
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax Programming
for the Absolute

Beginner

Jerry Lee Ford, Jr.

Course Technology PTR
A part of Cengage Learning

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax Programming for the Absolute
Beginner: Jerry Lee Ford, Jr.

Publisher and General Manager, Course
Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Mark Hughes

Acquisitions Editor: Mitzi Koontz

Project Editor: Jenny Davidson

Technical Reviewer: Keith Davenport

PTR Editorial Services Coordinator:
Jen Blaney

Interior Layout Tech: Value-Chain

Cover Designer: Mike Tanamachi

Indexer: Katherine Stimson

Proofreader: Sara Gullion

© 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions Further permissions
questions can be emailed to permissionrequest@cengage.com

All trademarks are the property of their respective owners.

Library of Congress Control Number: 2008928834

ISBN-13: 978-1-59863-564-5
ISBN-10: 1-59863-564-6

Course Technology
25 Thomson Place
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in Canada

1 2 3 4 5 6 7 11 10 09

eISBN-10: 1-43545-531-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To my mother and father for always being there, and to my
wonderful children, Alexander, William, and Molly, and

my beautiful wife, Mary.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ACKNOWLEDGMENTS

here are several individuals to whom I owe many thanks for their help and
assistance in the development of this book. I’ll start by thanking
Mitzi Koontz, who served as the book’s acquisitions editor. Special thanks

also go out to Jenny Davidson for serving as the book's project editor. I also want
to thank Keith Davenport for all the valuable input and advice. In addition, I would
like to thank everyone else at Course Technology PTR for all their hard work.

T

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ABOUT THE AUTHOR

erry Lee Ford, Jr. is an author, educator, and an IT professional with over
18 years of experience in information technology, including roles as an
automation analyst, technical manager, technical support analyst, au-

tomation engineer, and security analyst. He is the author of 28 books and co-author
of two additional books. His published works include AppleScript Studio Program-
ming for the Absolute Beginner, Microsoft Windows PowerShell Programming for the
Absolute Beginner, Microsoft Visual Basic 2005 Express Edition Programming for the Abso-
lute Beginner, Microsoft VBScript Professional Projects, Microsoft Windows Shell Scripting
and WSH Administrator’s Guide, Microsoft Windows Shell Script Programming for the Ab-
solute Beginner, Learn JavaScript in a Weekend, Second Edition, and Microsoft Windows XP
Professional Administrator’s Guide. Jerry has a master’s degree in business adminis-
tration from Virginia Commonwealth University in Richmond, Virginia, and he
has over five years of experience as an adjunct instructor teaching networking
courses in information technology.

J

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

Introduction.. xiv

Introducing Ajax... 1Part I

An Ajax Overview.. 3Chapter 1

Project Preview: The Joke of the Day Application... 4
Introducing Ajax.. 5

Ajax Technologies ... 6
Traditional Web Development Versus Ajax Development................................. 6

Examples of Real-World Ajax Applications and Websites.. 9
Search Engine Makeovers.. 9
Suggest Styled Applications ... 10
Google Maps.. 13
Netflix... 14
Virtual Desktop Applications... 14
Photo Management Using Flickr... 16
Ajax Instant Message Applications... 16
Online Calendars... 17

Back to the Joke of the Day Application.. 18
Designing the Application.. 18
The Final Result ... 25

Summary.. 26

Learning JavaScript and the DOM....................... 27Part II

An Introduction to JavaScript............................. 29Chapter 2

Project Preview: The Number Guessing Game... 29
JavaScript—Ajax’s Programming Language.. 31

A Little JavaScript Background Information.. 31
Browser Compatibility Issues... 32

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with JavaScript.. 33
Creating a Simple JavaScript.. 34
Executing Your JavaScript... 34

Four Ways of Working with JavaScript.. 35
Embedding JavaScripts in the HEAD Section... 35
Embedding JavaScripts in the BODY Section... 37
Placing JavaScripts in External Files .. 38
Embedding JavaScripts in HTML Tags.. 38
Understanding JavaScript Statement Syntax .. 39
Dealing with Browsers That Do Not Support JavaScript 39
Documenting Your Scripts Using Comments.. 40

Working with Different Types of Values... 41
Creating JavaScript Variables... 41
Assigning Variable Names .. 42
Understanding Variable Scope .. 42
Working with Local Variables.. 42
Doing a Little Math ... 43
Assigning and Modifying Variable Values .. 44

Applying Conditional Logic.. 47
Introducing the if Statement ... 47
Multi-line if Statements... 48
Providing for Alternative Conditions .. 48
Nesting if Statements... 49
Working with the switch Statement.. 50

Working Efficiently with Loops... 52
Working with the for Statement .. 53
Working with the while Statement ... 53
Working with the do. . .while Statement.. 55
Altering Loop Execution.. 56
Skipping Loop Iterations ... 57

Back to the Number Guessing Game.. 58
Designing the Application.. 58

Summary.. 62

A Deeper Dive into JavaScript............................... 65Chapter 3

Project Preview: The Rock, Paper, Scissors Game.. 66
Improving JavaScript Organization with Functions.. 67

Organizing Code Statements into Functions .. 67
Controlling Function Execution ... 68

Developing Applications That Respond to Events.. 71
Developing Event-Driven Scripts... 71
Working with Different JavaScript Events ... 72
Processing Forms... 75

Ajax Programming for the Absolute Beginnerviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Div and Span Tags.. 77
Working with the <DIV> </DIV> Tags... 77
Working with the Tags .. 77
Programmatically Replacing Text without Screen Refresh............................. 78

Managing Collections of Data.. 80
Accessing Individual Array Elements .. 81
Using Loops to Process Arrays.. 82
Sorting the Contents of Arrays .. 83

Back to the Rock, Paper, Scissors Application.. 84
Designing the Application.. 84

Summary.. 89

Understanding the Document Object Model...... 91Chapter 4

Project Preview: The Ajax Story of the Day Application.. 92
An Introduction to the Document Object Model.. 93
The DOM Tree... 94
Walking the DOM Tree... 96

Accessing DOM Elements by ID ... 97
Accessing DOM Elements Using DOM Properties ... 98
A Mixed Navigation Approach... 100

Dynamically Updating Web Page Content... 101
Back to the Ajax Story of the Day Application... 103

Designing the Application.. 104
Summary.. 109

Building Ajax Applications.................................... 111Part III

Ajax Basics... 113Chapter 5

Project Preview: The Ajax Typing Challenge.. 114
Connecting Your Applications to Web Servers.. 115

XMLHttpRequest Methods .. 116
XMLHttpRequest Properties ... 116

Working with the XMLHttpRequest Object.. 117
Instantiating the XMLHttpRequest Object ... 117
Opening a New Connection.. 118
Waiting for the Web Server’s Response .. 120
Handling the Web Server Response ... 121
Wrapping Things Up .. 122
Putting All the Pieces Together to Create a Working Ajax Application..... 122

Managing Concurrent XMLHttpRequests... 124
Using Ajax to Set Up Mouseovers.. 125

Contents ix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Leveraging Ajax Frameworks... 127
Popular Ajax Frameworks ... 128
Framework Demo—Using the CBA Framework... 130

Back to the Ajax Typing Challenge Application.. 132
Designing the Application.. 132
The Final Result ... 137

Summary.. 138

Digging Deeper into Ajax...................................... 139Chapter 6

Project Preview: The Ajax Google Suggest Application... 140
Using Ajax to Manipulate Graphics.. 141
Sending Data to Web Servers... 144

A Quick Example of How to Work with PHP ... 145
Sending Data to Web Servers for Processing ... 147

Executing Server-Supplied JavaScript.. 153
Back to the Ajax Google Suggest Application.. 155

Designing the Application.. 156
The Final Result ... 163

Summary.. 163

Data Management and Presentation.................. 165Part IV

Working with XML... 167Chapter 7

Project Preview: The Who Am I? Application... 168
An Introduction to XML... 169

Rules for Formulating XML Tags... 170
XML Element Syntax... 171
Including the XML Declaration Instruction... 171
Commenting Your XML Files.. 172
Working with Elements with No Content.. 172
Understanding the Types of Elements in Use.. 173

Verifying That Your XML Files Are Well-Formed... 174
Understanding XML Trees... 175

A Depiction of a Small XML File .. 175
JavaScript Properties That Work with XML Trees... 176

Navigating XML Files.. 176
Eliminating White Space .. 179
Processing XML Element Attributes... 181

JSON: JavaScript Object Notation—An Alternative to XML..................................... 184
Back to the Who Am I? Application.. 184

Designing the Application.. 185

Ajax Programming for the Absolute Beginnerx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Final Result ... 193
Summary.. 193

Working with Cascading Style Sheets............... 195Chapter 8

Project Preview: The Fortune Telling Game... 195
An Introduction to CSS.. 197

CSS Syntax... 198
Using CSS to Specify Style, Color, and Presentation.. 198

Controlling Font Presentation... 199
Managing the Display of Text .. 200
Controlling Color and Background.. 201
Exercising Control over Content Location ... 202

Adding CSS to Your HTML Pages.. 205
Using Inline Styles .. 206
Defining Embedded Style Elements... 206
Working with External Style Sheets .. 208

Back to the Fortune Telling Game.. 209
Designing the Application.. 209
The Final Result ... 220

Summary.. 220

Working with Ajax and PHP................................ 223Chapter 9

Project Preview: Scramble—The Word Guessing Game... 223
Introduction to PHP.. 225
The Basics of Working with PHP... 226

Embedding PHP into Your HTML Pages... 226
Writing Stand-alone PHP Scripts... 227

PHP Coding.. 228
Returning Data Back to Your Ajax Application... 229
Commenting Your PHP Code ... 230
Storing Data in Variables .. 231
Managing Collections of Data Using Arrays .. 231
Data Assignments.. 232
Performing Mathematic Calculations ... 232
Comparing Values... 233
Performing Conditional Logic ... 233
Working with Loops ... 235

Working with Functions.. 239
Creating and Executing Custom Functions ... 239
Taking Advantage of Built-in PHP Functions... 240

Processing Application Input... 240
Retrieving Arguments Passed Using the GET Option...................................... 240

Contents xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Retrieving Arguments Passed Using the Post Option...................................... 241
Storing and Accessing Data.. 241

Creating and Accessing Files .. 242
Writing to Files .. 243
Reading from Files .. 244
A Few Words About Working with Databases... 245

Back to Scramble—The Word Guessing Game... 245
Designing the Application.. 245
The Final Result ... 250

Summary.. 250

Important Ajax Design Issues.............................. 253Chapter 10

Programming Hurdles That All Ajax Developers Face.. 253
Recognize That Not All Browsers Support JavaScript...................................... 254
Do Not Let Ajax Alienate Your Users.. 255
Ajax Applications Disable the Browser’s Back and Forward Buttons 256
Don’t Make Unexpected Changes ... 257
Ajax Applications Are Not Easily Bookmarked ... 257
Ajax Applications Pose Problems for Search Engines...................................... 257
Dynamic Updates Are Not Always Easily Noticed .. 258
Data Exchange Behind the Scenes May Make Users Uncomfortable........... 258
Ajax Applications Do Not Run on a Single Platform 259
Don’t Build Slow Ajax Applications ... 259
Ajax Applications May Create New Security Concerns 260

Don’t Overuse Ajax.. 261
Follow Good Development Practices.. 261
Summary.. 262

What’s on the Companion Website?.................... 263Appendix A

Downloading the Book’s Source Code... 264

What Next?... 265Appendix B

HTML Resources... 266
Wikipedia’s HTML Page ... 266
WC3’s HTML 4.01 Specification Page ... 266
HTML.net’s Free HTML Tutorial ... 267

The HTML Document Object Model.. 268
Wikipedia’s Document Object Model Page .. 268
W3C’s Document Object Model (DOM) Page.. 269
HTML DOM Tutorial.. 269

Ajax Programming for the Absolute Beginnerxii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XMLHttpRequest Resources.. 270
Wikipedia’s XMLHttpRequest Page .. 270
W3C’s XMLHttpRequest Object Page.. 271
XMLHttpRequest Tutorial ... 272

Resources for Cascading Style Sheets... 272
Wikipedia’s Cascading Style Sheets Page ... 273
WC3’s Cascading Style Sheets Page .. 273
CSS Tutorial Page... 274

JavaScript Resources... 275
Wikipedia’s JavaScript Page ... 275
JavaScript.com.. 276
JavaScript Tutorial .. 276

XML Resources.. 277
Wikipedia’s XML Page .. 277
W3C’s Extensible Markup Language (XML) Page .. 278
XML Tutorial ... 279

Locating Ajax Resources Online.. 279
Wikipedia’s Ajax Page .. 280
Jesse James Garrett’s Ground-Breaking Article ... 280
Keeping an Eye on Ajax Blogs .. 281

Contents xiii

Index.. 283

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTRODUCTION

elcome to Ajax Programming for the Absolute Beginner! Ajax (Asynchronous
JavaScript and XML) is a collection of web development technologies that
can be used to create web applications that provide levels of responsiveness

previously unheard of. As a result, when combined with high-speed internet con-
nections, you can use Ajax to develop web applications that behave and respond
like desktop applications.

In recent years, web developers have begun to make major investments in Ajax,
using it to create a whole new generation of web applications. For example, Google
has used Ajax in the creation of all its latest applications, including Google Sug-
gest, Google Maps, and Gmail. Amazon.com has used Ajax in the development of
its A9.com search engine as well as to enhance and improve its main website.
Websites like Ask.com and Snap.com have used Ajax to make major improvements
to their search engines. Other companies have used Ajax to help develop entire
office suites of free online applications. For example, ThinkFree Online
(www.thinkfree.com) can create text documents, spreadsheets, and presentations
all of which are 100 percent compatible with Microsoft Office. Google’s Google
Docs Online office suite (docs.google.com) is another example of online applica-
tions developed using Ajax.

When it comes to web development, Ajax is truly the “next big thing.” Ajax is
becoming an essential ingredient in the makeup of modern web applications. Ajax
is being used in the development of all kinds of exciting new applications and
rightly so, given its ability to support the creation of web applications with
desktop-like performance.

Using Ajax programming techniques you can transform the way your web appli-
cations look and feel, providing your visitors with a significantly enriched expe-
rience. By learning how to create Ajax applications, you will develop a highly
marketable set of skills that are currently in high demand. To help you accomplish
this goal, this book uses a hands-on instructional approach, emphasizing learning
by doing, which is accomplished through the development of a series of computer
games.

W

www.thinkfree.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, whether you are a student who has just signed up for an introductory web development
class that uses Ajax, a hobbyist who wants to have some fun, or a web developer interested
in expanding your skill set, this book will help you get off to a good start. By the time you are
done, you will be ready to begin taking your web applications to the next level.

WHY AJAX?
Ajax changes the way in which web applications are designed, replacing requests for new web
pages and screen refreshes with small data queries to web servers. By requesting less data,
the web servers are able to respond quicker. Ajax data requests are made asynchronously,
meaning that users no longer have to sit and wait for the web server to fulfill a request.
Instead, the user can continue to work with the web application while Ajax collects and pro-
cesses the web server’s data in the background, and when it is time to do so, Ajax can use the
data to dynamically update the web page without forcing a page reload. The end result is a
streamlined, faster, and more desktop-like experience.

Because it relies on commonly available technologies like JavaScript and XML, Ajax is readily
available and supported by all major computer operating systems and web browsers. You do
not have to download and install any special software to work with Ajax, and the people who
visit your website do not have to install anything to view and interact with your Ajax
applications.

WHO SHOULD READ THIS BOOK?
Ajax Programming for the Absolute Beginner is designed to teach first-time programmers, com-
puter enthusiasts, and web developers interested in adding Ajax to their bag of tricks. An
understanding of HTML is required for you to complete this book. While previous program-
ming experience is certainly helpful, as is a basic understanding of JavaScript, the DOM, CSS,
the XMLHttpRequest object, and XML, you do not need to be an expert with any of these tech-
nologies. You will learn all that you need to know about each of these technologies as you
make your way through this book.

In addition to teaching you everything you need to know to get up and running quickly, this
book will make your learning experience as enjoyable as possible. This will be accomplished
using a games-based instructional approach in which you will learn Ajax programming
through the creation of web-based computer games. If this approach to learning sounds in-
teresting and fun to you, then keep reading. It won’t be long before you are creating all kinds
of fun and exciting web applications.

Introduction xv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WHAT YOU NEED TO BEGIN
Ajax is not something that you can buy in a box or download from the internet. It is a collec-
tion of related technologies that are readily available to everyone. Because it is based on
technologies like JavaScript, XML, and the DOM, it is readily available. You do, however, need
a few tools and resources to get started. Ajax uses JavaScript as its programming language. In
order to develop JavaScript code, you need a text or code editor. If you already have a code
editor that you are using to develop your HTML pages, odds are it will support JavaScript as
well. Otherwise, you can use any plain text editor, such as Windows Notepad, when develop-
ing Ajax applications.

In addition to an editor, you will need access to one or more web browsers like Internet
Explorer, Safari, Firefox, or Opera to test your web applications. Because Ajax applications
are designed to work with web servers, you also need access to a web server and the ability to
develop programs that run on the server. For most people this means signing up with one of
the many available web service providers.

Most Ajax applications involve the development of some server-side programs. In this book,
server-side applications (programs that run on web servers) are developed using PHP. Al-
though the use of PHP will be minimal, to follow along with and test the execution of all of
the examples in this book, you will want to make sure that your service provider supports the
execution of PHP.

Working with Different Web Browsers
Ajax uses JavaScript as its programming language. As such, Ajax is susceptible to all of the
same problems that JavaScript programmers face. One of these compatibility issues involves
the browser. Due to internal design differences, different web browsers work differently with
JavaScript and therefore with Ajax. To properly test your Ajax applications, you should use
all major web browsers, including those listed below, to make sure that they behave as you
expect them to.

• Internet Explorer

• Apple’s Safari

• Mozilla Firefox

• Opera

Most of the figures and examples that you will see in this book are demonstrated using In-
ternet Explorer 7. Except where noted, all of the examples that are presented in this book
should work exactly the same on all of the major web browsers.

Ajax Programming for the Absolute Beginnerxvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

What You Need to Know
In order to take advantage of this book, you need to be familiar with the basics of HTML
development and, of course, you need a website that you can work with and are interested
in making more responsive and dynamic. Beyond that, this book will provide everything else
you need to know. This includes an overview of how to program using JavaScript and the
Document Object Model. This book also provides a basic review of XML and CSS.

