, 89
approval of design document, 86
changes to the project, 87
deployment and distribution, 89
design and planning, 85
development phase, 87
documentation, proper and complete, 84
kickoff meeting, 84
ongoing support, 89
project approval document, 87
project goals, 85

project management, 83
cyclical and linear approaches, 84

project methodology framework, 83
projects in Visual Basic

(see also Library Project)
project-specific user needs, 83
Prompt parameter, MsgBox, 241
properties, 4, 50, 60

class, 227
class sub methods and, 226
controls, 288
form, 195–197
object, 221
XML axis properties, 377

Properties panel (Visual Studio), 15, 24, 139
setting form properties, 139

Property keyword, 61
PropertyBinding property, 400
PropertyGrid control, 511, 518

attributes added to class properties, 511
ItemProperties control instance, 522

proprietary binary formats, 361
Protected access modifier

base class members, 223
variables, 164

Protected Friend variables, 164
prototypes, 87
providers

ADO.NET, 279–281
supporting using Entity

Framework, 294
LINQ, 451

pseudocode, 33
public key encryption, 305, 309
Public keyword

in operator declarations, 332
operator overload declarations, 339

public members, 5
Public modifier, 44

assemblies, 127
variables, 164

public-key encryption
(see also cryptography)

publishing a site to the production
server, 691

publishing process for applications, 699
Push and Pop methods, Stack class, 440
Python, 22

Q
queries, LINQ, 452
query clauses, 453
Query Designer (SQL Server), 598
query expressions, 450

advanced, 460
basic, 453–458

query languages, 97
(see also LINQ; SQL; SQL Server)

QueryPageSettings event, 559
quotation marks (see under Symbols)

R
Raise method, Err object, 270
range variables, 453
RangeValidator, 655
“raw” mode, communication with

printers, 563
RC2 (Rivest Cipher number 2), 307
RC2CryptoServiceProvider class, 307
.rdlc files, 586
RDLC Report Viewer control, 657
RDLC reports, 586–597

adding data source, 585
adding page header and footer, 590
data grouping and sorting

support, 591–593
data region controls, 587
designing report surface, 587
report schema, 599
running, 589
style formating, 592
supplying custom data sources, 595–597
using a report control, 588
using custom data, 593

RDO (Remote Data Objects), 277
readers and writers of stream data, 420

http://lib.ommolketab.ir
http://lib.ommolketab.ir

748 | Index

ReadOnly or WriteOnly keyword, 61
records, 95
recursion, 315
reference types, 9, 39

assignment to System.Object
instance, 158

declaration, 42
differences from value types in usage, 157
instantiation, 41, 42
passing by value or by reference, 58
System.Object, 157

references
assembly manifest, 129
between database tables, 101

REFERENCES constraint, 123
REFERENCES option clause, CREATE

TABLE statement, 101
referential integrity, 323
reflection, 131
Refresh method, 242
#Region directive, 134
regions, 502

establishing custom clipping region, 502
using in hit testing, 503

registry, 393
Registry Editor, 697
RegularExpressionValidator, 655
relational algebra, 97
relational databases, 95, 109

ADO.NET, 278
vendor-specific systems, 97

relationships
ADO.NET Entity Framework, 293
table, 106

Reload method, Settings object, 399
reloading web pages, 654
REM keyword, 45
RemoveHandler statements, 209
reporting, 581–610

Crystal Reports, 583
integration with Microsoft Office, 583
PrintDocument-based printing, 582
report output on a printer, 487
services and controls, 583
using .NET reporting controls, 584–597
using HTML/Web pages, 582
using XPS documents, 582

reporting controls, 650
Reporting namespace, 583
ReportViewer class, 583

creating a simple report, 584
(see also Microsoft ReportViewer control)

RequiredFieldValidator, 655
Reset method, Settings object, 399
resgen.exe utility, 535
resource files, 16, 527
resource generation, 528
Resource Kit, 109
ResourceManager class, 530
resources, 213, 527

adding outside Visual Studio, 534
cleaning up, 237
generating and compiling

manually, 535–537
.resources files, 536
Resources object, 529
Resources.resx file, 530
response variable, 38
Resume Next statement, 265
.resx files, 528
Return statements, 63, 715
return values, 49

lambda expression, 254
Rich Text Format (RTF), 673
right outer joins, 106
Rijndael encryption algorithm, 307
Rivest Cipher number 2 (RC2), 307
Rollback method, 293
root element, 365
root namespace, 69
root nodes, .NET namespaces, 11, 12
rotation transformations, 503, 523
rows, 95
RSA algorithm, 309
RSA class, 624
RSACryptoServiceProvider class, 309, 624
RTF (Rich Text Format), 673
Ruby, 22
Run method, Application class, 191
runat="server" attributes, 651
runtime agility, 715
runtime errors, 261

S
satellite assemblies, 528

compiling manually from .resx
files, 535–537

Save method, Settings class, 399
SaveMySettingsOnExit flag, 399
SayHello class (example), 72

private fields, 72
SByte data type, 40, 154

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 749

schedules, 85
approval of proposed schedule, 87
changes in, 87

schemas, XML, 368–370
for XML literals, 378
verification, 374

scope
aid of project goals in determining, 85
block-level, for variables, 165
change in, 87
variables, 165

scope creep, 88
screen scraping, 658
screen updates, 242
secret key cryptography, 307
secrets, 303
security, 303–329

authentication and My.User, 311
cryptography and encryption, 304–311
enhancements from .NET, 3
highest level, with software use, 614
.NET features, 304
SecureString class, 312