Ajax applications have a server-side component needed to make them work. There are many
different server-side programming languages from which to choose, including Ruby on Rails,
PHP, Java Servlets, and ASP. Of these, PHP is arguably the most popular and easiest to work
with and is the server-side programming language that this book uses. You will not have to
become a PHP guru in order to make your way through this book. However, a basic under-
standing of PHP will be helpful. To make sure you have a basic understanding of PHP
programming, this book provides a quick server-side PHP programming primer.

Most web hosts support PHP. In fact, it is most likely provided as a free service
as part of your web hosting agreement. To make sure it’s available, visit your
provider’s website.

HOW THIS BOOK IS ORGANIZED
Although this book has been designed to be read sequentially from cover to cover, it covers
a wide variety of topics and you may want to pick and choose which ones you review based
on your background and previous experience. Ajax Programming for the Absolute Beginner is
organized into five parts. Part I of this book consists of a single chapter that provides an
overview of Ajax and its capabilities. You will also see numerous real-world examples of Ajax
in action to help better demonstrate its capabilities.

Part II consists of three chapters that offer an overview of JavaScript and the browser’s
Document Object Model (DOM). JavaScript serves as Ajax’s programming language and a
good understanding of its syntax and usage is critical to your success as an Ajax developer.
You will learn how to create JavaScripts that store data and apply conditional and looping
logic. You will learn how to organize your program code into functions. You will also learn
how to work with browser and JavaScript objects and respond to events like mouse clicks and
keyboard input. The last chapter in this part provides an overview of the Document Object
Model and demonstrates how to use it to access and modify different parts of web pages.

Part III consists of two chapters that are designed to provide the information you need to
begin developing Ajax applications. This includes learning how to communicate with and
retrieve information from web services and to update web pages without requiring any page
refreshes. You will then learn how to use Ajax to perform an assortment of different tasks.

NOTE

Introduction xvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part IV consists of four chapters, each of which addresses a unique topic that is important to
rounding out your Ajax skills. The first chapter demonstrates the benefits of using XML in
place of plain text when retrieving data from web servers. The second chapter explains how
to use cascading style sheets or CSS to control the presentation and formatting of information
displayed on your web pages. The third chapter demonstrates how to work with PHP to
develop server-side program code that supports your Ajax applications. The last chapter
rounds things out by addressing a number of important design issues that you need to take
into consideration as you develop your Ajax applications.

Part V consists of two appendices. The first appendix provides an overview of all the game
projects presented throughout this book and explains how to download the book’s source
code from its companion website. The second appendix provides a list of online resources you
can visit to continue your Ajax education and further your programming knowledge.

The basic outline of the book is as follows.

• CChapter 1, “An Ajax Overview.” This chapter provides a broad overview of Ajax and the
technologies that comprise this exciting web development tool. This includes a review
of Ajax’s major features and capabilities and its strengths and weaknesses. You will also
see examples of websites currently using Ajax to improve their applications and provide
visitors with a better, faster experience.

• CChapter 2, “An Introduction to JavaScript.” Ajax uses JavaScript as its programming
language. A solid understanding of JavaScript is therefore key to your success as an Ajax
developer. This chapter provides a little background information on how JavaScript
came to be and how it is used in Ajax applications. You will then begin learning the
basics of JavaScript programming. You will learn how to add JavaScript to your HTML
pages and the rules you need to follow to comply with JavaScript syntax requirements.
You will also learn how to store data and to apply both conditional and looping logic.

• CChapter 3, “A Deeper Dive into JavaScript.” This chapter rounds out your JavaScript
education, teaching you how to respond to events and manage forms. You will learn
how to create functions and to control the execution of those functions, using them to
interact with web servers and retrieve the data needed by your Ajax applications. You
will also learn how to store and process collections of related data using arrays.

• CChapter 4, “Understanding the Document Object Model.” All modern web browsers
define the content displayed within web pages in a hierarchical fashion using the DOM.
Using the DOM, Ajax programmers are able to dynamically insert and display informa-
tion retrieved from web servers, without requiring time-consuming and resource-wast-
ing page refreshes. This chapter defines and explains the DOM and demonstrates how
to use it within your Ajax applications.

Ajax Programming for the Absolute Beginnerxviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

• CChapter 5, “Ajax Basics.” This chapter ties together all of the information already dis-
cussed in this book and explains how to use it in the formulation of different types of
Ajax applications. You will learn how to work with the XMLHttpRequest object to retrieve
text from web servers. You will also create your first Ajax game.

• CChapter 6, “Digging Deeper into Ajax.” This chapter delves deeper into Ajax, intro-
ducing you to XML and the retrieval of JavaScript from the web server. You will learn
how to create an Ajax application that uses Google Live search to retrieve data and will
be introduced to different Ajax frameworks, which you can use to simplify and reduce
the amount of time and effort required to build Ajax applications.

• CChapter 7, “Working with XML.” Rather than relying on plain text, this chapter teaches
you how to use XML to transport complex collections of data. You learn how to define
XML elements and to extract XML data using properties. You also learn how to process
XML data. In addition, you will also learn about JavaScript Object Notation or JSON,
which provides an alternative to XML as a means of transporting complex collections of
data.

• CChapter 8, “Working with Cascading Style Sheets.” A big part of Ajax web develop-
ment involves the dynamic display of data in your web pages. This is accomplished by
displaying data returned in response to background requests made to web servers. This
chapter explains how cascading style sheets or CSS control and manage the display and
appearance of server data. You will learn how to make elements visible and invisible and
to control their location, color, font, and border.

• CChapter 9, “Working with Ajax and PHP.” Rather than displaying entirely new web
pages in response to every request made to web servers, Ajax allows you to retrieve only
the data you need from the web server and to use that data to update the display of a
web page without having to reload everything. Because of this change in design, new
programs have to be developed on web servers that are designed to work with this new
programming model. This chapter demonstrates how to use PHP as the web server’s
development language.

• CChapter 10, “Important Ajax Design Issues.” As is the case with all new technologies,
Ajax has a number of technical hurdles to overcome. This chapter provides a review of
these problems and discusses the ways that Ajax developers are working to overcome
them.

• AAppendix A, “What's on the Companion Website?” This appendix reviews the Ajax
projects presented in this book and made available for download on this book’s com-
panion website (www.courseptr.com/downloads).

Introduction xix

www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

• AAppendix B, “What Next?” This appendix provides additional guidance and advice on
how to continue your Ajax education. You will find information regarding additional
reading resources as well as a listing of websites and blogs where you can read what
other people are saying about Ajax.

CONVENTIONS USED IN THIS BOOK
To help make this book as easy as possible to read and understand, a number of conventions
have been applied to help highlight critical information and to emphasize specific points.
These conventions are as follows.

• Italics. Whenever I introduce an important programming term for the first time, I will
highlight the work using italics to give it additional emphasis and to let you know this
is a term that you will want to make sure you understand and remember.

These are tips on how to do things differently and point out different techniques
that you can do to become a better programmer.

From time to time, I will point out areas where you are likely to run into problems
and then provide you with advice on how to deal with these situations or, better
yet, prevent them from happening in the first place.

Tricks are programming shortcuts that will help to make you a better and more
efficient programmer.

Challenges

At the end of each chapter, you will find instructions that guide you
through the development of a new computer game. Immediately follow-
ing each game project, you will find a series of suggestions or challenges
that you should be able to apply to improve the game and further the
development of your programming skills.

HINT

TRAP

TRICK

Ajax Programming for the Absolute Beginnerxx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part

I
Introducing Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1C H A P T E R

AN AJAX OVERVIEW

jax represents a powerful new way of developing web applications. It does
away with the traditional model of breaking down web applications into
multiple pages that must constantly be loaded and reloaded. Instead, Ajax

supports the development of applications that seamlessly update page content,
pulling data from the web server behind the scenes, without requiring any page
reloads. The end result is a faster, more desktop-like end-user experience. This
chapter provides an overview of Ajax and the different technologies that it uses to
provide web developers with the tools needed to create a new generation of pow-
erful, fast, and responsive applications. This chapter will also provide an overview
of a number of different Ajax applications, offering examples of the kinds of things
that Ajax is capable of performing.

Specifically, you will learn:

• About Ajax and the different technologies that it comprises

• How traditional web applications differ from Ajax applications

• How to create your first Ajax application

• About different examples of Ajax as used in various web applications

A

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PROJECT PREVIEW: THE JOKE OF THE DAY APPLICATION
In this chapter and in each of the chapters that follow, you will learn how to create an Ajax
game application. Learning application development by creating computer games is not only
instructional but helps make learning fun. This chapter’s game project is the Joke of the Day
application. It begins by displaying a web page showing the opening punch line of a joke, as
demonstrated in Figure 1.1.

FIGURE 1.1

The Joke of the
Day application
demonstrates

basic Ajax
execution through

the telling of a
funny joke.

As you can see, the application’s opening page consists of an HTML header and a button that
when pressed uses Ajax to send a request to the web server. In response, a text file stored on
the web server is returned to the browser, where its contents are then displayed in the
browser, immediately under the application’s button control, as demonstrated in Figure 1.2.

FIGURE 1.2

The joke’s punch
line is provided by
the web server and

dynamically
displayed in the

browser window,
no screen refresh

required.

Ajax Programming for the Absolute Beginner4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTRODUCING AJAX
Ajax, also known as Asynchronous JavaScript and XML, is a term used to refer to a collection
of related web technologies. These technologies offer web developers the ability to create web
applications that are able to dynamically interact with users and to work behind the scenes
with web servers to retrieve application data. The data can then be displayed in the browser
without requiring any page refreshes. The end result is the development of web applications
that look and feel like desktop applications.

By 2005, many websites, most notably Google, were hard at work developing a whole new
generation of applications (Google Maps, Google Suggest, etc.). Then on February 18, 2005

Ajax applications are faster and more responsive than traditional web-based applications.
Improved performance is attained by modifying web applications so that they exchange
smaller amounts of data with web servers. As a result, web servers no longer have to generate
and return entire web pages in response to every user request or interaction with the appli-
cation. Since only small amounts of data are exchanged in place of web pages, web page
refreshes can be eliminated.

As this book will demonstrate, Ajax provides access to an enormously powerful
set of development capabilities. However, just because you can use Ajax to per-
form all kinds of tasks does not mean that you should use it. Like all good things,
Ajax is often best used in moderation. For example, if you need for the user to
fill out and submit a form, you can do so without using Ajax. However, if you need
to dynamically update a web page, then Ajax is the way to go.

With Ajax, data exchanged between web browsers and web servers is passed asynchronously
behind the scenes. This means that Ajax applications can submit requests to the web server
without having to pause application execution and can process the requested data whenever
it is returned. Instead of submitting data to the web server using a form, Ajax applications
submit requests using a special browser object known as the XMLHttpRequest object. This
object is the key component of Ajax that enables asynchronous communication.

Prior to Ajax, web developers had access to a collection of client-side web de-
velopment technologies collectively referred to as DHTML. Using DHTML, web
developers are able to dynamically update web pages using data collected from
the user when interacting with the application.

DHTML is a collection of technologies, including HTML, CSS, JavaScript, and the
DOM that when used together provide web page developers the ability to create

HINT

HINT

Chapter 1 • An Ajax Overview 5

Jesse iJames Garrett wrote an art cle titled “Ajax: A New Approach to Web Applications,” coin-
ing the term Ajax for the very first time. From here, things really took off.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dynamic web page effects like animation, graphical rollovers, and dynamic
menus. It is strictly used to develop client-side automation and effects. Ajax
embraces all of the same technologies as DHTML and adds the XMLHttpRequest
object and XML into the mix.

Ajax Technologies
Ajax is a collection of technologies all of which have been around for a number of years. Each
of these technologies was developed for various reasons that had nothing to do with Ajax.
However, because of their complementary nature, web developers have discovered that when
used together, these technologies provide a robust and powerful environment for creating
and running web applications. The individual technologies that make up Ajax include:

• JJavaScript. The programming language used to develop Ajax applications, tying to-
gether the interaction of all of the other Ajax technologies.

• XXML. Provides a means of exchanging structured data between the web server and client.

• TThe XMLHttpRequest object. Provides the ability to asynchronously exchange data be-
tween web browsers and a web server.

• HHTML and CSS. Provides the ability to mark up and style the display of web page text.

• TThe Document Object Model or DOM. Provides the ability to dynamically interact
with and alter the web page layout and content.

Traditional Web Development Versus Ajax Development
Until the last couple years, web applications have lagged well behind desktop applications in
regard to their look and feel, made all the worse by performance problems brought on by
slow internet connections. However, with the advent of Ajax, all this is beginning to change.
Using Ajax, web developers can now create robust web-based applications capable of rivaling
their desktop counterparts. When combined with today’s high-speed internet access and
powerful web servers, Ajax applications are capable of offering a level of performance that
makes web-based applications a viable option for today’s computer users.

Thanks to Ajax, web applications no longer have that web feel. For example, rather than
forcing customers to move from one screen to another when making purchases, Ajax appli-
cations can seamlessly allow customers to select merchandise, add it to a shopping cart, and
then complete the purchase all from the same web page, without once ever forcing a screen
refresh or requiring the customer to advance through a series of screens.

Traditional web applications are made up of any number of loosely integrated web pages,
which are then displayed in a predefined order through links embedded within HTML pages.

Ajax Programming for the Absolute Beginner6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As such, in order to work with traditional web applications, the user must move from web
page to web page interacting with a different portion of the application in a step-by-step
process. Each time the customer clicks on a link to the next inventory page, a brief wait ensues
while the customer waits for that page to be loaded.

Using this traditional approach, HTTP requests are submitted to the web server in response
to user actions. Upon receiving the request, the web server satisfies the request by returning
a new web page, which the web browser then displays. This interaction is depicted in
Figure 1.3.

FIGURE 1.3

The traditional
design of most

web applications
involves a lot of

page refreshes and
waiting.

When processing the incoming request, the web server may perform any number of actions,
including retrieving data from files, databases, or applications that run on the server. Once
it has collected the data needed to satisfy the request, the web server may need to further
process this data before generating the HTML page into which it will be embedded.

The data retrieved from the web server can be a plain text file stored on the web
server or it may be data retrieved from a server-side database or generated after
some processing has occurred on the web server. A number of different server-
side programming languages are available. These languages include PHP, ASP,
Ruby on Rails, and Java Servlets.

Consider a typical online merchant example. The merchant’s web application might require
customers to review dozens of different pages in order to locate and select different items for
purchase. Once the user has finished shopping and has selected all of the items she wants to
purchase, a summary page is generally displayed requesting the customer to confirm the
contents of her cart. From here, the application must then load a page that contains a form
into which credit card information must be entered. Once submitted to the application’s web
server for processing, the user must wait for a purchase confirmation page to be returned.
After clicking on a button to provide confirmation and complete the transaction, the cus-
tomer must wait for the web server again to complete the purchase, after which a final page,
serving as a receipt, is displayed. At every step within the application, the customer must wait
as the web server processes the user’s input and downloads new web pages for display. Using

HINT

Chapter 1 • An Ajax Overview 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax, you can change this application model so that only the absolute minimum amount of
data needed to be exchanged is passed between the web browser and the server. This speeds
things up a lot.

By passing data in place of web pages, and allowing data to be displayed within an existing
web page, web application developers are able to give their applications a desktop-like feel.
This replaces the loosely integrated web pages with a tightly integrated presentation. Ajax
applications also help to better balance the use of resources. This is accomplished by adding
an additional layer, referred to as the Ajax engine, into the mix as depicted in Figure 1.4.

FIGURE 1.4

Ajax applications
are much more
responsive and

result in a better
end user

experience.

Once the initial web interface page is loaded, communication between the web browser and
web server can be performed by passing data in place of entire web pages. Because small
amounts of data can now be passed asynchronously, network payload is decreased and things
speed up. Asynchronous processing is accomplished through the execution of JavaScript
function calls. Asynchronous processing also significantly cuts down on wait time by elimi-
nating the need for page refreshes. In fact, while waiting for new data to be returned from
the web server, the user is free to use other parts of the applications. Small amounts of data
sent back by the web server may be sent as plain text. On the other hand, larger and more
complicated collections of text are usually sent using XML.

In addition to plain text and XML, Ajax applications also support the exchange of
data using JavaScript Object Notation or JSON. This book will show you how to
work with both plain text and XML. Although its usage is not demonstrated, more
information on JSON is provided in Chapter 7, “Working with XML.”

Asynchronous processing also reduces the web server’s workload, allowing more work to be
done on the client computer when necessary. As the workload on the web server is reduced,
the web server is able to respond more quickly and to handle an increased number of con-
nections from other customers.

HINT

Ajax Programming for the Absolute Beginner8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

EXAMPLES OF REAL WORLD AJAX APPLICATIONS AND WEBSITES
Enough with all this talk about Ajax and what it is capable of doing. Let’s spend a few minutes
looking at some examples of Ajax in action. Specifically, let’s look at a number of well known
and not so well known websites and look at examples of how they have used Ajax to enhance
their web applications. By the time you have completed this whirlwind tour, you should have
a pretty good idea of the many different kinds of tasks that you can use Ajax to tackle.

Search Engine Makeovers
One of the earliest adapters of Ajax was large search engines, which realized that Ajax could
be used to greatly improve a search engine’s ability to provide users with a better experience.
Using Ajax, search engine developers were able to go beyond just displaying a list of URLs and
website descriptions and discovered that they could provide web surfers with all kinds of
additional information, quickly retrieved behind the scenes based on visitor behavior.

A9.com
Amazon.com was one of the earliest websites to take advantage of Ajax. It used Ajax to help
build its A9.com search engine (www.a9.com), as shown in Figure 1.5, which web surfers can
use to search both the internet and amazon.com’s online catalog.

FIGURE 1.5

The A9.com
website allows
you to search

either the internet
or amazon.com.

Chapter 1 • An Ajax Overview 9

www.a9.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

When used to perform a search, the results returned by A9.com look very much like those of
any other search engine. Using Ajax, the developers of this search engine added a Site Info
feature that displays additional information about a website when the user moves the mouse
pointer over the link, as demonstrated in Figure 1.6. Everything works quite seamlessly, with-
out any screen refreshes. Web surfers with high-speed internet access experience almost no
wait time at all.

FIGURE 1.6

The information
displayed for each
website includes
additional links,
each of which is

clickable.

Ask.com
The developers of the Ask.com website’s search engine (www.ask.com) have used Ajax to
enhance their search engine, allowing web surfers to preview websites as demonstrated in
Figure 1.7 and to use this information when deciding whether to click on the site’s URL.

Only URL links that are preceded by graphical binoculars can be previewed. To preview the
site, simply move the mouse pointer over the binoculars. The preview picture that is displayed
is not collected in real time and therefore it may be a little out of date.

Suggest Styled Applications
Another really neat use of Ajax is in the use of suggestion-based search engines, which retrieve
data from the web server based on user keystrokes. There are many variations of this type of
Ajax application.

Ajax Programming for the Absolute Beginner10

www.a9.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 1.7

In addition to
previewing a

picture of the
website, Ask.com

also provides
statistical

information about
the site.

Google Suggest
Google was one of the first web companies to heavily invest in Ajax. It used Ajax in the devel-
opment of a whole new generation of online applications including Google Gmail, Google
Maps, and Google Suggest (http://www.google.com/webhp?complete=1&hl=en), which is pic-
tured in Figure 1.8.

FIGURE 1.8

Google Suggest
monitors user

keystrokes and
displays lists of
related topics
from which to

choose.

Chapter 1 • An Ajax Overview 11

http://www.google.com/webhp?complete=1&hl=en
http://lib.ommolketab.ir
http//lib.ommolketab.ir

To use Google Suggest, all you have to do is begin typing. As you type, the application passes
your keystrokes behind the scenes to one of Google’s servers and retrieves a list of topics that
match what you have typed so far. As you continue to type, Goggle Suggest continues to
update the list of topics that is displayed. You can either enter your own unique search term
or select one of the entries that is displayed to initiate an internet search.

Amazon Zuggest
An interesting variation of Suggest is Amazon Zuggest (http://www.francisshanahan.com/
zuggest.aspx), as demonstrated in Figure 1.9. This application monitors user keystrokes,
retrieving and displaying items from amazon.com’s catalog that match up against whatever
you enter. The more you type, the better the application is able to hone in on what you are
looking for.

FIGURE 1.9

Amazon Zuggest
is an application

that searches
amazon.com and

displays items that
match up against
keyboard input.

Online Ajax Dictionaries
Another great use of suggestion-based searching is in the development of dictionary and the-
saurus type applications. One such application is ObjectGraph (http://www.objectgraph.com/
dictionary/), as demonstrated in Figure 1.10.

Ajax Programming for the Absolute Beginner12

http://www.francisshanahan.com/zuggest.aspx
http://www.objectgraph.com/dictionary/
http://www.francisshanahan.com/zuggest.aspx
http://www.objectgraph.com/dictionary/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 1.10

ObjectGraph
retrieves

dictionary words
on the fly as you

type.

Google Maps
One of Google’s best known and most popular applications is Google Maps (maps.google.com).
As shown in Figure 1.11, Google maps provide a global view of the Earth, allowing visitors to
view detailed pictures of any individual spot on the globe. Using Ajax, Google maps allows
you to click on and drag the map to reveal different locations. Based on user input, new map
images are returned from the server and displayed in the map portions of the applications,
with near instantaneous results and no page refreshes.

FIGURE 1.11

Google Maps can
be used to zoom in

on and display
detailed images of
maps for any part

of the world.

Chapter 1 • An Ajax Overview 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Netflix
Another website that has made notable use of Ajax is Netflix (www.netflix.com). Netflix is
an online DVD rental service with over 6 million subscribers. Customers can search for and
order movies, which are then either downloaded to the customer’s computer or mailed to
their residence. As Figure 1.12 demonstrates, the Netflix website uses Ajax to display addi-
tional information about movies in a popup when the customers move the mouse pointer
over its title.

FIGURE 1.12

Netflix lets
customers

retrieve and view
additional

information for
any movie in the

company’s
inventory.

Virtual Desktop Applications
Among the newest generation of applications now available on the internet are applications
that let you run a virtualized computer operating system within your web browser. One
example of such an application is ajaxWindows (www.ajaxwindows.com), as shown in
Figure 1.13.

Figure 1.14 shows an example of ajaxWindows in action. As you can see, its overall appearance
resembles that of a Windows operating system. Included as part of the operating systems are
a number of common desktop applications, including a word processor called ajaxWrite and
a paint program named ajaxSketch.

Ajax Programming for the Absolute Beginner14

www.netflix.com
www.ajaxwindows.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 1.13

The ajaxWindows
online desktop
application lets

you remotely run a
virtual operating

system in your
web browser.

FIGURE 1.14

ajaxWindows
provides access to

a virtualized
Window’s-like

desktop.

ajaxWrite and ajaxSketch are just two of a number of applications supplied as part of
ajaxWindows. In addition to accessing these applications through the ajaxWindows applica-
tion, you can also access and run them directly within your browser. For example, by visiting
http://us.ajax13.com/en/ajaxwrite/ you can launch ajaxWrite. As demonstrated in Figure 1.15,

Chapter 1 • An Ajax Overview 15

http://us.ajax13.com/en/ajaxwrite/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

ajaxWrite very much resembles Microsoft Word. It can be used to create, edit, write, and print
text documents. It can even save documents in Microsoft Word format, which can be stored
online or saved directly to your computer’s hard drive.

FIGURE 1.15

ajaxWrite is a free
online word
processing
application.

Photo Management Using Flickr
Another prominent web application built in part using Ajax is Flickr (www.flickr.com). Flickr
is an online photo management tool that is capable of rivaling most desktop photo manage-
ment programs. As demonstrated in Figure 1.16, Flickr lets you upload and manage all your
personal photos.

Flickr provides users with access to an application called Organizr. Using this application,
Flickr users can organize and manage their uploaded photos. Organizr allows users to drag
and drop photos and to create and modify photo descriptions and groupings. Organizr looks
and feels like a desktop-based photo management program.

Ajax Instant Message Applications
Another category or application that Ajax is commonly used to develop is instant messaging.
One such instant message application is ajax im (www.ajaxim.net). As shown in Figure 1.17,
ajax im (asynchronous JavaScript and xml instant messenger) is a browser-based IM client
that allows users to send and receive text messages to one another without ever refreshing
the browser window.

Ajax Programming for the Absolute Beginner16

www.flickr.com
www.ajaxim.net
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 1.16

Flickr allows you
to upload, edit,

organize, and
share your

personal photos
and videos.

FIGURE 1.17

Ajax im is a
browser-based

instant message
client.

Online Calendars
Another interesting category of applications that Ajax has been used to create is online
calendar and time management applications. One such application is calendar hub
(www.calendarhub.com), as shown in Figure 1.18. CalendarHub lets you view calendar data
using a day, week, month, and list views. You can post as many calendar entries and to-dos
as you want. You can even share your calendar with others and receive notifications via email.

Chapter 1 • An Ajax Overview 17

www.calendarhub.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 1.18

CalendarHub is a
free online

calendar
application that

supports
individual and

group calendar
use.

Using Ajax, CalendarHub supports a drag and drop interface that allows you to move calendar
entries around and add new entries to the calendar without any page refreshes.

BACK TO THE JOKE OF THE DAY APPLICATION
It is now time to turn your attention to the development of this chapter’s Ajax project, the
Joke of the Day application. This application, when loaded into the web browser, will present
the user with a web page that displays the opening line for a joke. Underneath the joke is a
button that, when pressed, instructs the application to retrieve the joke’s punch line using
Ajax, which is stored in a plain text file on the application’s web server.

Since this book has yet to introduce you to the intricacies of Ajax development, such as
JavaScript or how to work with the XMLHttpRequest object, don’t worry if you do not fully grasp
what each individual code statement in the application is doing. As long as you can under-
stand the HTML portions of the examples, you should be in good shape. For now, try to keep
your focus on the overall process of converting a traditional web application into an Ajax
application. Everything will become clear as you make your way through this book, and by
the time you are done, simple applications like the Joke of the Day application will seem quite
elementary to you.

Designing the Application
To help keep things simple, the development of this application will be performed in five
steps, as outlined here:

Ajax Programming for the Absolute Beginner18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a new HTML page.
2. Create the application’s text file.
3. Test the HTML version of the application.
4. Enhance the application using Ajax.
5. Execute your new Ajax application.

The first three steps will demonstrate how to create and execute the application using HTML
by following the traditional web development approach, and the last two steps will show you
how to modify the application using Ajax. Although this initial application is relatively sim-
ple, it will walk you through the basic development steps required to update any typical web
page using Ajax. As long as you follow along carefully with the instructions provided in each
step, you’ll have your own copy of this application up and running in no time.

In order to follow along with this example you need access to a web server where
you can upload your web pages. If you do not have a website, now would be a
good time to sign up with a web host and get started. To find a web host, visit
www.google.com and perform a search on “web host.” You will find plenty of
web host providers ready and willing to help you get started. If you already have
access to a website to which you can upload your web pages, I suggest that you
begin by creating a subfolder in your web directory and that you do all of your
Ajax work in it as you work your way through this book. This way, you won’t mess
up anything on your website while learning and experimenting with Ajax.

Step 1: Writing the Application’s HTML
The first step in creating the Joke of the Day application is to create an HTML version of the
application. To do so, open your preferred code or text editor—Microsoft Notepad or any text
editor that can save plain text files will do—and create and save a new file named index.html.
Once this has been completed, you need to add the application’s HTML statements, which are
shown next, to the file.

<HTML>

 <HEAD>

 <TITLE>HTML Joke of the Day</TITLE>

 </HEAD>

 <BODY>

 <H1>Where do bees go when they get married?</H1>

 Fetch Answer

 </BODY>

</HTML>

HINT

Chapter 1 • An Ajax Overview 19

www.google.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, this version of the Joke of the Day application is a typical HTML page, consisting
of head and body tags. The head section includes a title tag that displays the name of the
application and the body section contains a level 1 heading that displays the application’s
joke, followed by a link to another file named joke.txt where the joke’s punch line is stored.
The joke.txt file is a plain text file made up of a single line of text. When clicked, the link
opens and then displays the contents of the file in the web browser.

If you want, you could modify this example to open another HTML page that
displays the punch line instead of a text file.

Step 2: Creating the Application’s Text File
Now that you have the index.html page created, it is time to create the joke.txt file. Do so by
opening your preferred text file editor and typing the sentence shown in Figure 1.19 into it.

FIGURE 1.19

You can use any
plain text editor to

create the
application’s text

file.

As you can see, this file consists of a handful of words, saved as a plain text file. Once you have
keyed in the file’s text, save the file in the same place that you saved the index.html file.

Step 3: Uploading and Testing the HTML Version of the Application
Once you have created both the index.html and joke.txt files, you need to upload them to
your web server for testing. You may be able to perform this step using FTP or using a web-
based administrative interface provided by your web host provider. Consult with your web
host to see which of these options are available to you.

Once you have uploaded these two files to your web server, you should be ready to test this
temporary HTML version of the Joke of the Day application. To do so, open your web browser
and type the URL for the index.html web page. The URL that you use will vary based on the
name of your website’s URL and the location on that web server where you uploaded the
application’s files. For example, the following URL would be used to load the application into

HINT

Ajax Programming for the Absolute Beginner20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

your web browser if your website’s URL was www.tech-publishing.com and you elected to
create a subfolder named “test” into which you placed the application’s files.

http://www.tech-publishing.com/test/index.html

Actually, since all you are working with at this point is HTML, you can test your
application directly from your desktop without first uploading its HTML files to
your web server. To do this, all you have to do is start up your web browser and
instead of loading index.html by specifying its URL, you click on the File menu
and select the Open command and then specify the name and location of the
HTML file. To work, a copy of the joke.txt file must reside in the same folder as
the index.html file.

Once loaded into your web browser, you should see the web page shown in Figure 1.20 appear,
displaying the application’s joke and a link labeled Fetch Answer.

FIGURE 1.20

The HTML version
of the Joke of the

Day application
relies on a link to

the text file
containing the

joke’s punch line.

To view the joke’s punch line, click on the link. Within a few moments, the browser window
will blink and the contents of the joke.txt will load, as shown in Figure 1.21. As you can see,
this is a pretty standard HTML application. It involves loading an initial web page, after which
additional data is presented by loading new web pages into the browser window while the
user waits for the browser’s window to reload.

Since this application was small and does not make use of large amounts of
graphics or sounds, everything happens pretty quickly, so you may not notice a
significant delay. However, if the web page was loaded down, the delay would
have been more obvious.

TRICK

HINT

Chapter 1 • An Ajax Overview 21

http://www.tech-publishing.com/test/index.html
www.tech-publishing.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 1.21

To open and
display the

contents of the
text file, the

browser must load
it, replacing the
currently open

HTML page.

Step 4: Turning the HTML Application into an Ajax Application
Now that you have the HTML version of the Joke of the Day application up and running, you
are ready to convert it to an Ajax application. Do so by opening the index.html application
in your preferred code or text editor and modifying it as shown here:

Beginning new Ajax applications by first developing them as HTML applications
is a very popular approach to Ajax development. Applying Ajax to an existing
HTML page is often easier than trying to develop a new Ajax application from
scratch. In addition, since Ajax does have a number of limitations that have yet
to be completely overcome, as discussed in Chapter 10, “Important Ajax Design
Issues,” having an HTML and an Ajax version of your application provides the
ability to service web surfers whose computers can and cannot support Ajax
applications. You will learn more about dealing with this type of situation in
Chapter 3, “A Deeper Dive into JavaScript.”

<HTML>

 <HEAD>

 <TITLE>Ajax Joke of the Day Application</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

HINT

Ajax Programming for the Absolute Beginner22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function retrieveJoke(url, elementID) {

 if(Request) {

 var RequestObj = document.getElementById(elementID);

 Request.open("GET", url);

 Request.onreadystatechange = function()

 {

 if (Request.readyState == 4 && Request.status == 200) {

 RequestObj.innerHTML = Request.responseText;

 }

 }

 Request.send(null);

 }

 }

 </SCRIPT>

 </HEAD>

 <BODY>

 <H1>Where do bees go when they get married?</H1>

 <FORM>

 <INPUT type = "button" value = "Fetch Answer"

 onclick = "retrieveJoke('joke.txt', 'DivTarget')">

 </FORM>

 <DIV id="DivTarget"> </DIV>

 </BODY>

</HTML>

Chapter 1 • An Ajax Overview 23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, the Ajax version of the Joke of the Day application involves the addition of a
considerable number of new statements. Since this book has yet to review the intricacies of
creating Ajax applications, this chapter won’t go into great detail about what each and every
one of the new statements in index.html does. Instead, let’s keep things at a reasonably high
level. Figure 1.22 breaks down the new code statements that you have added to the Ajax
version of the application.

FIGURE 1.22

The HTML page
has been turned

into an Ajax
application
through the
addition of a

number of new
code components.

As Figure 1.22 shows, most of the new statements that have been added to index.html make
up a JavaScript, which begins and ends with <script> and </script> tags. Within the script,
variables are used to store data, an XMLHttpRequest object is set up to enable communication
with the application’s web server, and a function is used to set up a connection to the web
server and retrieve a text string containing the joke’s punch line.

Ajax Programming for the Absolute Beginner24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The rest of the statements added to index.html are used to create a form made up of a button
that, when clicked, triggers an event that results in the execution of a function named
retrieveJoke(). There is also a pair of Div tags in the body section that provide the application
with a placeholder where the joke’s punch line will be displayed.

Hopefully, you already know how to work with forms and Div tags. Just in case,
this book will briefly touch on them as well as introduce you to programming
with JavaScript and the XMLHttpRequest object in Chapters 3 and 4.

Step 5: Executing Your New Ajax Application
Once you have created the Ajax version of the Joke of the Day application, you will need to
upload it to your website before you can test its execution. Once you have done this, open
your web browser and enter the URL for the index.html web page. For example, the following
URL would be used to load your Ajax application if your website’s URL was www.yourURL.com
and you elected to create a subfolder named “test” into which you placed the application’s
files.

http://www.yourURL.com/test/index.html

Once loaded, your copy of the Joke of the Day application should operate exactly as was
demonstrated at the beginning of this chapter, instantly displaying the joke’s punch line
when the Fetch Answer button is pressed, without any page refresh.

The Final Result
All right, at this point your new Ajax version of the Joke of the Day application should be
ready for testing. To test the application, you had to upload the modified version of the HTML
page to your web server and then load it using your web browser. Once loaded, you were able
to view the application’s new interface and click on its button control in order to retrieve and
load the punch line for the application’s joke. Assuming that you followed along carefully
when creating this new application and that you did not run into any problems uploading it
to your web server, everything should work as described.

In the event that you run into any errors, make sure you have entered the correct URL for the
application into your browser. If your URL is okay, go back and double-check the statements
that make up the Ajax version of the application and look for any mistakes that you may have
made when keying it in.

You will find a copy of this application’s source code files on the book’s com-
panion website, located at http://www.courseptr.com/downloads.

HINT

HINT

Chapter 1 • An Ajax Overview 25

http://www.yourURL.com/test/index.html
http://www.courseptr.com/downloads
www.yourURL.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

SUMMARY
This chapter provided an introduction to Ajax. You learned how to use the different tech-
nologies that Ajax harnesses in order to build fast and responsive desktop-like applications.
You learned how Ajax applications differ from traditional HTML applications and reviewed
a number of different websites where Ajax has been used, examining how Ajax was used to
enhance and improve the application. You also learned how to create your first Ajax appli-
cation, which you created by modifying an existing HTML application to communicate with
and retrieve a text file from a remote web server.

Before you move on to Chapter 2, “An Introduction to JavaScript,” consider setting aside
a little extra time to improve the Joke of the Day application by addressing the following
challenges.

Challenges
1. The joke told by the Joke of the Day application is somewhat

bland. Why not spice it up a bit by replacing it with a joke that
reflects your own sense of humor?

2. Consider creating a copy of the Joke of the Day application,
perhaps making a Joke of the Week application, and set it up
to tell a different joke.

Ajax Programming for the Absolute Beginner26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part

II
Learning JavaScript and the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2C H A P T E R

AN INTRODUCTION TO

JAVASCRIPT

avaScript is the programming language that binds together HTML with all
of the other technologies that make up Ajax applications. As such, a good
understanding of how to program with JavaScript is essential to Ajax

developers. The focus of this chapter and the next chapter is to help you build a
good JavaScript foundation, providing you with an understanding of basic
JavaScript programming concepts needed to support the development of Ajax
applications.

Specifically, you will learn:

• About JavaScript’s origins and browser compatibility

• How to create and embed JavaScript in web pages

• How to formulate JavaScript statements and comply with JavaScript syntax

• How to collect, store, and modify data using variables

• How to apply conditional and iterative programming logic

PROJECT PREVIEW: THE NUMBER GUESSING GAME
Since the objective of this chapter is to teach you the fundamentals of JavaScript
programming, this chapter will end by showing you how to create a JavaScript
game called the Number Guessing game. As demonstrated in Figure 2.1, this game

J

http://lib.ommolketab.ir
http//lib.ommolketab.ir

begins by displaying a popup dialog window that challenges the player to try to guess a num-
ber from 1 to 10.