Select Case statements, 52
KeyDown event handler, 217
window procedures, 190

Select clause, LINQ queries, 454
SELECT statements, 97, 104, 598

SQL query, 599
WHERE clause, 599

SelectedObject property, 511
self-describing (.NET applications), 136
servers, standalone, 279
server-side scripting, 644
server-side validation, 656
Service class, 660
service release updates, 89
ServiceContract attribute, 660
services, WCF, 659–662

providing named access to, 662
requesting, 661

Set accessor, 60
SET clause, UPDATE statement, 104
Settings object, 398–400, 410, 685
Settings.Designer file, 396
Settings.settings file, 394, 396

WarningLimit and NoticeFont
settings, 398

setup project, building, 693–698
Setup Wizard, 693, 700

Setup.exe file, 708
SHA-1 hash algorithm, 311
SHA1Managed class, 311
shadowed members, 232
Shadows keyword, 232
shape controls, 140
shapes

GDI drawing elements, 488
transformations, 503

shared class members, 228
Shared keyword, 229, 338

in operator declarations, 332
operator overload declarations, 339

shift operators (see < and > [angle brackets],
under Symbols)

Short data type, 40
shortcuts

desktop, 703
Show method, 194

MessageBox class, 242
ShowDialog method, Form class, 210
ShowHelp method, 682, 684
Shutdown event for applications, 298
side-by-side installation, 16, 400
signed integers, 154
SignedXml class, 625, 631
Silverlight platform, 507

Microsoft.VisualBasic and, 242
Single data type, 40, 155
single-instance applications, 218
single-line statements, 52
Skip clause, LINQ queries, 458
Sleep function, 214
smallint data type, 101
Smart Tags, 200
SOAP (Simple Object Access Protocol), 659
software

development of, 87
licensing options, 611
(see also licensing)

software for this book
download, contents of, xvii
installing, 719–721
license agreement, 722

solid brushes, 491
Solution Explorer (Visual Studio), 24, 139
sorting

binary and text string comparisons, 46
report data, 592

http://lib.ommolketab.ir
http://lib.ommolketab.ir

750 | Index

source code, 34
control systems, 89
controlling the user experience, 289
dividing a single class among multiple

files, 27
example programs from this book, xvii
files with a .vb extension, 16
including/excluding using directives, 134
using examples from this book, xviii
Visual Basic code behind ASP.NET

page, 646
Visual Studio and Visual Basic, 17

spaghetti code, resulting from overuse of
GoTo statements, 62

specifications, 86
Split function, 185
SQL (Structured Query Language), 97,

100–107
AS keyword, 453
beyond basics, 106
building statements, 598–600
DDL statements, 100–103
DML statements, 103–106
influence on database industry, 109
routines preparing data for SQL

statements or retrieved data, 299
using SQL statements in SQL Server, 290

SQL Query Debug Visualizer tool, 468
SQL Server, 279

connecting to entities instead of, 294
connecting to, using Visual

Studio, 284–289
connection string, building, 289
data types, 101
database instance name, 665
database transactions, 292
establishing a connection, 290
help, 673
LINQ to SQL, 464–468
modifying data, 291
processing results from, 291
Reporting Services, 583, 584
using SQL statements, 290

SQL Server 2005, xvii, 19, 98
Management Studio Express, 123

SQL Server 2008, 20, 98
SQL Server Management Studio, 99
SQL Server Management Studio Express, 99

Query Designer, 598
query features, 360

SQLClient class, 278

SqlCommand object, 290
ExecuteScalar method, 292
Transaction property, 293

SqlConnection object, 290
SqlDataReader object, 291

extending, 345, 473
SqlMetal.exe tool, 465
SqlTransaction object, 292
stacks, 478

Stack class, 440
Stack(Of T) generic class, 441

standalone servers, 279
standard controls, 649
Standard Edition of Visual Studio 2008, 19
standards, use in .NET Framework, 3
Start method, Process object, 145
Startup event for applications, 213, 297
startup options, Windows Forms

applications, 193
StartupNextInstance event handler, 218
state, 395

retaining in a web page, 655
statement keywords, 52
statements, 34

block statements, 165
Option statements, 45
(see also SQL)

static variables, 172
Stop statements, 64
storage of data, 4
StrDup function, 38
StreamReader class, 421

implementing with a custom
function, 423

streams, 309, 418–424
example code, moving data into/out of a

memory stream, 419
readers and writers of stream data, 420
reading a file via, 422
Stream object, 418

StreamWriter class, 421
String class, 41, 156

built-in methods returning modified string
instance, 341

constructors, 42, 163
extending, 341
references types, derivation from, 157
System.String class properties and

methods, 181
string concatenation operator (see &

[ampersand], under Symbols)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 751

string literals, 36
in SQL statements, 103

StringBuilder class, 480, 570
StringFormat class, 515
StringReader class, 421
strings

binary and text comparisons, 46
default constructors, 42
functions for string manipulation, 179

Library Project (example), 183–186
immutability in .NET, 156
literal, 36
preparing for printing, 567
in resource files, 528
SecureString class, 312

StringWriter class, 421
strong name (assemblies), 13, 127, 129
strongly typed languages, 166
structured error handling, 265–269

mixing with unstructured error
handling, 270

structures, 9, 153
implementation of value types, 239
namespaces, 66
support by value types, 158
user-defined types, 10

Sub declaration statement, 58
Sub Main procedure, 194
sub methods, 226
subroutines, calling indirectly through

events, 64
subtraction operator (see – [minus sign],

under Symbols)
Sum function, 460

use in LINQ aggregate query, 459
summary form, generic, 250–252
SuppressFinalize method, 237
surfaces

adding report design surface, 586
drawing surfaces, generalized by

GDI+, 488
.svc files, 659
symmetric cryptography, 305, 307
system events, 66
system message queue, 189
System namespace, 11, 66

core data types, 39
data types implemented as classes, 153

system testing, 88
System.Collections namespace, 440
System.Collections.Generic namespace, 441
System.Collections.Stack class, 440

System.Data namespace, 278, 295
System.Data.Linq.Mapping namespace, 468
System.Data.OracleClient namespace, 278
System.Data.SqlClient namespace, 278
System.DateTime class, 178
System.DayOfWeek enumeration, 162
System.Decimal data type, 155
System.Diagnostics namespace, 145
System.dll, 68, 131
System.Double data type, 155
System.Drawing namespace, 487
System.Drawing.Font class, 493
System.Drawing.Graphics class, 488
System.Drawing.Pens class, 490
System.Drawing.Point setting, 400
System.Drawing.Printing.PrintDocument

class, 554
System.Drawing.Printing.PrinterSettings

class, 557
System.Drawing.Text.InstalledFontCollection,

409
System.EventArgs class, 144, 206, 207
System.Exception class, 271
System.Globalization namespace, culture

management features, 538
System.IO namespace

readers and writiers of stream data, 420
Stream object, 418

System.Linq.Expressions namespace, 256
System.Math class, 179
System.Object class, 39, 157

generic type parameters, 436
weakly typed, 434
(see also Object class; objects)

System.Reflection namespace, 131
System.Runtime.CompilerServices

namespace, 341
System.Security.Cryptography

namespace, 306, 316
System.Security.Cryptography.RSA class, 624
System.Security.Cryptography.Xml

namespace, 627
System.Security.SecureString class, 312
System.Single class, 155
System.String class, 42, 181

(see also String class; strings)
System.Timers namespace, 66
System.ValueType class, 41, 157, 239
System.Version class, 146
System.Windows.Forms namespace, 68,

191, 193

http://lib.ommolketab.ir
http://lib.ommolketab.ir

752 | Index

System.Windows.Forms.Application.Run
method, 191

System.Windows.Forms.Control class, 191,
197

System.Windows.Forms.dll, 68
System.Windows.Forms.Form class, 142
System.Windows.Window class, 509
System.Xml namespace, 295, 371
System.Xml.Linq namespace, 371, 376
System.Xml.XPath namespace, 374

T
tab order, 141
tables, 95

abbreviations for names, 105
joining, 97, 105
(see also database tables)

Tag Image File Format (“TIFF”) files, 497
tags

ASP.NET, 651
XML, 366

Take clause, LINQ queries, 458
Take While clause, LINQ queries, 458
Team Foundation Server, 20
Team System 2008, Visual Studio, 20
Technical Resource Kit, 109
television (TV), considered as an object, 5
Telnet program, 643
templates

chapter-specific project templates, 23
installing project templates for this

book, 720
ternary operator (If), 54
testing (acceptance criteria), 88
text

aligning with bounding box, 523
comparisons, 46
data types, 156
before graphical user interfaces, 493
placing on graphics surface, 493–496
string data, 34
transformations before output to graphics

surface, 503
variables for, 34

TextBox controls
adding to report header and footer, 590
ASP.NET, TextChanged event, 653
Color property, 593

TextReader class, 421
texture brushes, 491

TextWriter class, 421
The Rule (XML), 367
Then keyword, 51
Throw statement, 270
TIFF files, 497
Timer control, 191
ToArray method, 459
ToDictionary method, 459
ToList method, 459
ToLower method, String class, 341
toolbox (Visual Studio), 138
ToString method, 245

ListBox control, 382
ToUpper method, String class, 341
TRACE constant, 136
Transaction property, SQLCommand

object, 293
transactions, 292
transformations

geometric, of graphics objects, 503
rotations, 523
(see also XSLT)

transparency
setting level, 491
slowly increasing for, 524

Trim function, 184
Trimming property, StringFormat class, 515
Triple DES encryption algorithm, 307
True value, 37

conversion to integers, 157
TrueType fonts, 512
Try clause, Try...Catch...Finally

statement, 266
Try...Catch...Finally statement, 266
T-SQL scripting language, 98
TV considered as an object, 5
type (data values), 36
type inference, 376

combining with lambda expressions, 255
use by anonymous types, 451

type parameters, 436
typed data sets, 282, 464
TypeOf operator, 171
types, 9

CTS (Common Type System), 9
namespace referencing, 67
placing in subordinate namespaces from

root namespace, 69
variable, 38
(see also data types)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 753