FIGURE 2.1

To submit a guess,
the player must
type in a number

and click on the OK
button.

Once a guess has been submitted, the popup dialog window disappears and the player’s guess
is analyzed to determine whether it is correct, too low, or too high. If the player’s guess was
incorrect, a dialog similar to the one shown in Figure 2.2 is displayed, giving the player a hint
to help guide her next guess.

FIGURE 2.2

The player’s guess
was too low.

The player may make as many guesses as required to guess the game’s secret number. Figure
2.3 shows the message that is displayed once the player finally guesses the secret number.

FIGURE 2.3

The player has
won the game.

As shown in Figure 2.4, at the end of each game the player is prompted to play another round.
If the player types the letter y and clicks on the OK button, a new secret number is generated
and everything starts over again. Otherwise, game play ends.

FIGURE 2.4

The player is
prompted to play

another round.

Once the player has decided to stop playing the game, the popup dialog window shown in
Figure 2.5 is displayed, thanking the player for playing the game.

Ajax Programming for the Absolute Beginner30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 2.5

The game thanks
the player for

taking the time to
play the game.

JAVASCRIPT—AJAX’S PROGRAMMING LANGUAGE
JavaScript is a computer programming language designed to execute within web browsers.
JavaScript is used in the development of small programs referred to as scripts, which are
embedded inside HTML pages. When executed, these scripts provide the ability to add inter-
active content to any web page. JavaScript is an interpreted programming language, which
means that scripts written in JavaScript are not converted into an executable form until the
HTML page that contains them is processed. As such, JavaScript is a little slower than compiled
programming languages, which are converted or compiled into executable code at the end
of the development process, allowing for faster execution.

JavaScript is an object-based programming language. It sees everything within HTML files and
the browser as objects. To Javascript, the browser is an object; browser windows are objects as
are form text fields and buttons. Resources like image files are also viewed as just another
type of object. Every object has properties, which describe some feature or aspect of the object.
For example, a button can display text, which can be specified using its text property. Graphic
images also have properties. Using these properties you can, for example, specify the size of
graphics displayed in web pages.

In addition to properties, objects also have methods, which are collections of script statements
that when called upon to execute, enable the objects with which they are associated to per-
form certain predefined actions. For example, you can add custom methods to your
JavaScripts that when called upon to execute, will perform actions like opening and closing
browser windows. Using object properties and methods, the JavaScripts that make up your
Ajax applications can dynamically alter the content and presentation of web pages.

One important feature of JavaScript that is essential to Ajax programming is the ability to
execute program code based on the occurrence of different events. An event is an action that
is initiated whenever the user interacts with your web application. As covered in Chapter 3,
events occur when web pages are opened and closed. Events also occur whenever the user
clicks on the text fields, buttons, or other objects displayed on web pages.

A Little JavaScript Background Information
JavaScript was developed in 1995 by Netscape Communication Corporation in order to pro-
vide web page developers with greater control over the presentation of their web pages.

Chapter 2 • An Introduction to JavaScript 31

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript’s original name was LiveScript. Later, when Java arrived on the scene and began to
receive massive amounts of attention, Netscape decided to rename it to JavaScript. Beyond
the similarity of their names, Java and JavaScript have little in common.

Using JavaScript, web page developers were able to incorporate programming logic into the
client-side portion of their applications and web pages. JavaScript provides web page devel-
opers with the ability to integrate graphics effects like rollover images and text in their web
pages. Using JavaScript in conjunction with the DOM (covered in Chapter 4, “Understanding
the Document Object Model”), web developers were able to exercise precise control over the
content of both web pages and the browser that loaded and displayed them.

Realizing the popularity of Netscape’s JavaScript programming language, Microsoft decided
to develop its own version of the programming language which it named Jscript. Unfortu-
nately, Microsoft Jscript was not 100-percent compatible with JavaScript, which led to much
confusion and helped to begin the web browser wars. To try to make things better, Netscape
began working with the European Computer Manufacturing Association or ECMA to stan-
dardize JavaScript, which it did in the form of ECMAScript.

In recent years, many of the differences between JavaScript and Jscript have disappeared as
web browser developers moved towards embracing the ECMAScript version of JavaScript.
However, small differences still exist today in the manner in which different web browsers
support JavaScript. Where relevant, this book will point out these differences and explain
how to overcome them as you develop your Ajax applications.

Browser Compatibility Issues
One major area of concern for Ajax developers is browser compatibility. Unfortunately, even
though Netscape and Microsoft’s browser war has been over for many years, there are still
many differences in the ways that modern web browsers support JavaScript. Things are made
even more complicated by the fact that there are so many different web browsers in use.
Examples of popular web browsers include:

• Internet Explorer (www.microsoft.com/Windows/Downloads/IE)

• Firefox (www.mozilla.com/en-US/firefox/)

• Safari (www.apple.com/safari/)

• Konqueror (www.konqueror.org)

• Flock (www.flock.com)

• Opera (www.opera.com)

Because of compatibility differences between different browsers, web pages sometimes look
and behave differently depending on which browser has been used to load and execute them.

Ajax Programming for the Absolute Beginner32

www.microsoft.com/Windows/Downloads/IE
www.mozilla.com/en-US/firefox/
www.apple.com/safari/
www.konqueror.org
www.flock.com
www.opera.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

A big part of Ajax development is developing an understanding of existing compatibility
issues and dealing with them.

Because differences in JavaScript support exist between the main web browsers,
you will want to test your Ajax applications using more than one browser. At a
minimum, you will want to test your Ajax applications using Internet Explorer,
Firefox, and Safari.

One very important difference between web browsers is the manner in which they support
the creation of the XMLHttpRequest object. This object provides Ajax applications the ability to
asynchronously request and process data retrieved from web servers. You will learn all about
this object and how to create and work with it in Chapter 3, “A Deeper Dive into JavaScript.”

Unfortunately there are also differences in JavaScript support for different
versions of the same browser. To combat this, you may want to test your Ajax
applications using previous versions of the major web browsers.

WORKING WITH JAVASCRIPT
JavaScripts are embedded inside the head or body sections of an HTML page. JavaScripts are
inserted into HTML pages using <SCRIPT> and </SCRIPT> tags. Figure 2.6 outlines the syntax
that must be followed when using these tags.

FIGURE 2.6

The syntax
required to add a
JavaScript to an

HTML file in your
Ajax applications.

As you can see, the syntax outlined in Figure 2.6 includes a number of arguments, all of which
are located in the opening <SCRIPT> tag. The language attribute is used to specify JavaScript as
the scripting language in use. The type attribute is always text/javascript and the scr
attribute is used to specify an optional external file where the JavaScript can be stored.

The language attribute represents an old way of specifying script type. The
HTML 4.0 specification states that the type attribute is the proper way to specify
script type. You can use both attributes if you want. This will help ensure that
older browsers will be able to run your JavaScripts.

HINT

TRAP

HINT

Chapter 2 • An Introduction to JavaScript 33

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Simple JavaScript
Now that you have seen the syntax required to work with the <SCRIPT> and </SCRIPT> tags,
let’s look at an example of how to use them to add a simple JavaScript to an HTML page. To
begin, create and save the HTML page shown here, assigning it a name of hello.html.

<HTML>

 <HEAD>

 <TITLE>My first JavaScript</TITLE>

 </HEAD>

 <BODY>

 </BODY>

</HTML>

As you can see, this is a pretty ordinary HTML page. Now add the following JavaScript state-
ments to its head section.

<SCRIPT language = "javascript" type = "text/javascript">

 document.write("Hello World!");

</SCRIPT>

When you are done, the HTML page should look like the example shown here:

<HTML>

 <HEAD>

 <TITLE>My first JavaScript</TITLE>

 <<SCRIPT language = "javascript" type = "text/javascript">

 ddocument.write("Hello World!");

 <</SCRIPT>

 </HEAD>

 <BODY>

 </BODY>

</HTML>

You should recognize the first and last JavaScript statements as being the script’s opening
and closing tags. The second statement instructs the browser to write a text string of “Hello
World!” on to the current document (web page).

Executing Your JavaScript
To run your new JavaScript, open the web page in which it resides using your web browser.
Since this example consists of only HTML and JavaScript and there is no interaction with any
web server, you do not even have to upload it to your web browser. Double-click on it and it

Ajax Programming for the Absolute Beginner34

http://lib.ommolketab.ir
http//lib.ommolketab.ir

will automatically be loaded into your default browser. Alternatively, you can open and exe-
cute it by starting your web browser and then executing the Open command located on the
File menu. For example, the following procedure outlines the steps involved in loading the
HTML page using Internet Explorer.

1. Start Internet Explorer.
2. Click on File and then click on Open. The Open dialog window is displayed.
3. Type the location of your HTML page and click on OK or click on the Browse button to

locate your HTML file and then click on OK. Internet Explorer will open your HTML page
and automatically run its embedded JavaScript, as demonstrated in Figure 2.7.

FIGURE 2.7

Using Internet
Explorer to

execute an HTML
page with an
embedded
JavaScript.

If the words Hello World do not appear then you have most likely made a typo, which you
should be able to locate and fix by re-checking the HTML file.

FOUR WAYS OF WORKING WITH JAVASCRIPT
In addition to embedding JavaScripts in either the head or the body section of HTML pages,
you can also store your JavaScripts in external files. You can also integrate JavaScript state-
ments directly into an HTML tag. All four of these options are examined in the sections that
follow.

Embedding JavaScripts in the HEAD Section
By convention, most Ajax developers place their application’s JavaScripts in the head section
of their HTML pages. JavaScripts embedded in the head section can be set up to automatically
or conditionally execute when HTML pages load. Most Ajax developers place all JavaScript
functions and most variable declarations in the head section in order to ensure they are

Chapter 2 • An Introduction to JavaScript 35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

defined and available before the rest of the HTML page loads, but do not automatically execute
them when the HTML page loads.

A variable is a pointer to a location in computer memory where data is stored. A
function is a named collection of JavaScript statements that can be called on to
perform a task.

The following HTML page includes a JavaScript embedded in the head section. The JavaScript
automatically executes when the HTML page loads.

<HTML>

 <HEAD>

 <TITLE>Demo: Automatic JavaScript execution</TITLE>

 <<SCRIPT language = "javascript" type = "text/javascript">

 wwindow.alert("Boo!");

 <</SCRIPT>

 </HEAD>

 <BODY>

 </BODY>

<HTML>

Take note of the use of the window object’s alert method (window.alert) in the
preceding example. This method lets you display a text message with an OK
button in a popup dialog window and is great for displaying individual messages
that do not require user interaction. The following statements outline the syntax
required to work with the alert method.

window.alert("message");

You will learn more about how to work with objects and their methods in
Chapter 3.

When loaded, this HTML page displays a text message in a popup dialog, as demonstrated in
Figure 2.8.

FIGURE 2.8

An example of a
JavaScript that is

automatically
executed when its
HTML page loads.

HINT

TRICK

Ajax Programming for the Absolute Beginner36

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As this example demonstrated, any time you embed a JavaScript inside an HTML page’s head
section, it will automatically execute when the page loads. However, if you organize your
JavaScript using functions, those functions only execute when called upon to run. For exam-
ple, the following HTML page contains an embedded JavaScript made up of a function named
ScareUser() that does not execute when the HTML page is initially loaded.

<HTML>

 <HEAD>

 <TITLE>Demo: Organizing Javascript into functions</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 ffunction ScareUser() {

 wwindow.alert("Boo!");

 }}

 </SCRIPT>

 </HEAD>

 <BODY>

 </BODY>

</HTML>

Because the JavaScript statements are now stored inside a function, they do not execute unless
called upon to run from elsewhere in the HTML page. You will learn all about functions and
how to use them in Chapter 3.

Embedding JavaScripts in the BODY Section
JavaScripts can also be placed in the body section of HTML pages. Scripts embedded in the
body section are automatically executed when the page loads. The following example demon-
strates how to embed a JavaScript in an HTML page’s body section.

<BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 document.write("Boo!");

 </SCRIPT>

</BODY>

If your Ajax applications require it, you can embed multiple JavaScripts in the same HTML
page, as demonstrated here:

<BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 document.write("Boo!");

Chapter 2 • An Introduction to JavaScript 37

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 </SCRIPT>

 <SCRIPT language = "javascript" type = "text/javascript">

 document.write("Did I scare you?");

 </SCRIPT>

</BODY>

Placing JavaScripts in External Files
Large Ajax applications often consist of complex HTML pages and a lot of JavaScript. When
programmers embed a lot of JavaScript inside complex HTML files, the resulting code can
become hard to understand and manage. One common way Ajax developers deal with this
problem is to store the JavaScript and HTML code in separate files.

If you store your Ajax application’s JavaScripts in external script files, you can
better handle cross-browser issues by creating different JavaScripts for differ-
ent browsers and then calling upon the appropriate external file based on which
browser is being used.

To store a JavaScript in an external file, save it in a plain text file with a .js file extension. Once
you have done this, you can refer to it using the scr attribute, as demonstrated here:

<SCRIPT src="Test.js" language="javascript" type="text/javascript">

</SCRIPT>

The external JavaScript file can contain one or more JavaScripts. One thing that it cannot
contain is HTML. Otherwise, an error will occur. The JavaScripts that you store in external
files can be of any length.

There are a number of reasons that Ajax developers like to store JavaScripts in external files.
Moving JavaScript statements out of HTML pages makes the pages smaller and easier to man-
age. External JavaScript files can be referenced and used by more than one Ajax application.
Should you need to later modify an external JavaScript, you can do so without having to
modify every HTML page that references it, which would be the case if you hard coded the
JavaScript in every page that referenced it.

Embedding JavaScripts in HTML Tags
In addition to placing your JavaScripts in an HTML page’s head or body section or in an exter-
nal file, you can also embed individual JavaScript statements within HTML tags, as demon-
strated here:

TRICK

Ajax Programming for the Absolute Beginner38

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<BODY onLoad = document.write("Boo!")> <BODY>

Here, the JavaScript statement onLoad=document.write("Boo!") has been embedded within
a <BODY> tag. This statement instructs the browser to display the specified text when the
browser loads the HTML page.

Embedding individual JavaScript statements in HTML tags gives you an easy way to execute
individual JavaScript statements. However, as covered in Chapter 3, to initiate the execution
of JavaScripts placed in the head or body section or scripts stored externally, you need to call
on JavaScript functions. Learning how to set this up is a key step in becoming an effective
Ajax developer.

Understanding JavaScript Statement Syntax
JavaScript is a case-sensitive programming language. This differs from HTML, which allows
you to use different capitalization when formulating HTML tags. You must use correct
spelling and capitalization when formulating JavaScript statements. For example, JavaScript
requires that when you refer to the document object and its methods and properties, you use
all lowercase spelling. If you do not an error will occur.

Except for its strict application of case-sensitivity, JavaScript is a very flexible programming
language that does not impose many rules regarding the formulation of scripts. Statements
generally begin and end on the same line. However, you can begin on one line and continue
a statement onto the next line if you need to. You can even put multiple statements on the
same line by separating them with semicolons (;). Javascript uses semicolons to identify the
end of statements. However, you are not required to add them. Still, it is considered to be a
good programming practice to end all JavaScript statements with semicolons.

JavaScript also allows you to make liberal use of white space. Any number of
blank lines can be inserted between script statements in order to make them
more readable.

Dealing with Browsers That Do Not Support JavaScript
One of the challenges that Ajax developers face is that many people surfing the web are using
web browsers that either do not support JavaScript or that have been configured to disable
JavaScript support. One way of addressing this issue is to use HTML comment tags to hide
JavaScript statements from browsers that cannot understand them. HTML comments are
embedded within <!-- and --> characters. Browsers will ignore any text placed inside these
characters.

TRICK

Chapter 2 • An Introduction to JavaScript 39

http://lib.ommolketab.ir
http//lib.ommolketab.ir

All browsers know not to display the <SCRIPT> tags, whether they support JavaScript or not.
However, browsers that do not support JavaScript do not know what to do with the statements
located inside the <SCRIPT> tag and will display the script statements as part of the HTML page.
To prevent this from happening, all you have to do is enclose the JavaScript statements located
in the <SCRIPT> and </SCRIPT> tags within HTML comments, as demonstrated here:

<HTML>

 <HEAD>

 <TITLE>Demo: Hiding JavaScript from non-supporting browsers</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <<!-- Start hiding JavaScript statements

 document.write("Boo!");

 /// End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

When coded this way, browsers that do not support JavaScript will ignore the JavaScript
statements as comments.

Documenting Your Scripts Using Comments
In order to make your JavaScripts easier to understand and maintain, it is recommended that
you get into the habit of embedding comment statements that document what is going on
into your Ajax applications. Comments have no effect on the performance of JavaScripts.
JavaScript supports two types of comments. For starters, you can add a comment line at any
location within a script by typing // followed by the text of your comment, as demonstrated
here:

//The following statement displays a scary message

document.write("Boo!");

You can also append a comment to the end of any statement, as demonstrated here:

document.write("Boo!"); //This statement displays a scary message

JavaScript also allows you to create multi-line comments by placing text inside opening /*
and closing */ characters, as demonstrated here:

Ajax Programming for the Absolute Beginner40

http://lib.ommolketab.ir
http//lib.ommolketab.ir

/* The following statement displays a short but very scary message directly

on the browser window */

document.write("Boo!");

WORKING WITH DIFFERENT TYPES OF VALUES
Ajax applications store and manipulate data as they execute. JavaScript makes an implicit
determination about every type of data that it works with. This value assignment has a direct
effect on how JavaScript handles the data. Table 2.1 lists the different types of values that
JavaScript supports.

T A B L E 2 . 1 J A V A S C R I P T S U P P O R T E D V A L U E S

Value Description
Boolean A value indicating a condition of either true or false
Null An empty value
Numbers A numeric value
Strings A string of text enclosed in matching quotation marks

You can store and manipulate data in your JavaScripts using variables. A variable
to a location in memory where an individual piece of data is stored.

Creating Javascript Variables
Before you can use a variable in a Javascript, you must declare or define it. Variable declaration
can be done either explicitly or implicitly. To explicitly declare a variable, you can use the
var keyword, as demonstrated here:

var playerName = "Wing Commander";

Here, a variable named playerName has been defined and assigned a value of Wing Commander.
To implicitly declare a variable, reference it for the first time, as demonstrated here:

playerName = "Wing Commander";

Explicit variable declaration is a good programming practice. It helps make your scripts
easier to read and understand.

Chapter 2 • An Introduction to JavaScript 41

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Assigning Variable Names
JavaScript is very flexible in its support of variable names. There are, however, a few rules that
you must follow, as outlined here:

• Variable names can only consist of uppercase and lowercase letters, the underscore
character, and the numbers 0 through 9.

• Variable names cannot begin with a number.

• Variable names cannot contain spaces.

• Reserved words cannot be used as variable names.

Remember that variables are case-sensitive. If you declare a variable with the name
playerCount, you must refer to it using the exact same case throughout your JavaScript.
Another important point to consider when assigning variable names is that good variable
names are descriptive of their contents or purpose. For example, PlayerName is much more
descriptive than pn.

Understanding Variable Scope
The term scope refers to the location within JavaScripts where a variable exists and can be
accessed. JavaScript supports two types of variable scopes, global and local. Variables with a
global scope can be accessed by any JavaScript embedded within an HTML page. Local variables
are variables created within functions. Local variables can only be accessed by statements
located within the functions where they are defined.

An understanding of scope is often difficult for new programmers to understand.
Do not worry if the idea of scope seems a little vague at this point. The concept
will become clearer as you gain further programming experience.

Working with Global Variables
A global variable is a variable that can be referenced and modified by any script statement
located in the web page. Global variable can be defined in a couple of ways, including:

• An initial reference to a new variable from inside a function without using the var
keyword.

• Defining a variable outside of a function (with or without the var keyword).

Working with Local Variables
Local variables are explicitly declared inside functions using the var keyword. A function is
a named collection of code statements that can be called on for execution from different

HINT

Ajax Programming for the Absolute Beginner42

http://lib.ommolketab.ir
http//lib.ommolketab.ir

locations within a script or HTML page. As an example of how to create a local variable, take
a look at the following statements.

function DisplayGreeting() {

 var greetingText = "Hello World!";

 document.write(greetingText);

}

Here, a function named DisplayGreeting() has been created that when called upon to execute
will declare a local variable named greetingText, assign a text string to it, and then display
the text string in the browser window. The value assigned to greetingText is inaccessible
outside of the function.

Doing a Little Math
When working with numeric data, JavaScript lets you perform arithmetic calculations using
the operators listed in Table 2.2. Using these operators, you can develop statements that per-
form virtually any type of calculation and then assign the result to a variable.

T A B L E 2 . 2 J A V A S C R I P T M A T H E M A T I C A L O P E R A T O R S

Operator Description Example
+ Adds two values together playerScore = 5 + 10

- Subtracts one value from another playerScore = 10 - 5

* Multiplies two values together playerScore = 5 * 10

/ Divides one value by another playerScore = 10 / 5

-x Reverses a variable’s sign count = -count

x++ Post-increment (returns x, then increments x by one) x = y++

++x Pre-increment (increments x by one, then returns x) x = ++y

x-- Post-decrement (returns x, then decrements x by one) x = y--

--x Pre-decrement (decrements x by one, then returns x) x = --y

Use of the first four operators listed in Table 2.2 should be self explanatory. However, the
remaining operators require additional explanation. The x++ and ++x operators provide the
ability to increment a value of x by 1. The difference in the way these two operators work is
when the update occurs. Suppose for example that you had two variables, playerScore and
noOfHits. If noOfHits was set equal to 100 and the following statement was then executed, the
value assigned to noOfHits would be incremented by 1 and a value of 101 would then be
assigned to playerScore.

Chapter 2 • An Introduction to JavaScript 43

http://lib.ommolketab.ir
http//lib.ommolketab.ir

playerScore = ++noOfHits;

Using the x++ operator, as shown here, results in a different result.

playerScore = noOfHits++;

What happens here is that the value of noOfHits (e.g., 100) is first assigned to playerScore and
only once this has occurred is the value of noOfHits incremented to 101. The --x and x--
operators work identically to the ++x and x++ operators except that they decrement a
variable’s value by 1.

Assigning and Modifying Variable Values
As you have already seen, to assign an initial value to a variable, you need to use the = operator.
Likewise, to modify a variable’s assigned value all you have to do is assign it a new value using
use the = operator, as demonstrated here:

playerScore = 0;

.

.

.

playerScore = 100;

In addition to the = operator, JavaScript lets you modify variable values using any of the
operators listed in Table 2.3.

T A B L E 2 . 3 J A V A S C R I P T A S S I G N M E N T O P E R A T O R S

Operator Description Examples
= Sets a variable value equal to some value x = y + 1
+= Shorthand for x = x + y x += y
-= Shorthand for x = x - y x -= y
*= Shorthand for x = x * y x *= y
/= Shorthand for x = x / y x /= y
%= Shorthand for x = x % y x %= y

To better understand how to work with the operators shown in Table 2.3, take a look at the
following example.

Ajax Programming for the Absolute Beginner44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<HTML>

 <HEAD>

 <TITLE>Demo: Using JavaScript operators</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var x = 3;

 var y = 10;

 var z = 0;

 z = x + y;

 document.write("x + y = " + z);

 z += 2

 document.write("
x += y = " + z);

 z -= 5

 document.write("
x -= y = " + z);

 z *= 3

 document.write("
x *= y = " + z);

 z /= 2

 document.write("
x /= y = " + z);

 z %= 4

 document.write("
x %= y = " + z);

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Take note of the use of the
 tag located inside the document.write() state-
ment. This tag provides a means of controlling line breaks with JavaScripts. Also
take note of the use of the + operator, which when used with strings instead of
numeric data, lets you join two strings together to form a new string.

As you can see, three variables named x, y, and z have been defined and assigned initial start-
ing values. Next, six pairs of statements are used that demonstrate the use of a particular
operator. For example, the first pair of statements adds x and y and assigns the result to z.
The resulting value is then written to the browser window. Figure 2.9 shows the output that
is produced when this script is executed.

TRICK

Chapter 2 • An Introduction to JavaScript 45

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 2.9

A simple example
of how to work
with JavaScript

operators.

Comparing Different Values
One very common task in most Ajax applications is the comparison of values. Depending on
the result of that analysis, the application will alter its execution. For example, an application
might take one action if a value was greater than 100 and a different action if the value was
less than 100. As shown in Table 2.4, JavaScript supports a number of different comparison
operators.

T A B L E 2 . 4 J A V A S C R I P T C O M P A R I S O N O P E R A T O R S

Operator Description Example
== Equal to x == y

!== Not equal to x !== y

> Greater than x > y

>= Greater than or equal to x >= y

< Less than x < y

<= Less than or equal to x <= y

Note that when checking to see if two values are equal, JavaScript requires that you use the
== comparison operator and not the = assignment operator. For example, the following state-
ments check to see if the values assigned to two variables are equal.

if (x == y) {

document.write("Bingo!");

}

Ajax Programming for the Absolute Beginner46

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By modifying this example, as shown below, you can easily adjust it to formulate a test that
checks to see if the value of x is greater than or equal to y.

if (x >= y) {

document.write("Bingo!");

}

APPLYING CONDITIONAL LOGIC
Conditional programming logic enables you to alter the logical execution flow of your Ajax
applications based on the result of comparison operations. Specifically, conditional logic
allows you to execute one set of statements when the tested condition proves true and a
separate set of statements when the tested condition evaluates as false.

Introducing the if Statement
Using the if statement you can check whether a logical condition is true or false and con-
ditionally execute one or more statements. In its simplest form, the syntax of the if statement
is outlined here:

if (condition)

 statement

Here, condition is an expression, enclosed within parentheses that evaluates as being either
true or false. The easiest way to learn how to use the if statement is to observe it in action,
so take a look at the following example.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with the if statement</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var playerScore = 99;

 iif (playerScore < 100) document.write("You lose, try again.");

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Chapter 2 • An Introduction to JavaScript 47

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here, the value assigned to a variable named playerScore is checked to see if it is less than
100, and if it is, the string “You lose, try again.” is displayed. However, if the value assigned
to playerScore is not less than 100, the string is not displayed.

Multi-line if Statements
Using the { and } characters, you can use the if statement to create a code block made up of
any number of statements, all of which are executed in the event the tested conditional proves
true. To see how this works, take a look at the following example.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with the if statement</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var playerScore = 101;

 iif (playerScore > 100) {

 ddocument.write("You win!");

 wwindow.alert("Winner!");

 }}

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Here, two statements are executed if the value of playerScore is greater than 100.

Providing for Alternative Conditions
Using an optional else keyword, you can modify an if statement code block to execute an
alternative set of statements in the event the tested condition evaluates as false. An example
demonstrating how this works is provided here:

<HTML>

 <HEAD>

 <TITLE>Demo: Working with the if statement</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

Ajax Programming for the Absolute Beginner48

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <!-- Start hiding JavaScript statements

 var playerScore = 99;

 iif (playerScore <= 100) {

 ddocument.write("You lose, try again.");

 }}

 eelse {

 ddocument.write("You win!");

 }}

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Here, the text string "You lose, try again." is displayed if playerScore is less than or equal
to 100, and a string of "You win!" is displayed if playerScore is not less than or equal to 100.
Note that the statements associated with the else keyword are embedded inside the opening
{ and closing } characters.

Nesting if Statements
One powerful way of using the if statement is to embed or nest it within another if statement
code block in order to set up more complex and sophisticated conditional logic. The following
statements provide an example of how you might use nested if statements.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with the if statement</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var gameOver = false;

 var playerScore = 199;

 iif (gameOver == true) {

 iif (playerScore <= 100) {

 ddocument.write("You lose, try again.");

 }}

 eelse {

 ddocument.write("You win!");

 }}

Chapter 2 • An Introduction to JavaScript 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }}

 eelse {

 ddocument.write("It is not over yet. Try again.");

 }}

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Here, the value of gameOver is checked to see if it is equal to true. If it is, the embedded if
statement code block executes, evaluating the value of playerScore, executing either of two
statements depending on whether playerScore is less than or equal to 100.

Working with the switch Statement
JavaScript also supports the execution of conditional logic using the switch statement. This
statement evaluates a series of conditional tests or cases, executing code statements belong-
ing to the first case statement that evaluates as true. The syntax of the switch statement is
outlined here:

switch (expression) {

 case label:

 statements;

 break;

 .

 .

 .

 case label:

 statements;

 break;

 default:

 statements;

}

Here, the value of the expression is compared against the value of each case. The statements
belonging to the first case statements whose value equals that of the expression is executed.
If no case statements prove true, the statements belonging to the default statement are exe-
cuted. Note that the default statement is optional and if omitted, no action occurs in the
event that none of the case statements evaluate as true.

Ajax Programming for the Absolute Beginner50

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Note that the break statement located at the end of each case is optional. When present, the
break statement tells the script to exit the switch statement when a match is found. If you
were to remove the optional break statements, the script would execute the statements
belonging to any case statement whose value matched the value of the expression.

To get a better feel for how to work with the switch statement, take a look at the following
example,

<HTML>

 <HEAD>

 <TITLE>Demo: Working with the switch statement</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var fruit = window.prompt("Pick a fruit: apple, orange or pear?");

 sswitch (fruit) {

 ccase "apple":

 ddocument.write("The apples are nice and red this year.");

 bbreak;

 ccase "orange":

 ddocument.write("The oranges were hand picked this morning.");

 bbreak;

 ccase "pear":

 ddocument.write("Pears are on sale for half off today.");

 bbreak;

 ddefault:

 ddocument.write("Sorry, this fruit is not in stock.");

 }}

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Here, the user is prompted to type in the name of a fruit. The user’s input is then analyzed
using a switch code block and 1 of 4 messages is written to the browser window, depending
on the user’s input. Figures 2.10 and 2.11 demonstrate the execution of this example using
the Firefox browser.

Chapter 2 • An Introduction to JavaScript 51

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Take note of the variable declaration statement in the previous example. It
uses the window object’s prompt method to display a message in a popup dialog
window that prompts the user to enter a response and click on the dialog’s OK
button. The following statements outline the statement’s syntax.

window.prompt("message" [, "default"]);

Here, message is a text string displayed in the dialog window and default is an
optional parameter that when specified, displays default text in the popup dia-
log’s entry field.

You should use the window object’s prompt method when you want to collect a
quick piece of data from the user. It will save you the trouble of having to define
an HTML form in which to collect the data. You will learn more about how to
work with objects and their methods in Chapter 3.

FIGURE 2.10

Prompting the
user for input
using a popup

dialog window.

FIGURE 2.11

Using the switch
statements to

analyze and
process user

input.

WORKING EFFICIENTLY WITH LOOPS
Loops are collections of statements that are repeatedly executed. Loops provide you with the
ability to process large amounts of data or to repeatedly execute a repetitive task using just
a few lines of code. This greatly simplifies script development and maintenance.

TRICK

Ajax Programming for the Absolute Beginner52

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with the for Statement
Using the for statement you can set up a loop that executes until a tested condition becomes
false. This loop uses a variable to manage loop execution. The for loop is made up of three
parts: a starting expression, a tested condition, and an increment statement. The syntax of
this statement is outlined here:

for (expression; condition; increment) {

 statements;

}

All the statements embedded within the loop’s starting and ending brackets are executed
every time the loop iterates (repeats). To better understand how to work with the for state-
ment, consider the following example. Here a loop has been set up to iterate 10 times. At the
beginning of the loop’s first iteration, the value of i is set to 1. The loop repeats 10 times,
terminating when the value of i reaches 11.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with the for loop</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 document.write("Watch me count to 10:
");

 ffor (i=1; i<11; i++) {

 ddocument.write(i,"
");

 }}

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Figure 2.12 shows the output that is displayed when this example executes.

Working with the while Statement
Using the while statement, you can set up a loop that executes as long as a tested condition
remains true. The syntax for this statement is outlined here:

while (condition) {

 statements;

}

Chapter 2 • An Introduction to JavaScript 53

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 2.12

Setting up a for
loop to count
from 1 to 10.

As an example of how to work with the while statement, take a look at the following HTML
page.

<HTML>

 <HEAD>

 <TITLE>Demo: Using a while loop to count down to launch</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var countdown = 10;

 document.write("Prepare to launch.

");

 wwhile (countdown > 0) {

 ddocument.write(countdown, "
");

 ccountdown--;

 }}

 document.write("
Blastoff!");

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Here, a loop has been set up that runs as long as the value of a variable named countdown
is greater than 0. Each time the loop iterates, the value of countdown is decremented by 1.
Figure 2.13 shows the output that is displayed when this example is executed.

Ajax Programming for the Absolute Beginner54

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 2.13

Using a while
loop to count

from10 down to 1.

Working with the do. . .while Statement
A third type of loop supported by JavaScript is created by the do. . .while statement, which
executes a loop until a tested condition becomes false. The syntax of this statement is out-
lined here:

do {

 statements;

} while (condition)

Although similar to the while loop, the do. . .while loop distinguishes itself in that it always
executes at least once because the tested condition is not checked until the end of the loop’s
first execution. The following example demonstrates how to work with the do…while loop.

<HTML>

 <HEAD>

 <TITLE>Demo: Using a do...while loop to count down to launch</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var countdown = 10;

 document.write("Prepare to launch.

");

 ddo {

 ccountdown--;

 ddocument.write(countdown, "
");

 }} while (countdown > 0)

 document.write("
Blastoff!");

 // End hiding JavaScript statements -->

Chapter 2 • An Introduction to JavaScript 55

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 </SCRIPT>

 </BODY>

</HTML>

The results that are generated are exactly the same as those that were generated using the
while loop example.

Altering Loop Execution
By default, loops execute from beginning to end, over and over again. However, there will be
times in which you will want to halt loop execution or skip individual loop iterations. This
can be accomplished using the break and continue statements. The following example demon-
strates how to use the break statement. Here, the break statement is used to stop a loop when
the value assigned to a variable named countdown is set to 5.

<HTML>

 <HEAD>

 <TITLE>Demo: An example of how to use the break statement</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var countdown = 10;

 document.write("Prepare to launch.

");

 while (countdown > 0) {

 document.write("countdown = ", countdown , "
");

 if (countdown == 5) {

 document.write("
Countdown aborted!");

 bbreak;

 }

 countdown--;

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Figure 2.14 shows the output that is displayed when this example executes.

Ajax Programming for the Absolute Beginner56

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 2.14

Using the break
keyword to

prematurely
terminate a loop’s

execution.

Skipping Loop Iterations
Unlike the break statement, which halts loop execution, the continue statement only termi-
nates the current iteration of the loop, allowing the loop to continue its execution. For
example, the following HTML page contains a JavaScript that has been set up to execute 10
times. When the loop begins its execution, the value assigned to i is 10. Each time the loop
iterates the value assigned to i is automatically decremented by 1. As soon as i is set to 0, the
loop stops executing.

<HTML>

 <HEAD>

 <TITLE>Demo: An example of how to use the continue statement</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 document.write("Prepare to launch.

");

 for(i=10; i>0; i--) {

 switch (i) {

 case 10:

 ccontinue;

 case 8:

 ccontinue;

 case 6:

 ccontinue;

 case 4:

 ccontinue;

 case 2:

Chapter 2 • An Introduction to JavaScript 57

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ccontinue;

 }

 document.write(i, "
");

 }

 document.write("
Blastoff!");

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Within the loop, a switch statement code block has been set up that looks for the values 10,
8, 6, 4, and 2, executing a continue statement whenever the value assigned to i is set to one
of these values. As a result, only the numbers 9, 7, 5, 3, and 1 are displayed. Figure 2.15 shows
the output that is generated when this example runs.

FIGURE 2.15

Using the break
keyword to

prematurely
terminate a loop’s

execution.

BACK TO THE NUMBER GUESSING GAME
Okay, it is now time to turn your attention back to the development of this chapter’s appli-
cation project, the Number Guessing game. This game, when loaded into a web browser, will
challenge the player to guess a number from 1 to 10 in as few guesses as possible. Development
of this game will help to reinforce the topics covered in this chapter and prepare you for the
development of Ajax applications.

Designing the Application
As with all of the game projects that are presented in this book, you will complete the devel-
opment of this application by following a specific series of steps, as outlined here:

Ajax Programming for the Absolute Beginner58

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a new HTML page.
2. Start the development of the application’s JavaScript.
3. Develop the rest of the application’s programming logic.
4. Execute your new application.

Step 1: Writing the Application’s HTML
The first step in creating the Number Guessing game is to create a new HTML page, which
you can do using your preferred code or text editor. Add the following statements to your
new HTML file and then save it with a name of NumberGuess.html.

<HTML>

 <HEAD>

 <TITLE>The number guessing game</TITLE>

 </HEAD>

 <BODY>

 </BODY>

</HTML>

As you can see, there is nothing fancy with the application’s HTML code. It consists of the
standard head and body tags. The head section includes a title tag, displaying a text string
identifying the game. The body section is currently empty.

Step 2: Beginning the Application’s Script
The execution of the Number Guessing game is controlled by a JavaScript embedded inside
the body section of the HTML page. Begin the development of this script by adding the state-
ments shown below to the body section of the HTML file.