U
UInt16 data type, 154
UInt32 data type, 154
UInt64 data type, 154
UInteger class, 41
ULong class, 41
unary negation operator (see – [minus sign],

under Symbols)
unary operators, 47, 167, 331
unary plus operator (see + [plus sign], under

Symbols)
unhandled errors, 267

bubbling up the call stack, 268
UnhandledException method, 276
Unicode, 153

String data type and, 156
UnicodeEncoding object, GetBytes

method, 317
unidirectional encryption, 306
unit testing, 88
unmanaged code, 7

winspool.drv library, 567
unsigned integers, 154
unstructured error handling, 263–265

mixing with structured error
handling, 270

Until clauses, Do...Loop, 55
UPDATE statements, 97, 104
Upgrade method, Settings object, 399
URI (Uniform Resource Identifier), 370
URLs, creating fake URL-like links, 481
usability, 80
user authentication, 311
user IDs, SQL Server, 290
user interface, 486–525

controls, 191
creating with WPF, 507–510
culture of local society, 537
drawing images, 499–501
drawing in context of Graphics

objects, 488–490
drawing primitives with pens, 490
enhancing controls using owner

draw, 505
filling in between drawn lines with

brushes, 491
flowing text from fonts, 493–496
GDI+, overview, 487–488
graphics paths, collecting drawing objects

into grouped unit, 501

images, 497–499
regions, 502
transformations of drawing objects, 503

User Interface Editor, 697, 704–706
user needs (see needs of users)
user settings, 402

modifying and saving, 398
user.config file, 395
User’s Desktop folder, 703, 706
User’s Programs Menu folder, 703
user-controlled preferences, 400
user-defined types, 10
UShort class, 41
Using statement, 237

V
Val function, 655
validation controls, 650
validation of data, Web Forms, 655
ValidationSummary control, 656
value comparisons against a list, 52
value types, 9

assignment to System.Object
reference, 158

constants, 161
declaration, 42
default assignment by Visual Basic, 45
derivation from System.ValueType, 41
differences from reference types in

usage, 157
implementation by structures, 239
nullable, 175
passing by value or by reference, 58

ValueType class, 157, 239
varchar type, 101
variable lifting, 258
variables, 34, 37, 162

access modifiers, 164
assigning new reference type instance

to, 163
data type, 35, 167
declaring and assigning values, 38
defined within a procedure or within a

type, 164
defining as simple functions using lambda

expressions, 254
generics versus, 442
importance of declaring, 45
naming conventions, 165
range (or iteration) variables, 453

http://lib.ommolketab.ir
http://lib.ommolketab.ir

754 | Index

variables (continued)
reference type, 39
scope and lifetime, 165
static, 172
value type, 39
variable fields as class members, 226

.vb files, 16
VBA (Visual Basic fro Applications), 31
VBC_VER constant, 136
VBx, 22
“VCR” control, 288
vector (line) graphics

drawing with GDI+, 487
GraphicsPath object, 488
metafiles, 497

Version class, 146
version control for source code, 89
versioning, 15, 127
versions

accessing for applications with My
namespace, 134

application settings and, 399
assembly version number, 129
setting assembly version number, 146
VBC_VER constant, 136

vi (editor), 18
video and audio, 507
View State, 655
Visual Basic

Boolean values, conversion to
integers, 157

comments, 44
conditional statements, 50–54
constants, 43
creating your own procedures, 57–61
data types, 39
data types and variables, 35
events and event handlers, 64–66
file management features, 424–426
flexibility of, 714
functions, 59
functions and subroutines, 49
history of, 30
language basics and core features, 32–35
literals, 36
local variable and constant declarations,

fields and, 43
logic and data, basics of, 32

loops, 54–57
My namespace, 69
namespaces, 66–69
operators, 47–49
Option statements, 45
other flow control features, 61–64
value types and reference types, 39
ValueType data type, 157
variables, 37

Visual Basic 1.0, 2
Visual Basic 2005, 31
Visual Basic 2008, xvii, 32

advanced features, 22
supporting technologies for LINQ, 450
typed DataSets, 282

Visual Basic for Applications (VBA), 31
Visual Studio

Code Snippets feature, 70
deployment features, 690–700
documentation from the XML comments

for class members, 674
inserting a code snippet, 71
Integrated Development Environment

(IDE), 138
licensing and, 611
localizing forms, 531–534
Microsoft Help 2, 673
MicrosoftReportViewer control and, 585
MSBuild tool, 136
opening projects, 23
problems caused by MustInherit and

MustOverride keywords, 318
Properties panel, 15
SQL Server, 98
Visual Basic and, 17
Windows Forms controls, 200–205
writing some of a project’s code, 147

Visual Studio 2008, 18
creating complete WPF applications from

XAML content, 508
editions, 18
usability and feature enhancements, 20

Visual Studio Tools for Office (VSTO), 584
Visual Web Developer 2008, 19

Express Edition, 646

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 755

W
WCF (Windows Communication

Foundation), 658–662
services, 659–662

web browsers, 642
independence of ASP.NET

applications, 646
running a web service, 661

web development, 642–671
ASP.NET features, 645
creating an ASP.NET

application, 646–653
data validation, 655–656
database integration, 657
enhanced, .NET Framework, 3
events, 653
how the Internet works, 642
Library Project web site, 663–671
programming the Internet, 644
state and View State, 654
WCF (Windows Communication

Foundation, 658–662
Web Forms, 583, 645

code behind features, 646, 663
control class, represented by ASP.NET

tag, 651
controls, 649–651
GridView control, viewing RDLC

report, 657
Literal control, 670
retaining page state with View State

feature, 655
validation of data, 655

Web namespace, 11
web page for this book, xviii, 719
web servers

ASP.NET Development Server, 652, 661
ASP.NET, deployment, 690
connecting to Google web server, 643
IIS (Internet Information Server), 652
processing of web page changes, 653
server-side scripting, 644

web services (see WCF)
Web Site template, 646
web.config file, 393, 646

connection string for Library database, 664
connection strings, 658
copied to ASP.NET server, 691

web-based applications, hosted within a
user’s browser, 507

WebBrowser control, 470, 479
custom content through DocumentText

property, 479–481
links through Navigating event, 481–482

WebParts control containers, 650
web-style links, 144
WHERE clause

DELETE statement, 104
SELECT statement, 599
UPDATE statement, 104

Where clause, LINQ queries, 455
While clauses, Do...Loop, 55
While...End loop, 56
widening conversions, 46, 337
Widening keyword, 338
win.ini file, 393
Window class, 509
window procedures (see WndProc)
Window Types dialog, 680
windows, 188–189

forms and controls, 189, 191
HTML Help, 680
redrawing after obscuring or

exposing, 502
Windows Communication Foundation (see

WCF)
Windows folder, 393
Windows Forms, 187–218, 288

Add Service Reference form, 661
Button control Click event, adding SQL

Server data source, 290
ClickOnce deployment of

applications, 698
controls, 198–205, 488

available in Visual Studio, 200–205
creating applications, 191–194
default namespace, 69
events and delegates, 206–209
Help.ShowHelp method, 682
localization of applications, 530
My.Forms class, 70
printer controls, 554
properties, setting, 195–198
System.Windows.Forms namespace, 68

Windows Forms applications, 23

http://lib.ommolketab.ir
http://lib.ommolketab.ir

756 | Index

Windows Installer, 692–698
creating MSI installation file, 693–696
editors to customize MSI file, 696
generating MSI file, 698
Library application deployment, 700–710
MSI file, 693
versions, 692

Windows Live ID authentication system, 312
Windows namespace, 11
Windows Presentation Foundation (see

WPF)
Windows Resource Localization Editor, 534
Windows systems

applications, 187
command line (cmd.exe), 535
desktop application, adding controls to a

form, 15
logfiles in Windows Vista, 429
native bitmap image file format, 497
online help, 672–674
printer-specific drivers handling printer

variations, 553
raw printer support, 564
simplified programming with .NET, 3
Version 1.0, 2

WinHelp, 673
winres.exe, 534
winspool.drv library, 564, 567
With statement, 146

new variation, 259
WithEvents keyword, 28, 65, 208
WndProc (window procedures), 189

Button control, raising an event, 207
structure of, 190

Word, 361
World Wide Web, 642–644
WPF (Windows Presentation

Foundation), 20, 32, 486,
507–510, 511, 582

displaying WPF content, 507
features for generatation of XPS files, 552
XAML and, 508–510

WriteOnly keyword, 61

X
XAML (eXtensible Application Markup

Language), 507–510
user interface components, building, 508
Window tag and attributes, 509

XCopy deployment, 691
XDocument object, 376
XDR (XML Data Reduced) schemas, 374
XElement class, 376
XML, 361–391

advantages as a data form, 363
Ajax, 650
axis properties, 377
basic XML, characteristics of, 365
comma-delimited data from sample

database, 366
Cryptography tools in .NET, 623
definition of an RDLC report, 588
digital signature, 626
hierarchical structure, 366
license file, 622

containing a digital signature, 626
limitations of, 364
LINQ to XML, 461
namespaces, 370
opening tag and matching closing

tag, 364, 367
RDLC repports, 586
report configuration file, 605
schemas, 368–370
settings data in Visual Basic 2008, 394
settings files, 394
support for LINQ, 450
The Rule, 367
transformations, 367, 375, 582
using in .NET, the new way, 375–378
using in .NET, the old way, 371–375
web services, 659
XAML, 507–510

XML Literals, 376, 461
namespaces and schemas, 378
nonliteral variable content, 376

XmlAttribute class, 372
XmlComment class, 372
XmlDeclaration class, 372

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index | 757

XmlDocument object, 372–374
finding nodes within, 374
Load method, 374
Save method, 374, 626
schema verification, 374

XmlDsigCanonicalizationUrl method, 625
XmlElement class, 372
XmlNode class, 372
XmlNodeList object, 374
xmlns attribute, 370

defining with Imports statement, 378
XmlTextReader class, 374
XmlTextWriter class, 374
XNamespace object, 378

Xor (exclusive or) operator, 48, 169
overloading, 335

XPath, 368, 374
XPS (XML Paper Specification)

documents, 507, 552
print jobs captured as XPS

documents, 559
use in report generation, 582

XSD (XML Structure Definitions), 368–370
xs namespace, 370

XslCompiledTransform object, 375
XSLT, 367, 375, 582
<xsl:template> elements, 368

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author
Tim Patrick is a software architect and developer with 25 years of experience in
designing and building custom software solutions. A Microsoft MVP and Microsoft
Certified Solution Developer, Tim has published five tutorials and references on
Visual Basic development, along with several articles. His books include Visual Basic
2005 in a Nutshell and Visual Basic 2005 Cookbook, both by O’Reilly.