<SCRIPT language = "javascript" type = "text/javascript">

<!-- Start hiding JavaScript statements

 //Define script variables

 var randomNo = 0;

 var gameOver = false;

 var keepPlaying = false;

 var guess = "";

Chapter 2 • An Introduction to JavaScript 59

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 var msg = "I am thinking of a number from 1 - 10. Try to guess it:"

 var reply = "";

// End hiding JavaScript statements -->

</SCRIPT>

As you can see, these statements define a JavaScript containing six variable declarations.
randomNo will be used to store the game’s randomly generated number. gameOver and
keepPlaying are used to manage loops that control the game’s execution. guess and reply will
be used to store player input, and msg is used to store a text string that is displayed in one of
the game’s popup dialog windows.

Step 3: Adding the Application’s Controlling Logic
The rest of the JavaScript used in the Number Guessing game is shown next and should be
added to the script file, immediately after the six variable declaration statements and before
the closing </SCRIPT> tag.

//This loop allows the player to play as many games as desired

while (gameOver == false) {

 randomNo = 1 + Math.random() * 9; //Generate a random number

 //from 1 - 10

 randomNo = Math.round(randomNo); //Turn the number into an integer

 keepPlaying = false; //Set value to indicate that the current

 //round of play should continue

 //Loop until the player guesses the secret number

 while (keepPlaying == false) {

 //Prompt the player to guess the secret number

 guess = window.prompt(msg + randomNo);

 //Analyze the player's guess

 if (guess == randomNo) { //See if the player guessed the number

 window.alert("Correct! You guessed the number.");

 reply = window.prompt("Would you like to play again? (y/n)");

Ajax Programming for the Absolute Beginner60

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (reply == "y") { //See if the player wants to play again

 keepPlaying = true;

 gameOver = false;

 } else { //Let the current round of play continue

 keepPlaying = true;

 gameOver = true;

 }

 } else {

 if (guess > randomNo) { //See if the player's guess is too high

 window.alert("Incorrect. Your guess was too high.");

 } else { //See if the player's guess is too low

 window.alert("Incorrect. Your guess was too low.");

 }

 }

 }

}

window.alert("Game over. Thanks for playing."); //Thank the player

As you can see, the execution of these statements is controlled by a while loop, which has
been set up to repeatedly execute as long as the value assigned to a variable named
gameOver is set to false. Next, a random number from 1 to 10 is generated using the Math
object’s random() method. Since the random() method returns a value between 0 and 1, the
value that is returned is multiplied by 9 and then incremented by one in order to generate a
number in the range of 1 to 10.

The Math object’s random() method is used to retrieve a random number between
0 and 1. This method’s syntax is shown here:

Math.random()

You can store the randomly generated number returned by the random() method
in a variable for later processing.

At this point the value assigned to randomNo is a decimal number between 1 and 10. How-
ever, the game is designed to work with integer values so the value of randomNo is rounded
to the nearest whole number using the Math object’s round() method. Next, the value of
keepPlaying is set to false, preparing for the execution of another while loop, which is respon-
sible for collecting and processing player guesses.

HINT

Chapter 2 • An Introduction to JavaScript 61

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Math object’s round() method is used to round a decimal number to the
nearest integer value. This method’s syntax is shown here:

Math.round(x)

Here, x represents a decimal number to be rounded. Note that if the value that
is passed to the round() method is .5 or greater, the number that the function
returns is the next highest integer value. Otherwise, the value of the next lowest
integer is returned.

Within the inner loop, the player is prompted to enter a guess using the window object’s
prompt() method. The player’s input is then stored in a variable named guess. Next, an if
statement code block is set up to analyze the player’s input. If the player’s guess is incorrect,
a message is displayed letting the player know if the guess was too low or too high. If the
player’s guess is correct, a message is displayed congratulating the player using the window
object’s alert() method. If this is the case, the window object’s prompt() method is then used
to display a popup dialog window that prompted the player to play again. If the player
responds by entering a y, then the values of keepPlaying and gameOver are modified. Setting
keepPlaying to true causes the inner loop to terminate its execution and setting gameOver to
false ensures that the outer loop keeps executing. If the player elected not to play, then both
keepPlaying and gameOver are set equal to true, terminating both the inner and outer loop,
thereby ending the game. The last statement in the script is executed at the end of the game,
displaying a text message that thanks the player for playing the game.

Step 4: Testing Your New Application
All right, assuming that you have followed along carefully with the instructions that have
been provided, your copy of the Number Guessing game should be ready for execution. Simply
upload it to your website and then use your web browser to load it. If you run into any prob-
lems, double-check your typing and look for typos or missing statements.

You will find a copy of this application’s source code files on the book’s com-
panion website, located at http://www.courseptr.com/downloads.

SUMMARY
This chapter provided an overview of JavaScript, giving you an understanding of basic
JavaScript programming concepts required to support the development of Ajax applications.
You learned about JavaScript’s origins and issues surrounding browser compatibility. You
also learned how to create and embed JavaScripts in your web pages in order to make them
more interactive. This chapter explained how to formulate JavaScript statements and to

HINT

HINT

Ajax Programming for the Absolute Beginner62

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

comply with JavaScript syntax and showed you how to collect, store, and modify data using
variables and to work with conditional and iterative programming logic.

Before moving on to Chapter 3, consider setting aside a little extra time to make improve-
ments to the Number Guessing game by addressing the following challenges.

Challenges
1. As currently written, the Number Guessing game challenges

the player to guess a number from 1 to 10. Consider making
the game more challenging by increasing the range supported
by the game to 1 to 100 or 1 to 1000.

2. Rather than just telling the player when guesses are too high
or too low, consider modifying the game to provide additional
feedback when the player’s guess gets close to the secret
number.

Chapter 2 • An Introduction to JavaScript 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3C H A P T E R

A DEEPER DIVE INTO

JAVASCRIPT

his chapter rounds out the book’s review of JavaScript programming. You
will learn how to create and execute functions. The use of functions is a
fundamental feature utilized in most Ajax applications. You will also learn

how to manage collections of data using arrays. This chapter will also review the
usage of the <DIV> </DIV> and tags, whose use is essential to the
development of Ajax applications that dynamically update text displayed on web
pages. This chapter will also explain how to work with different browser events
and how to develop applications that can react to events when they occur, enabling
you to create all sorts of interactive applications.

Specifically, you will learn how to:

• Organize JavaScript statements into functions and to set up these functions
to process and return data

• Dynamically modify the display of text within your applications

• Use arrays in order to more efficiently store and process large amounts of
data

• Trigger function execution using browser events

T

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PROJECT PREVIEW: THE ROCK, PAPER, SCISSORS GAME
This chapter’s game project is the Rock, Paper, Scissors game. This application pits the player
against the computer. As demonstrated in Figure 3.1, this game is played by clicking on one
of the three button controls.

FIGURE 3.1

To play the Rock,
Paper, Scissors

game, click on one
of the three
application

buttons.

As soon as one of the buttons is clicked, the game generates a random move on behalf of the
computer and then analyzes the result to determine whether the player won, lost, or tied.
The winner of the game is determined using the following set of rules:

• Rock crushes scissors

• Paper covers rock

• Scissors cut paper

• Matching moves result in a tie

Figure 3.2 shows an example of a typical round of play. Here, the player submitted a move of
Rock and a move of Paper was generated on behalf of the computer.

FIGURE 3.2

The application
generates a move
on behalf of the

computer.

Ajax Programming for the Absolute Beginner66

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although the application does not interact with a web server behind the scenes and is
not technically an Ajax application, this application ties together many of the JavaScript
programming concepts that are covered in this and the previous chapter. This application
also gives you the opportunity to work on an application that dynamically updates its own
content, which is an essential feature of Ajax applications.

IMPROVING JAVASCRIPT ORGANIZATION WITH FUNCTIONS
To be able to create Ajax applications that interactively communicate with web servers, you
need a means of submitting requests and processing the data that is sent back. This is accom-
plished through the use of functions. A function is a collection of program statements called
upon to perform a specific task. Ajax programmers store JavaScript functions in the head
section of HTML pages or in external files referenced within the head section. This ensures
that they are loaded and available as soon as the web pages that contain them are loaded.
This makes functions easier to locate and maintain.

Avoid placing your functions in the body section of your HTML pages. If your
JavaScripts attempt to execute a function buried at the bottom of the body sec-
tion of your HTML page before that function has been loaded, an error will occur.
Instead, place all your functions in the head section of your HTML pages and you
will not only avoid errors but will make your JavaScript more manageable.

Ajax developers use functions to control the execution of statements designed to manage com-
munication with web servers and to control the application of dynamic updates to web pages.

Organizing Code Statements into Functions
Functions must be defined before they can be executed. The syntax required to define a func-
tion is outlined here:

function FunctionName(p1, p2,....pn) {

 statements;

return

}

FunctionName represents the name assigned to the function. The function name is always fol-
lowed by a pair of parentheses, which are used to define one or more (optional) command-
separated arguments that the function is designed to process. The parentheses are required,
even if the function does not define any arguments. Functions can contain any number of
statements that are placed within the function’s opening and closing curly braces. Functions
can also contain an optional return statement. When present, the return statement allows
the function to return data back to the statement that called it.

TRAP

Chapter 3 • A Deeper Dive into JavaScript 67

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following example shows a function named ValidateAge, which accepts a single
argument—the user’s age. The function uses this argument to determine whether the user is
old enough to use the application that contains the functions. If the user is less than 18 years
old, a message is displayed advising the user not to use the application. The return statement
has been added to explicitly return control of the script back to the calling statement.
However, since the function is not designed to return any data, the return statement could
have been omitted without affecting the execution of the function.

function ValidateAge(age) {

 if (age < 18) {

 window.alert("Please leave. You are too young to play.");

 }

 return

}

Defining a function within a JavaScript does not cause that function to execute. The function
must be called on to execute. If your Ajax applications contain functions that are never called
upon to run, then the code statements inside those functions will never execute. Once writ-
ten, you can call upon a function to execute as many times as necessary during application
execution. Functions can be used to reduce the size of applications by eliminating the need
to duplicate a particular section of programming logic.

Controlling Function Execution
There are two ways of calling on JavaScript functions to execute. The first is simply to type in
its name, as demonstrated here:

ShowInstructions();

Here, a function name ShowInstructions() has been called upon to execute. Note that the
opening and closing parentheses are required, even when the function call does not involve
the passage of any arguments for processing. When called this way, the specified function
executes, and when done, processing flow is returned and then the next statement in the
script (immediately following the function call) is executed.

Functions that have been set up to process arguments can be passed data as part of the func-
tion call, as demonstrated here:

TerminateGame(100);

Here, a function named TerminateGame() is called and passed a value of 100. You can pass as
many arguments to a function as it has been set up to handle, provided you separate each
argument using commas, as demonstrated here:

TotalPlayerScores(100, 125, 333);

Ajax Programming for the Absolute Beginner68

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You must make sure functions are capable of handling all of the arguments
passed to them or an error will occur.

The second way of calling on a function is to use the function as part of an expression. When
used this way, a function can return a value to a calling statement (provided the function
was set up to do so). For example, the following statement executes a function named
DeterminePlayerAge() and then stores the result that this function returns in a variable named
playerAge.

playerAge = DeterminePlayerAge();

To better understand how to call on functions, let’s look at a couple of quick examples. In the
following example, a function named ValidateAge() has been added to the head section of
the HTML page. It is executed by a ValidateAge(userAge); statement located in the body sec-
tion. The function call includes the passing of a single argument called userAge. When called,
the function maps the userAge variable to its age argument. The function then displays either
of two messages based on the value of the argument.

<HTML>

 <HEAD>

 <TITLE>Demo: Executing statements stored in a function</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function ValidateAge(age) {

 if (age >= 18) {

 window.alert("Welcome! Let’s play.");

 } else {

 window.alert("Please leave. You are too young to play.");

 }

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var userAge;

 userAge = window.prompt("Enter your age:","");

 ValidateAge(userAge);

 // End hiding JavaScript statements -->

NOTE

Chapter 3 • A Deeper Dive into JavaScript 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 </SCRIPT>

 </BODY>

</HTML>

Figures 3.3 and 3.4 show an example.

FIGURE 3.3

Collecting user
input using a popup

dialog window.

FIGURE 3.4

Using a function to
analyze player

input.

This last example demonstrates how to call on and process the value returned by a function.

<HTML>

 <HEAD>

 <TITLE>Demo: Using functions to enhance script organization</TITLE>

 <SCRIPT language = "javaScript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var age;

 function GetUserAge() {

 var userAge;

 userAge = window.prompt("Enter your age: ","");

 return userAge;

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY>

 <SCRIPT language = "javaScript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 age = GetUserAge();

 if (age >= 18) {

 window.alert("Welcome! Let’s play.");

 } else {

Ajax Programming for the Absolute Beginner70

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 window.alert("Please leave. You are too young to play.");

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Here, a function named GetUserAge() has been defined. When called for execution, the func-
tion prompts the user to enter her age and assigns the input to a variable named userAge,
which is then passed back to the calling statement using a return statement. The function is
called by a statement located in the body section, which takes the value returned by the
function and assigns it to a variable named age.

DEVELOPING APPLICATIONS THAT RESPOND TO EVENTS
Most of the JavaScripts that have been presented so far have executed in a top-down fashion,
with the browser executing each JavaScript starting with its first statements and continuing
on to the last statement. The only exception to this has been examples that placed code state-
ments in functions located in the head section of the HTML page, which were called by func-
tions located in the body section of the HTML page.

Developing Event-Driven Scripts
An event is something that occurs within the browser. Events occur when the user uses the
mouse to click on something. Events also occur when the mouse moves, keys on the keyboard
are pressed, and windows are opened and closed or resized. Browsers automatically recognize
events and react to them. For example, if the user clicks on a link embedded within a web
page, the onClick event occurs. The browser’s default response in this example is to load the
web page or resource specified by the link.

By creating functions and associating them with specific events using event handlers, you
can develop Ajax applications that react to user actions, retrieving and then displaying data
as needed from web servers. An event handler is a mechanism that detects the occurrence of
an event and reacts to it. Upon detecting the occurrence of a specified event, an event handler
can either execute a JavaScript statement or a JavaScript function. You might set up an event
handler that calls upon a function that displays a confirmation dialog box requiring users to
confirm their age before allowing the application to proceed.

Events are associated with individual objects. If an event is triggered for an object, the object’s
event handler, if defined, executes. Event handlers are easy to set up. All you have to do is
insert HTML tags that define objects. The following example demonstrates how to define an
event handler that automatically executes when the web page loads.

Chapter 3 • A Deeper Dive into JavaScript 71

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<BODY onLoad = "window.alert('Boo!')">

As you can see, the event handler used in this example executes when the load event occurs.
When this happens, an alert dialog is displayed. You can execute any JavaScript statement as
an event handler. However, the real power of event handlers occurs when you set them up to
execute functions.

Working with Different JavaScript Events
As shown in Table 3.1, JavaScript is capable of reacting to all kinds of events, such as when a
page loads, unloads, changes size, or when the user interacts with a page using the keyboard
or mouse.

T A B L E 3 . 1 J A V A S C R I P T E V E N T S A N D E V E N T H A N D L E R S

Event Handler This event occurs when:
abort onabort An action is aborted
blur onblur An item loses focus
change onchange When data associated with a control is changed
click onclick When an element is clicked
dblclick ondblclick When an element is double-clicked
dragdrop ondragdrop An element is dragged and dropped
error onerror A JavaScript error occurs
focus onfocus An element receives focus
keydown onkeydown A keyboard key is pressed down
keypress onkeypress A keyboard key is pressed down and released
keyup onkeyup A keyboard key is released
load onload A web page is loaded
mousedown onmousedown One of the mouse buttons is pressed
mousemove onmousemove The mouse is moved
mouseout onmouseout The mouse is moved off of an element
mouseover onmouseover The mouse is moved over an element
mouseup onmouseup The mouse’s button is released
reset onreset A form’s Reset button is clicked
resize onresize An element is resized
submit onsubmit A form’s Submit button is clicked
unload onunload The browser unloads a web page

Ajax Programming for the Absolute Beginner72

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see in Table 3.1, each event that JavaScript recognizes has an accompanying event
handler. Using these event handlers, you can set up the automatic execution of functions
defined within web pages. You will see examples of how to work with a number of these events
and event handlers in the sections that follow.

Reacting to Window Events
One important category of events that is important to many types of Ajax applications are
events that are triggered in response to changes that affect the browser window. These types
of events include the load, unload, and resize events. As shown in Table 3.1, each of these
events has a corresponding event handler. To create Ajax applications that can react to these
events, embed the appropriate event handlers into the HTML page’s <BODY> tag. The following
example demonstrates how to work with all three of these events.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with window and frame events</TITLE>

 </HEAD>

 <BODY onLoad = "window.alert('Page loaded!')"

 onResize = "window.alert('Ouch, that hurts!')"

 onUnload = "window.alert('Goodbye cruel world...')"

 </BODY>

</HTML>

Figures 3.5 through 3.7 show the output that it generates when the application is executed.

FIGURE 3.5

The onLoad event
handler executes

when the web
page initially

loads.

FIGURE 3.6

The onResize
event handler

executes
whenever the user
tries to change the

size of the web
page.

Chapter 3 • A Deeper Dive into JavaScript 73

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 3.7

The onUnload
event handler

executes when the
user closes the
web browser or
loads a new web

page.

Processing Mouse Events
Another group of events used in Ajax applications are triggered when the user works with
the mouse when interacting with the applications. These types of events include the
onMouseOver and onMouseOut events. The use of these two events is demonstrated in the fol-
lowing example.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with mouse event handlers</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function DisplayMessage(msgInput) {

 document.getElementById('Msg').innerHTML = msgInput;

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY>

 <A HREF="http://www.courseptr.com"

 onMouseOver = 'DisplayMessage("May the force be with you!")';

 onMouseOut = 'DisplayMessage("Beware the dark side.")';>

 Go to www.starwars.com

 <P><DIV id="Msg"> </DIV></P>

 </BODY>

</HTML>

Here a link has been defined that displays a label of Go to www.starwars.com. Next, the
onMouseOver and onMouseOut event handlers are used to call on a function named DisplayMes-
sage() and pass it a text string. When called, the function retrieves an object reference to the
web page’s <DIV> </DIV> tags using the getElementByID() method and then uses the object’s
innerHTML property to display the text string passed to it inside the <DIV> </DIV> tags.

Ajax Programming for the Absolute Beginner74

www.starwars.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3.8 shows how the application looks when the example is first loaded.

FIGURE 3.8

Upon initial load
the application
displays a text

string representing
a link to

www.starwars.com.