Colophon
The animal on the cover of Programming Visual Basic 2008 is a bufflehead duck
(Bucephala albeola). The name bufflehead derives from the words “buffalo” and
“head,” referring to the bulbous head shape distinctive to this species. Male buffle-
heads are black and white with a large white patch extending from the eye to the
back of the head; females are paler, smaller, and have a small white cheek patch.
Both sexes are characterized by short necks and narrow gray bills.

Ranging in size from 13 to 16 inches and 9 to 22 ounces, buffleheads are the smallest
diving ducks in North America. Unlike other diving ducks, they are able to take
flight directly from the water without having to run along the surface. They live by
lakes, rivers, and bays in Canada and the northen U.S., migrating to coastal water on
the Atlantic, Pacific, and Gulf coasts as far south as Mazatlan in the winter months.
They nest in aspen and poplar cavities excavated by northern flickers and pileated
woodpeckers.

The bufflehead diet consists of fresh- and saltwater insects, snails, crustaceans, and
plants. They dive for their food and swallow it underwater. Bufflehead ducks tend
to stay in a group, one or two of them feeding while the others stand watch for any
potential danger. Although not prized among duck hunters, buffleheads are hunted
for sport in the U.S. and Canada and comprise approximately two percent of North
American waterfowl hunting. Their status is not currently threatened, but habitat
degradation is an increasing concern. Because the ducks return to the same breeding
ground each year, overharvesting and deforestation could have a devastating impact on
their population if not carefully monitored.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Programming Visual Basic 2008
	Table of Contents
	Preface
	Who Is Reading This Book?
	What’s in This Book?
	What’s in the Software Download?
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Introducing .NET
	Before .NET
	Back to Introducing .NET
	The .NET Object
	Objects and Data
	Objects and Interfaces
	Objects and Instances

	The Parts of the .NET Framework
	The Common Language Runtime
	The Common Language Specification
	The Common Type System
	.NET Class Libraries
	Assemblies and Manifests
	Metadata and Attributes
	Versioning

	From Source Code to EXE
	What About Visual Studio and Visual Basic?
	Visual Studio 2008
	Summary
	Project

	Introducing Visual Basic
	The History of the Visual Basic Revolution
	Visual Basic from the Inside Out
	The Basics of Logic and Data
	Data Types and Variables
	Literals
	Variables
	Value Types and Reference Types
	Data Types
	Advanced Declaration
	Constants
	Local Declaration and Fields

	Intermission
	Comments
	Option Statements
	Basic Operators
	Using Functions and Subroutines
	Conditions
	If Statements
	Select Case Statements
	IIf and If Functions

	Loops
	For�.�.�.�Next Loops
	For Each�.�.�.�Next Loops
	Do�.�.�.�Loop Loops
	Exit Statements
	Continue Statements

	Creating Your Own Procedures
	Subroutines
	Functions
	Properties
	Where to Put Your Procedures

	Other Flow Control Features
	The GoTo Statement
	The Return Statement
	The End and Stop Statements

	Events and Event Handlers
	Namespaces
	Referencing Namespaces
	Namespaces in Your Project

	The My Namespace
	Summary
	Project

	Introducing the Project
	The Library Project
	Library Item Features
	Patron Features
	Administrative Features
	The Application As a Whole

	The Needs of the Users
	Data and Information
	Process
	Usability
	Commonality
	Project-Specific Needs

	The Life of a Project
	Project Kickoff
	Documentation
	Project Goals
	Design and Planning
	Project Approval
	Software and Other Development
	Changes to the Project
	Acceptance Criteria Testing
	Project Acceptance
	Deployment and Distribution
	Ongoing Support

	Summary
	Project
	Project Agreement
	Project Objective
	Deliverables and Acceptance Criteria
	Project Tasks
	Library Item Features
	Patron Features
	Administrative Features
	The Application As a Whole
	Project Estimate and Timetable

	Designing the Database
	Relational Databases
	SQL Server 2005
	SQL
	DDL Statements
	DML Statements
	Beyond Basic SQL

	Using Databases in Visual Basic
	Documenting the Database
	Summary
	Project
	Technical Resource Kit Content
	Security-related tables
	Support code tables
	Library items
	Patron-related tables
	Bar code-related tables
	Other miscellaneous tables

	Creating the Database

	.NET Assemblies
	What Is an Assembly?
	What’s Inside an Assembly?
	Reflection

	Assemblies and Applications
	The My Namespace and Assemblies
	Directives and Assemblies
	Summary
	Project
	Adding Controls
	Adding the Code to the Form
	Setting the Version Number
	Adding the Main Form
	Extra Credit: Adding an Icon
	Save Your Work

	Data and Data Types
	The Nature of Computer Data
	Data in .NET
	Integer Data Types
	Decimal Data Types
	Character Data Types
	Date and Time Data Type
	Boolean Data Type
	The System.Object Class
	Value Types and Reference Types

	Visual Basic Data Types
	Literals
	Constants
	Enumerations
	Variables
	Scope and Lifetime

	Variable and Constant Naming Conventions
	Local Type Inference
	Operators
	Static Variables
	Arrays
	Multidimensional Arrays
	Array Boundaries
	Initializing Arrays

	Nullable Types
	Common Visual Basic Functions
	Conversion Functions
	Date-Related Functions
	Numeric Functions
	String Functions
	Other Functions

	Summary
	Project

	Windows Forms
	Inside a Windows Application
	Everything Is a Window
	Messages and the Message Pump
	Window Procedures

	Windows in .NET
	Forms and Controls
	Designing Windows Forms Applications
	Working with Forms
	Adding Controls
	Events and Delegates

	Making Forms Useful
	Summary
	Project
	Configuring the Splash Screen
	Configuring the Main Form
	Making the Program Single-Instance

	Classes and Inheritance
	Object-Oriented Programming Concepts
	The Object
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism
	Interfaces and Implementation

	OOP in Visual Basic and .NET
	Classes
	Class Members
	Shared Class Members
	Overloaded Members and Optional Arguments
	Inheritance
	Creating Instances of Classes
	Constructors and Destructors
	Interfaces
	Modules and Structures
	Partial Methods

	Related Issues
	The MsgBox Method
	Using DoEvents
	ParamArray Arguments

	Summary
	Project
	Supporting List and Combo Boxes
	Editing Code Tables
	The Generic Detail Form
	The Generic Summary Form

	Functional Programming
	Lambda Expressions
	Implying Lambdas
	Expression Trees
	Complex Lambdas
	Variable Lifting

	Object Initializers
	Error Handling in Visual Basic
	The Nature of Errors in Visual Basic
	Unstructured Error Handling
	Disabling Error Handling
	Ignoring Errors

	Structured Error Handling
	The Try Clause
	The Catch Clause
	The Finally Clause

	Unhandled Errors
	Managing Errors
	Generating Errors
	Mixing Error-Handling Methods
	The System.Exception Class
	The Err Object
	The Debug Object
	Other Visual Basic Error Features

	Summary
	Project
	General Error Handler
	Unhandled Error Capture

	ADO.NET
	What Is ADO.NET?
	Overview of ADO.NET
	Providers
	Data Sets

	Data Sets Versus No Data Sets
	MARS Support

	Connecting to SQL Server with Visual Studio
	Creating a Data Source
	Using a Data Source
	Data Binding

	Interacting with SQL Server in Code
	Building the Connection String
	Establishing the Connection
	Using SQL Statements
	Processing the Results
	Modifying Data

	Database Transactions
	ADO.NET Entity Framework
	Summary
	Project
	Reference the Data Namespaces
	Connecting to the Database
	Interacting with the Database
	Processing Data Values
	System-Level Configuration

	Security
	Security Features in .NET
	Cryptography and Encryption
	Keeping Secrets
	Data Stability
	Identity Verification

	Encryption in .NET
	Symmetric Cryptography
	Asymmetric Cryptography
	Hashing

	Other Security Features
	User Authentication and My.User
	The SecureString Class

	Summary
	Project
	Authentication Support
	Encrypting Passwords
	Undoing Some Previous Changes
	Managing Security Groups
	Managing Users
	Per-User Experience

	Overloads and Extensions
	What Is Operator Overloading?
	What Can You Overload?
	Mathematical Operators
	Comparison Operators
	Bitwise and Logical Operators
	The CType Operator

	Other Operator Overloading Issues
	Declaration Requirements
	Overloading Overloads
	Be Nice

	Extension Methods
	Summary
	Project
	Overloading a Conversion
	Global Support Features
	Extending a Framework-Supplied Class
	Record Editors and Supporting Forms
	Search-limiting forms
	Keyword and subject editors
	More named item support forms
	Inherited code editors

	Connecting the Editors to the Main Form
	Setting the Default Location

	XML
	What Is XML?
	The XML Rule
	XML Content
	Some Basic XML
	Some Basic—and Meaningful—XML
	What About the Human-Readable Part?
	XML Schemas
	XML Namespaces

	Using XML in .NET: The Old Way
	The Basic XML Classes, Basically
	Finding Needles and Haystacks
	Schema Verification
	XML Transformations

	Using XML in .NET: The New Way
	Embedded XML Expressions
	XML Axis Properties
	Namespaces and Schemas for XML Literals

	Summary
	Project
	Update Technical Documentation
	Report Configuration File

	Create Report Entry Class
	Design the Report Form
	Populate Reports from Configuration File
	Running the Reports
	Connecting the Select Report Form

	Application Settings
	A Short History of Settings
	Settings in Visual Basic 2008
	Adding Settings to a Project
	My.Settings
	Bound Settings

	Summary
	Project
	Update Technical Documentation
	User settings

	Add the Settings
	Positioning the Main Form
	Caching and Using Settings
	Adding Configuration Forms
	Connecting to the Configured Database

	Files and Directories
	Traditional Visual Basic File Management
	Manipulating Files Through Streams
	Stream Features
	Using a Stream
	Beyond Stream Bytes
	Reading a File Via a Stream

	File Management with the My Namespace
	My Namespace Versus Visual Basic Commands
	Reading and Writing Files Through My

	Summary
	Project
	Configuring Log Output
	Other Log Output Options
	Obtaining a Bar Code Font