When called as a result of the execution of the MouseOver event (e.g., when the user moves
the mouse over the link), the message May the force be with you! is displayed, as shown in
Figure 3.9.

FIGURE 3.9

This message is
displayed

whenever the user
moves the mouse
pointer over the

link.

When the MouseOut event is used to call on the DisplayMessage() function, the message Beware
the dark side. is displayed, as shown in Figure 3.10.

FIGURE 3.10

This message is
displayed

whenever the user
moves the mouse
pointer away from

the link.

Note that in the previous example, the onMouseOver and onMouseOut event han-
dlers have been used to set up an automated effect referred to as a rollover.

Processing Forms
Forms are used in many Ajax applications as a means of collecting information that is then
sent to the web server for processing. Forms are created by defining individual form elements
like buttons and text fields using the <FORM> </FORM> tags. When used in conjunction with

TRICK

Chapter 3 • A Deeper Dive into JavaScript 75

www.starwars.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript, forms can be processed and validated. To connect a form control to a JavaScript
function, use the control’s onclick attribute to trigger the execution of functions, as demon-
strated here:

<HTML>

 <HEAD>

 <TITLE>Demo: Working with mouse event handlers</TITLE>

 <SCRIPT LANGUAGE = "JavaScript" TYPE = "Text/JavaScript">

 function SayName() {

 document.getElementById('trgtDiv').innerHTML = "Hello " +

 document.getElementById('nameField').value;

 }

 </SCRIPT>

 </HEAD>

 <BODY>

 <FORM>

 Enter your name: <INPUT type = "text" id="nameField">

 Click here to process: <INPUT type = "button" value = "OK"

 onclick = "SayName()">

 </FORM>

 <DIV id = "trgtDiv"> </DIV>

 </BODY>

</HTML>

Here a form made up of a text field and a button element has been set up to prompt the user
to type in his name and click on the button. When clicked, the onClicked event hander
assigned to the button control executes a function named SayName(). When executed, the
function displays a text string, just below the button control, that welcomes the user. This
text string is made up of the word Hello concatenated to a text string retrieved from the
form’s text field element. Figure 3.11 shows an example of this application in action.

FIGURE 3.11

Using events to
control the

processing of
form elements.

Ajax Programming for the Absolute Beginner76

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DIV AND SPAN TAGS
Ajax applications are all about the dynamic updating of web page contents without requiring
web pages to be refreshed. One very popular and functional way of achieving this goal is
through the use of the <DIV> </DIV> and tags. These two sets of tags allow you
to apply changes to any text enclosed within them. Although commonly used to apply style
attributes, such as color, font, and various other presentation attributes, these tags can also
be used in your Ajax applications to facilitate dynamic text replacement.

Working with the <DIV> </DIV> Tags
The <DIV> </DIV> tags are used to create logical divisions within web pages, acting much like
the <P> </P> tags in this regard, except that the <DIV> </DIV> tags allow you to divide pages
up into larger divisions. <DIV> </DIV> tags are block-level elements. Using these tags, you can
apply different style attributes to an entire section of a web page as demonstrated here:

<DIV style = "Color : Green">

 <H1> Once upon a time...</H1>

</DIV>

Here, any text placed within the two tags is displayed in green. In addition to applying dif-
ferent styles to web pages, you can use the <DIV> </DIV> tags to refresh the displays of text.
In order to use these tags in this manner, you must first assign a name, using the id attribute
to the sections of your web pages outlined with <DIV> </DIV> tags.

<DIV name = "OpeningLine" style = "Color : Green">

 <H1> Once upon a time...</H1>

</DIV>

Here, a name of OpeningLine has been added to the opening <DIV> tags, allowing this division
of the web page to be programmatically referenced and updated as necessary.

Working with the Tags
The tags are similar to the <DIV> </DIV> tags, except that instead of dividing
pages up into larger sections, the tags allow you to apply style changes and
test replacements inline. This means that any text enclosed within these tags is affected by
whatever changes you specify while any outlying text remains unaffected.

Once upon a time...

Like the <DIV> </DIV> tags, you can assign a name to any pair of tags, allowing
you to later reference and update their content, as demonstrated here:

Chapter 3 • A Deeper Dive into JavaScript 77

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once upon a time...

Programmatically Replacing Text without Screen Refresh
To better understand how to dynamically replace text within your web pages, let’s take a look
at an example that uses the <DIV> </DIV> tags to surgically update text. Let’s begin by creating
a new HTML page made up of the following statements.

<HTML>

 <HEAD>

 <TITLE>Demo: Dynamically displaying text</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function GreetPlayer() {

 document.write("Well, hello there.");

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY onload = "GreetPlayer()">

 <H1>Knock Knock!</H1>

 </BODY>

</HTML>

Once created, load this example into your browser. When you do, you may be surprised at
the results that are displayed. Instead of displaying a level 1 heading of Knock Knock! followed
by a text string of "Well, hello there.", only the text string written by the JavaScript is dis-
played. The reason for this is that when the JavaScript’s GreetPlayer() function is executed,
its document.write statement automatically clears out any text displayed on the web page
before writing its own text string, as demonstrated in Figure 3.12.

FIGURE 3.12

By default, any
text written to the

web page using
document.write()

statements in the
head sections

clears out any text
previously written

to the web page.

Ajax Programming for the Absolute Beginner78

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax application developers overcome this type of problem using the <DIV> </DIV> and
 tags, as demonstrated next. Here, the previous example has been updated. Instead of
attempting to use the document.write() method to update the display of text on the web page,
the GreetPlayer() function has been updated to post its text string inside the page’s <DIV>
</DIV> tags.

<HTML>

 <HEAD>

 <TITLE>Demo: Dynamically displaying text</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function GreetPlayer() {

 document.getElementById('GreetingMsg').innerHTML = "Well, hello there."

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY onload = "GreetPlayer()">

 <H1>Knock Knock!</H1>

 <DIV id="GreetingMsg"> </DIV>

 </BODY>

</HTML>

To fully understand what is happening here, you need to know more about the methods
and properties used in the GreetPlayer() function. For starters, the document object’s
getElementByID() method is used to retrieve an object reference, to the object created by the
<DIV> </DIV> tags. This is accomplished by passing the name of GreetingMsg() to the method
as an argument. Next, the resulting object reference’s innerHTML property is used to write a
new text string to the web page, replacing the empty text string currently displayed by the
<DIV> </DIV> tags. The end result of all this is that instead of clearing the web page and then
writing out text, this modified HTML page simply replaces the text string specified inside the
<DIV> </DIV> tags. No muss, no fuss, and no page refresh required! Figure 3.13 shows how the
result of this example differs from the previous version of the HTML page.

Chapter 3 • A Deeper Dive into JavaScript 79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 3.13

Dynamically
updating the text
displayed in a web

page.

Like all things, overuse of the <DIV> </DIV> and tags can create
problems in the event that any text that is updated using them is not obvious. It
is essential that any changes that are made are easily noticeable. At the same
time, it is equally important that you do not overuse these tags, a condition
sometimes referred to as divitis, creating too much confusion and making web
pages difficult for users to keep up with.

MANAGING COLLECTIONS OF DATA
Depending on what your Ajax applications are designed to do, there may be times when
working with data a piece at a time is no longer practical, which would be the case in an
application designed to process a list of data keyed in by the user or retrieved from a web
server. In these types of situations, you can use arrays to store and help manage application
data.

An array is an indexed list of values. Arrays can be used to store any type of value supported
by JavaScript. As demonstrated next, arrays must be declared prior to using them.

weapons = new Array(5);

weapons[0] = "Ray Gun";

weapons[1] = "Pulsar Cannon";

weapons[2] = "Phaser Pistol";

weapons[3] = "Photon Torpedo";

weapons[4] = "Cyber Tank";

In the first statement, an array named weapons has been declared using the new keyword. This
array is capable of storing 5 values. The last five statements assign values to the array. The
array’s index begins at 0 and goes to 4.

As a shortcut for creating small arrays, you can also create what is known as a
dense array. A dense array is an array that is populated during declaration. The
following example demonstrates how to set up a dense array named supplies.
This array is made up of six items.

TRAP

TRICK

Ajax Programming for the Absolute Beginner80

http://lib.ommolketab.ir
http//lib.ommolketab.ir

supplies = new Array("pen", "paper", "ink", "pencil", "tape",

"staples");

Note that when created this way, an array is made up of a comma-separated list
of items enclosed inside parentheses, preceded by the name of the array. This
array is functionally equivalent to the following array.

supplies = new Array(6);

supplies[0] = "pen";

supplies[1] = "paper";

supplies[2] = "ink";

supplies[3] = "pencil";

supplies[4] = "tape";

supplies[5] = "staples";

Accessing Individual Array Elements
Accessing values stored in an array is easy. All you have to do is specify the name of the array
followed by the index position of the value (embedded inside a pair of square brackets). To
see how this works, take a look at the following example.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with an array</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type= "text/javascript">

 <!-- Start hiding JavaScript statements

 weapons = new Array(5);

 weapons[0] = "Ray Gun";

 weapons[1] = "Pulsar Cannon";

 weapons[2] = "Phaser Pistol";

 weapons[3] = "Photon Torpedo";

 weapons[4] = "Cyber Tank";

 document.write("The 3rd item in the weapons array is " + weapons[2]);

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Chapter 3 • A Deeper Dive into JavaScript 81

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript arrays are zero based. Therefore, the third item stored in the array is located at
index position 2 (e.g., weapons[2]). Figure 3.15 shows the output produced when this example
executes.

FIGURE 3.15

Processing array
items by

referencing their
index position.

Using Loops to Process Arrays
Processing the contents of arrays an element at a time can become tedious, especially if those
arrays contain dozens, hundreds, or thousands of items. Instead, it is usually much easier and
more efficient to process array contents using a for loop, as demonstrated in the following
example:

<HTML>

 <HEAD>

 <TITLE>Demo: Processing array contents using a loop</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var lengthOfArray;

 weapons = new Array(5);

 weapons[0] = "Ray Gun";

 weapons[1] = "Pulsar Cannon";

 weapons[2] = "Phaser Pistol";

 weapons[3] = "Photon Torpedo";

 weapons[4] = "Cyber Tank";

 lengthOfArray = weapons.length;

 document.write("Weapons Inventory
");

 for (var i = 0; i < lengthOfArray; i++) {

 document.write(weapons[i], "
");

 }

Ajax Programming for the Absolute Beginner82

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Here, an array named weapons has been set up and populated with 5 items. A loop is then used
to process the contents of the array, beginning at weapons[0], incrementing by 1 each time
the loop iterates, and ending when the last item is processed. Note the use of the array object’s
length property, which has been used to retrieve a numeric value representing the length
of the weapons array, assigning that value to a variable named lengthOfArray. Figure 3.16
demonstrates the output that is displayed when this example is executed.

FIGURE 3.16

Using a loop to
process the

contents of arrays.

Sorting the Contents of Arrays
Like all objects, arrays have properties and methods. One particularly useful method is the
sort() method, which can be used to sort the items stored in an array. The following example
demonstrates how to use this method to produce a sorted list of array contents.

<HEAD>

 <TITLE>Demo: An example of how to sort the contents of an Array</TITLE>

</HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 supplies = new Array("pen", "paper", "ink", "pencil", "tape");

 document.write(supplies.sort());

 // End hiding JavaScript statements -->

 </SCRIPT>

 </BODY>

</HTML>

Chapter 3 • A Deeper Dive into JavaScript 83

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, this example creates and populates a dense array named supplies. The array’s
sort() method is then used to sort the contents of the array, which are displayed in the
browser window. Note that the entire contents of the array were processed without using a
loop. When this example is run, a list of array items, separated by commas, is displayed on a
single line.

BACK TO THE ROCK, PAPER, SCISSORS APPLICATION
Okay, now it is time to turn your attention back to the development of this chapter’s game
project, the Rock, Paper, Scissors game. This game will make use of the tags to
dynamically update the display of text on web pages, which is an essential feature of most
Ajax applications. When loaded into the web browser, this application will challenge the
player to compete against the computer in a game of Rock, Paper, Scissors.

Designing the Application
Like the other application projects that you have already worked on in this book, the Rock,
Paper, Scissors game will be created in a series of five steps, as outlined here:

1. Create a new HTML page.
2. Add a form to collect user data.
3. Format and display text output.
4. Develop the game’s controlling logic.
5. Execute your new Ajax application.

The first several steps are devoted to developing the HTML portion of the application, and the
remaining steps focus on developing the application’s controlling logic using JavaScript and
then executing it.

Step 1: Writing the Application’s HTML
The first step in the development of the Rock, Paper, Scissors game is to create the applica-
tion’s HTML page. Begin by opening your preferred text or code editor and then create and
save a new file named rpc.html. Once you have completed this task, add the following HTML
statements to the file:

<HTML>

 <HEAD>

 <TITLE>Rock, Paper, Scissors</TITLE>

 </HEAD>

 <BODY>

 </BODY>

</HTML>

Ajax Programming for the Absolute Beginner84

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, there is nothing exceptional about the Rock, Paper, Scissors game’s HTML
page. It is made up of the typical head and body tags. The head section includes a title tag
that displays the application’s name.

Step 2: Creating a Form
Now it is time to display a form that will display three button controls labeled Rock, Paper,
and Scissors. The player will click on these buttons when playing the game in order to submit
moves. To add the form to the HTML page, along with a descriptive heading, add the following
statements to the body section of the HTML page.

<H1>Click on a button to submit your move</H1>

<FORM>

 <INPUT TYPE = "button" VALUE = " Rock " +

 onClick = ProcessMove("Rock")

 <INPUT TYPE = "button" VALUE = " Paper " +

 onClick = ProcessMove("Paper")

 <INPUT TYPE = "button" VALUE = "Scissors" +

 onClick = ProcessMove("Scissors")

</FORM>

Note that each of the <INPUT> tags makes use of the onClick event handler in order to initiate
the execution of a function named ProcessMove(), passing it a text string indicating which of
the three buttons were pressed.

Step 3: Creating a Template for Displaying Output
In order to display the results of each round of play, the application needs a way of displaying
the player and the computer’s moves as well as the results of the game. To accomplish this,
add the following statements to the end of the body section.

<P>Computer Move: </P>

<P>Player Move: </P>

<P>Results: </P>

As you can see, a series of three pairs of tags have been used to help assemble
a template through which text can be displayed. Note that each of these statements has been
assigned a unique id, allowing the application’s JavaScript statements to programmatically
update the display of text using these three sets of HTML statements.

Chapter 3 • A Deeper Dive into JavaScript 85

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 4: Developing the Game’s Controlling Logic
At this point your work on the applications HTML is complete. Now it is time to breathe life
into your new application by adding the JavaScript statements required to control the oper-
ation of the game. To begin, add the following statements to the head section of the HTML
page:

<SCRIPT language = "javascript" type = "text/javascript">

<!-- Start hiding JavaScript statements

// End hiding JavaScript statements -->

</SCRIPT>

These statements provide the required HTML and comment tags needed to support the exe-
cution to the application’s JavaScript. Most of the application’s statements reside in a function
named ProcessMove(), which, as you have seen, is called upon whenever the player clicks on
one of the game’s three button controls. To begin work on the development of this function,
add the following statements to the head section, inside the opening and closing <SCRIPT>
</SCRIPT> tags:

function ProcessMove(playerMove) {

}

As you can see, the function definition includes a parameter named playerMove, which will
be mapped to an argument passed to the function each time it is called, identifying the move
selected by the player (e.g., Rock, Paper, or Scissors). When executed, the function compares
the player’s move against the computer’s move, which the function is responsible for gener-
ating, in order to determine the results of the game.

Let’s begin laying out the statements that make up the function. For starters, add the follow-
ing statement to the function between the opening and closing curly braces. As you can see
these statements generate a random number between 1 and 3, representing the computer’s
move.

randomNo = 1 + Math.random() * 2; //Generate a random number

 //from 1 - 10

randomNo = Math.round(randomNo); //Turn the number into a integer

Next, add these statements to the function, immediately following the statement shown
above.

Ajax Programming for the Absolute Beginner86

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if (randomNo == 1) computerMove = "Rock"

if (randomNo == 2) computerMove = "Paper"

if (randomNo == 3) computerMove = "Scissors"

These three statements are used to assign a text string to a variable named computerMove, based
on the value of the randomly generated number. In other words, if the random number is a
1 then the computer is assigned a move of Rock. Likewise, a value of 2 results in a move of
Paper and a value of 3 results in the computer being assigned a move of Scissors.

Now that the function knows both the player and the computer’s moves, it must compare
them in order to determine who won or if a tie occurred. This is accomplished by adding the
following statements to the ProcessMove() function, immediately following the statement
shown above.

switch (computerMove) {

 case "Rock":

 if (playerMove == "Rock") {

 document.getElementById('Msg').innerHTML = "You tie!"

 }

 if (playerMove == "Paper") {

 document.getElementById('Msg').innerHTML = "You win!"

 }

 if (playerMove == "Scissors") {

 document.getElementById('Msg').innerHTML = "You lose!"

 }

 break;

 case "Paper":

 if (playerMove == "Rock") {

 document.getElementById('Msg').innerHTML = "You lose!"

 }

 if (playerMove == "Paper") {

 document.getElementById('Msg').innerHTML = "You tie!"

 }

 if (playerMove == "Scissors") {

 document.getElementById('Msg').innerHTML = "You win!"

 }

 break;

 case "Scissors":

 if (playerMove == "Rock") {

 document.getElementById('Msg').innerHTML = "You win!"

Chapter 3 • A Deeper Dive into JavaScript 87

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 if (playerMove == "Paper") {

 document.getElementById('Msg').innerHTML = "You lose!"

 }

 if (playerMove == "Scissors") {

 document.getElementById('Msg').innerHTML = "You tie!"

 }

 break;

}

As you can see, these statements set up a switch code block made up of three case statements,
one for each of the computer’s possible moves. For example, the first case statement executes
when the computer’s move is Rock. Each case statement is followed by three if statement
code blocks, of which only one will execute, depending on the player’s move. Lastly, a break
statement follows each set of three if statements.

The end result of the function’s analysis is the display of a text string that announces whether
the player has won, lost, or tied. Note that the document object’s getElementByID method is
used to retrieve an object reference to the id of the HTML tag (from Step 3) into which the text
string is to be displayed. The object’s innerHTML property is then used to display the game’s
text message.