	Generics
	What Are Generics?
	Variations of Generic Declaration
	Multiple Placeholders
	Data Type and Interface Constraints
	Simultaneous Constraints
	Nesting Generic Types
	Non-Generic Types with Generic Members
	Overloading Generic Types and Members
	Generics and Collections
	Generic Nullable Types

	Summary
	Project
	Managing Holidays

	LINQ
	What Is LINQ?
	The Good
	The Bad
	Supporting Technologies

	Anonymous Types
	LINQ to Objects
	Basic Query Expressions
	The From Clause
	The Select Clause
	The Distinct Clause
	The Where Clause
	The Order By Clause
	Joining Sources
	Skip and Take

	Converting Results to Other Forms
	Aggregate Queries
	Advanced Query Expressions
	LINQ to XML
	LINQ for ADO.NET-Related Data
	LINQ to Entities
	LINQ to DataSet
	LINQ to SQL

	Deferred Execution
	Summary
	Project
	Looking Up Library Items
	Maintaining Search History
	Showing Item Detail
	Enabling the Search Features

	User Interface
	Overview of GDI+
	Selecting a Canvas
	Obtaining and Creating Graphics Objects
	Disposing of Graphics Objects Properly

	Choosing Pens and Brushes
	Pens
	Brushes

	Flowing Text from the Font
	Imagining Images
	Exposing Your True Artist
	Paths: Drawings on Macro-Vision
	Keeping It Regional
	Twisting and Turning with Transformations
	Enhancing Controls Through Owner Draw
	Windows Presentation Foundation
	WPF and XAML

	Enhancing Classes with Attributes
	Summary
	Project
	Install the Bar Code Font
	Using Owner Draw
	Bar Code Design
	Fun with Graphics

	Localization and Globalization
	Defining Globalization and Localization
	Resource Files
	The My.Resources Object
	Localizing Forms Within Visual Studio
	Adding Resources Outside Visual Studio
	Manually Compiling Resources
	Resource File Generation
	Compiling Satellite Assemblies

	Other Localization Features
	Summary
	Project
	Tracking Patron Payments
	Calculating Patron Fines
	Patron Record Access
	Patron Password Modification
	Collecting Patron Payments
	Managing All Fines and Payments
	Connecting Patron Features to the Main Form
	Dueling Patron Management Forms

	Printing
	Printing in Windows
	Printing in .NET
	Printing a Document
	Print Preview
	Counting and Numbering Pages
	Printing in “Raw” Mode
	Summary
	Project
	Supporting Raw Printing
	Printing Tickets
	Printing Bar Codes
	Renewal of Checked-Out Patron Items
	Support for Check-In and Checkout
	Checking Out Items
	Checking In Items

	Reporting
	Report Options in .NET
	PrintDocument-Based Printing
	HTML/Web Pages
	XPS Documents
	Reporting Services and Controls
	Crystal Reports
	Integration with Microsoft Office

	Using Reporting Controls in .NET
	Adding the Data Source
	Adding a Report Design Surface
	Designing the Report Surface
	Using a Report Control
	Running the Report
	Adding a Page Header and Footer
	Support for Grouping and Sorting
	Enhanced Style Formatting
	Using Custom Data
	Supplying Custom Data Sources

	Summary
	Project
	Crafting the SQL Statements
	Adding Report Schemas
	Adding Reports
	Adding a Report Viewer
	Adding Built-in Reports

	Licensing Your Application
	Software Licensing Options
	License Agreement Only
	Generated General License Key
	Generated Custom License Key
	License Key with Hardware Identity or Lock
	Controlled Access

	License Agreements
	Obfuscation
	The Library Licensing System
	Designing the License File
	Generating the License File
	Installing the License File
	Using the License File

	Summary
	Project
	Update Technical Documentation
	License File

	Library License Helper Application
	Adding the License to the Library Program
	Display the License on the About Form
	Enforcing the License
	Daily Item Processing

	Web Development
	How the Internet Works
	Programming the Internet
	ASP.NET Features
	Trying Out ASP.NET
	More About Events
	State and View State
	Data Validation
	Database Integration
	Windows Communication Foundation
	Summary
	Project
	Configuring the Database
	The Default Page
	Search Results
	Search Detail
	Statistics Report

	Adding Online Help
	Windows Online Help Options
	WinHelp
	HTML Help
	Microsoft Help 2
	Assistance Platform
	Other Methods

	Designing HTML Help
	Content Files
	Help Project File
	Help Contents File
	Help Keywords (Index) File
	Formatting Help Windows

	Accessing HTML Help
	HelpProvider Control
	Accessing HTML help files
	Showing pop-up help

	ShowHelp Method

	Summary
	Project
	Building the Help Files
	Adding Help Support to the Application

	Deployment
	What’s Involved in Deployment?
	Deployment Methods Within Visual Studio
	Direct ASP.NET Deployment
	XCopy Deployment
	Windows Installer Deployment
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	After the wizard
	Generating the MSI file

	ClickOnce Deployment

	Summary
	Project
	Planning the Deployment
	Building the Setup Project
	The Distribution Media

	Project Complete
	The Library Project
	Visual Basic Flexibility
	The Programming Mindset
	Summary

	Installing the Software
	Download the Software
	Install the Software
	Install Project Templates
	Install Code Snippets
	Bar Code Support

	Software License Agreement
	Terms of Use

	Index