The last two statements that make up the ProcessMove() function are shown next and should
be added to the end of the function. As you can see, these statements also update the display
of a text string on the HTML page. The first statement displays a text string representing the
computer’s move and the second statement displays a string representing the player’s move.

document.getElementById('CMove').innerHTML = computerMove

document.getElementById('PMove').innerHTML = playerMove

Step 5: Executing Your New Game
Okay, you now have everything you need to create the Rock, Paper, Scissors game. As long as
you have followed along carefully and did not skip any steps or make any typos, everything
should run as explained at the beginning of this chapter. Go ahead and upload the HTML page
to your website, load it into your web browser, and take your application for a spin.

You will find a copy of this application’s source code files on the book’s com-
panion website, located at http://www.courseptr.com/downloads.

HINT

Ajax Programming for the Absolute Beginner88

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

SUMMARY
This chapter wraps up this book’s overview of JavaScript programming. An understanding of
JavaScript is essential to the development of robust Ajax applications. This chapter showed
you how to create and execute functions, identify and react to different browser types, and
to manage large collections of data using arrays. You also learned how to use the <DIV> </
DIV> and tags to facilitate the dynamic updating of text on web pages. On top
of all this, you learned how to take advantage of browser events to control the execution of
functions containing application scripts.

Before you move on to Chapter 4, consider spending a little time improving the Rock, Paper,
Scissors game by addressing the following list of challenges.

Challenges
1. As currently written, the Rock, Paper, Scissors game makes the

assumption that the player already knows how to play the
game. Consider displaying some additional text that outlines
the rules of the game.

2. Consider keeping track of the number of games won, lost, and
tied and displaying this information at the end of each game so
that the player can gauge her overall performance against the
computer. (Hint: Create three variables and increment them as
appropriate at the end of each round of play.)

Chapter 3 • A Deeper Dive into JavaScript 89

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4C H A P T E R

UNDERSTANDING THE

DOCUMENT OBJECT MODEL

s you have already learned, JavaScript is the programming language used
to build Ajax applications. When combined with the <DIV> </DIV> and
 tags, you can dynamically insert text at pre-set locations

within your applications. However, if you bring the Document Object Model into
the equation, you can take complete control over the layout of your application’s
web pages. Web browsers use the Document Object Model to create a logical rep-
resentation of your web pages. Using JavaScript to interact with and manipulate
the Document Object Model, you can develop Ajax applications that are able to
add, delete, and modify web page content instantly without any page refreshes.

Specifically, you will learn how:

• The Document Object Model creates a tree representation of web pages

• To work with different Document Object Model properties and methods

• To walk the Document Object Model tree and retrieve element information

• To use the Document Object Model to modify tree layout and dynamically
update the appearance of web pages

A

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PROJECT PREVIEW: THE AJAX STORY OF THE DAY APPLICATION
This chapter’s game project is the Ajax Story of the Day application. This application demon-
strates how to dynamically utilize the DOM tree in order to tell different parts of a four part
story. Figure 4.1 shows how the application appears once it has been initially loaded into the
browser.

FIGURE 4.1

The Ajax Story
of the Day

application as seen
running in the

Opera browser.

In order to interact with the application and get it to tell its story, the user must click on each
of the application’s button controls, one at a time, moving from left to right. Each time a
button is pressed, a part of the story is displayed. Figure 4.2 shows how the application looks
once the user has clicked on the first button.

FIGURE 4.2

To interact with
the Ajax Story

of the Day
application all you

have to do is
click on the

application’s
buttons.

Ajax Programming for the Absolute Beginner92

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As Figure 4.2 demonstrates, once a button has been clicked, the application disables it to
prevent it from being clicked again. This prevents the user from accidentally redisplaying a
portion of the story that has already been displayed. Figure 4.3 shows how the application
looks once all of its story has been told.

FIGURE 4.3

An example of a
complete story

presented by the
Ajax Story of the
Day application.

Each of the four parts of the story told by the application is retrieved from text files stored
on the application’s web server. As such, the story can easily be changed at any time by simply
modifying the text files stored on the web server. For example, you might want to write a
number of different four-part stories, replacing the application’s text files on the web server
every couple of weeks in order to continuously breathe new life into the Ajax application,
thus encouraging your website visitors to keep coming back again and again.

AN INTRODUCTION TO THE DOCUMENT OBJECT MODEL
Up to this point in the book, all of the examples that have been presented have relied on the
use of the <DIV> </DIV> and tags in order to facilitate the display of new text
on web pages. However, Ajax developers have another even more powerful tool at their dis-
posal, the HTML Document Object Model (DOM). The DOM generates a logical representation of
the items that make up HTML pages. The DOM is not a part of JavaScript. It is provided by the
browser. However, your JavaScripts can access DOM objects, including their methods and
properties, and programmatically interact with them in order to make dynamic updates to
web pages.

Using different DOM methods and properties, you can create and insert new elements into
HTML pages, changing the structure of the HTML page, thus altering the page’s appearance
and content. Every time the browser loads a web page, it renders that HTML page so that it

Chapter 4 • Understanding the Document Object Model 93

http://lib.ommolketab.ir
http//lib.ommolketab.ir

can be viewed. At the same time, the browser also builds a tree-like view in memory of the
elements that make up the web page.

Within the DOM, the document object provides JavaScript with direct access to the different
elements that make up the DOM tree. Your Ajax applications can make changes to a web
page’s tree, adding, removing, or updating elements, thus dynamically altering page content
and appearance.

Prior to 1998, every browser supported its own unique DOM. In 1998, the first
W3C DOM standard was published. In 2004, DOM 3, which is still the current
standard, was released. Today all of the major modern web browsers support
this version of the DOM. Thanks to the DOM, all modern web browsers will ren-
der the same tree for any web page. The DOM represents a huge subject, worthy
of its own book. Unfortunately, there is no way that this book can completely
cover all the ins and outs of the DOM. If you would like to learn more about the
DOM than the essentials covered in this chapter, visit www.w3c.org/DOM.

THE DOM TREE
When an HTML page is loaded, the browser automatically defines a collection of objects
based on the content of the HTML page. These objects are organized in a hierarchical top-
down order, beginning with the document object, tying all of the web pages’ elements together
in a tree-like structure. The tree is made up of different elements, each of which represents
a different web page object.

Using the tree, the browser maintains a map of connections that shows the organization of
the web page, which consists of a series of parent, child, and sibling relationships. As you
will see a little later in this chapter, you can use these relationships as a means of traversing
the DOM tree. Each of the objects in the DOM tree provides access to methods and properties
that you can use to programmatically interact with and control the objects. This provides you
with the ability to make elements appear and disappear or to modify them in other ways like
changing their color, size, etc.

In order to work with DOM trees, you must be familiar with a number of DOM properties and
methods. Table 4.1 provides a listing of key DOM properties, which can be used to identify
different elements on the DOM tree and to retrieve element (node) names, types, and values.

Using the DOM properties outlined in Table 4.1, you can traverse the DOM tree, moving from
parent to child, child to parent, or from sibling to sibling. Table 4.2 provides a listing of key
DOM methods that let you make modifications to the DOM tree, creating and appending new
elements. As you can see, the DOM also provides access to methods that allow you to retrieve
information about tree elements (objects), such as their ID, and to delete them from the DOM
tree.

NOTE

Ajax Programming for the Absolute Beginner94

www.w3c.org/DOM
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the properties and methods listed in Tables 4.1 and 4.2, you can create new DOM tree
elements and add them to specific locations in the DOM tree. Whenever an alteration is pro-
grammatically made to the DOM tree, it is immediately reflected in the appearance of the
content displayed on the web page—no page refresh required. For example, you might modify
the DOM to include new elements like text or images. In doing so, new text and images would
automatically appear on the web page. The reverse is also true. If you remove any elements
from the DOM tree, the objects that those elements represent disappear from the web page.

Since the DOM tree represents a mapping of every element that makes up a web page, it gives
you the ability to alter every part of a web page. There is no need to embed <DIV> </DIV>
or tags at strategic locations throughout the web pages just so you have a

T A B L E 4 . 1 D O M P R O P E R T I E S

Property Description
childNodes A collection (e.g., array) of child objects belonging to an object
firstChild The first child node belonging to an object
lastChild An object’s last child node
NodeName The name assigned to an object’s HTML tag
nodeType Identifies the type of HTML element (tag, attribute, or text) associated with the

object
nodeValue Retrieves the value assigned to a text node
nextSibling The child node following the previous child node in the tree
previousSibling The child node that comes before the current child node
parentNode An object’s parent object

T A B L E 4 . 2 D O M M E T H O D S

Property Description
appendChild() Adds a new child node to the specified element
createAttribute() Creates a new element attribute
createElement() Creates a new document element
createTextNode() Creates a new text item
getElementByTagName() Retrieves an array of item tag names
getElementsById() Retrieves an element based on its ID
hasChildNotes() Returns a true or false value depending on whether a node has children
removeChild() Deletes the specified child node

Chapter 4 • Understanding the Document Object Model 95

http://lib.ommolketab.ir
http//lib.ommolketab.ir

predefined place to add new content. The DOM tree therefore gives you total control over the
look and appearance of any web page. Of course, programming, interacting with, and manip-
ulating the DOM tree does involve added complexity to the design of your Ajax applications.
However, in order to develop truly dynamic web pages, a solid understanding of how to work
with the DOM is essential for any Ajax developer.

WALKING THE DOM TREE
As previously stated, the document object resides at the top of the DOM tree. You have already
worked with the document object extensively in this book. For example, in order to write text
to the web page, you have been using the document object’s write() method, as demonstrated
here:

document.write("Easy is as easy does.");

As depicted in Figure 4.4, it is through the document object that you are able to access all of
the objects that make up an HTML page.

FIGURE 4.4

The document
object is the key

to accessing
elements located

on web pages.

Ajax Programming for the Absolute Beginner96

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, the document object sits on top of the tree. Beneath it are all of the different
objects that make up the web pages. You can access DOM elements in HTML pages in a number
of different ways. The most direct way of accessing HTML objects is by referencing tag IDs.
Alternatively, you can use various DOM properties. Both of these options are examined in the
sections that follow.

Accessing DOM Elements by ID
The advantage of accessing HTML page objects using tag IDs is that it keeps things simple and
straightforward. The disadvantage of this approach is that it requires you to supply unique
IDs for all HTML tags. The use of this approach is demonstrated here:

<HTML>

 <HEAD>

 <TITLE>Demo: Accessing DOM Elements by ID</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 ffunction SetAlarm() {

 ddocument.getElementById('DivTrgt').innerHTML = "Charge!"

 }}

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY onload = " SetAlarm()">

 <H1>Knock Knock!</H1>

 <<DIV id="DivTrgt"> </DIV>

 </BODY>

</HTML>

As you can see, a function named SetAlarm() has been set up to access an element in the
DOM tree named DivTrgt. A reference to this object is retrieved by passing the DOM’s
getElementById() method the name of the appropriate HTML tag. Once an object reference
has been established, you can use the object’s innerHTML property to modify its value. In the
case of this example, the object being referenced is the <DIV> </DIV> tags located in the page’s
body section.

Assessing an HTML object using ID references is certainly straightforward, but it takes a little
extra time and effort to assign unique IDs to every tag. In addition, this approach is not nearly
as flexible as using DOM properties.

Chapter 4 • Understanding the Document Object Model 97

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Accessing DOM Elements Using DOM Properties
Rather than having to hardcode an ID attribute for every HTML tag you may need to refer-
ence in your Ajax applications, you can instead navigate the DOM tree for all its HTML pages.
Table 4.1 provides a list of DOM properties that you can use to traverse the elements that
make up DOM trees. Using these DOM properties, you can move up, down, and sideways
throughout the tree without any need to hard code ID references for specific HTML tags.

To demonstrate how to work with the various DOM properties and methods listed in Tables
4.1 and 4.2, take a look at the following example.

<HTML>

 <HEAD>

 <TITLE>Demo: Dissecting the DOM Tree</TITLE>

 </HEAD>

 <BODY>

 <H1>DOM Demo</H1>

 <P>Let's examine this page's DOM tree!</P>

 </BODY>

</HTML>

As you can see, this is a small but typical HTML page with a <TITLE> tag in the head sections
and a level 1 heading and a paragraph in the body section. Figure 4.5 shows how this page
looks when loaded by Internet Explorer.

FIGURE 4.5

An example of
how the web page
looks when loaded

by Internet
Explorer.

While Figure 4.5 shows how the web page looks when rendered by the browsers, the browser’s
internal view of the page is maintained in memory using the DOM. Figure 4.6 provides a
graphical depiction of the DOM tree that the browser assembles as it loads the web page.

Ajax Programming for the Absolute Beginner98

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 4.6

A representation
of the DOM tree

that is created
when this page is
loaded into the

browser.

Although it is not depicted in Figure 4.6, the document object sits at the root of
the DOM tree and has just one child object, documentElement. documentElement
represents the web page’s opening <HTML> tag. You can establish a reference
to the opening <HTML> object using the DOM’s documentElement property, as
demonstrated here:

var TreeTop = document.documentElement;

As you can see in Figure 4.6, the DOM tree for this HTML page shows the parent/child and
sibling relationships for all of the different elements that make up the HTML page. In addition,
order is carefully depicted. Using different DOM properties, you can reference any of the
elements in the HTML page, as depicted in Figure 4.7.

As you can see in Figure 4.7, to reference an object on the DOM tree you must provide a
reference that identifies the location of the element within the tree. In Figure 4.7, a variable
named root is defined and assigned a value of document.documentElement. In order to set up
the reference, a known reference point had to be used. In the case of the first reference, the
point of reference was the documentElement property, which is the root element on the tree.
Next, the second reference is established by starting at the location represented by root and
then referencing its last child element (e.g., root.lastChild). The first reference is established
using the last child of body.

NOTE

Chapter 4 • Understanding the Document Object Model 99

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 4.7

You can traverse
the DOM tree

using DOM
properties.

A Mixed Navigation Approach
Rather than navigating around a DOM tree and working exclusively with the ID attribute or
with DOM properties, a common approach used by Ajax developers is to use a combination
of the two approaches. As an example of how to use this approach, let’s modify the previous
web page, inserting several instances of the ID attribute into a few HTML tags, as shown here:

<HTML>

 <HEAD>

 <TITLE>Demo: Dissecting the DOM Tree</TITLE>

 </HEAD>

 <BODY ID = "BodyTag">

 <H1 ID = "HeadTag">DOM Demo</H1>

 <P ID = "ParaTag">Let's examine this page's DOM tree!</P>

 </BODY>

</HTML>

Figure 4.8 shows a new depiction of the HTML page’s DOM tree view, this time pointing out
which tree nodes have been assigned ID attributes.

As an example of how to navigate the DOM tree using a combination of ID attribute references
and DOM properties, take a look at Figure 4.9.

Ajax Programming for the Absolute Beginner100

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 4.8

A new depiction of
the web page’s

DOM tree.

FIGURE 4.9

An example of
how to use ID

attributes along
with DOM

properties to
navigate the DOM

tree.

Now that the HTML page has a number of tags with ID attributes embedded within it, you
have greater flexibility when it comes to establishing new element references. Instead of
having to start at the root of the DOM tree and work your way down, you can now start at
any location within the tree where a tag ID has been set.

DYNAMICALLY UPDATING WEB PAGE CONTENT
Now that you understand how the browser generates a DOM tree for each HTML page, and
have seen how to navigate the DOM tree, it’s time to learn how to modify the DOM tree in
order to facilitate the dynamic update of web page content. To do so, let’s create a new web
page as shown here:

Chapter 4 • Understanding the Document Object Model 101

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<HTML>

 <HEAD>

 <TITLE>Demo: Working with mouse event handlers</TITLE>

 <SCRIPT LANGUAGE = "JavaScript" TYPE = "Text/JavaScript">

 ffunction ChangePageLayout() {

 vvar newParagraph = document.createElement("p");

 vvar newTextNode = document.createTextNode('The DOM Rocks!');

 ddocument.getElementById('trgtDiv').appendChild(newParagraph);

 ddocument.getElementById('trgtDiv').appendChild(newTextNode);

 }}

 </SCRIPT>

 </HEAD>

 <BODY>

 <H1>DOM Demonstration</H1>

 <FORM>

 <INPUT type = "button" value = "Click on Me" id = "formButton"

 oonclick = "ChangePageLayout()">

 </FORM>

 <<DIV id = "trgtDiv"> </DIV>

 </BODY>

</HTML>

Figure 4.10 shows how this HTML page looks when initially loaded into the browser.

FIGURE 4.10

The web page
currently displays
a level 1 heading

and a button
labeled Click

on Me.

Ajax Programming for the Absolute Beginner102

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can create another type of element using the CreateElement() method. You can then
use the DOM’s AppendChild() method to attach the new text node to an existing node in the
HTML page.

Within the HTML file, a function named ChangePageLayout() has been created that when called
will create a new HTML paragraph element (e.g., <P>) using the DOM’s createElement()
method, assigning it to a variable named newParagraph. Next, the DOM’s createTextNode()
method is used to create a text element which is assigned to a variable named newTextNode.
Using the DOM’s AppendChild() method, you can attach a new node to any point within the
HTML page. The last two statements in the function use the DOM’s appendChild() method to
dynamically modify the DOM tree by adding the two newly created HTML elements to it.

FIGURE 4.11

The HTML
appearance of the

HTML page has
changed to reflect
the modifications
made to the DOM

tree.

One more thing that you should know when working with the DOM is that you
can get the name of any node in the tree using the nodeName attribute. An element
node represents elements like <DIV> and <P> tags, which do not have any values.
A text node on the other hand, will not have a name but will have a value. You
can retrieve a node’s value using the nodeValue attribute.

BACK TO THE AJAX STORY OF THE DAY APPLICATION
Okay. Let’s turn our attention back to the development of the Ajax Story of the Day applica-
tion. This game will demonstrate how to dynamically modify a web page’s DOM tree in order
to accommodate the display of text retrieved from a web server, all without any browser
refresh, allowing for the seemly display of new content during application execution.

NOTE

Chapter 4 • Understanding the Document Object Model 103

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing the Application
Like all of the other applications developed in this book, the Ajax Story of the Day application
is created using a specific series of steps, as outlined here:

1. Create a new HTML page.
2. Add a form to collect user data.
3. Define a paragraph for displaying story text.
4. Begin the application’s JavaScript.
5. Create an XMLHttpRequest object.
6. Retrieve story text from the web server.
7. Modify the DOM tree.
8. Disable game buttons.
9. Create the application’s text files.

10. Execute your new Ajax application.

Step 1: Writing the Application’s HTML
The first step in the development of the Ajax Story of the Day application is to create the
application’s HTML page. Start by opening your favorite text or code editor and then adding
the following HTML statements to it. Once added, save the HTML page with a name of
AjaxStory.html.

<HTML>

 <HEAD>

 <TITLE>Welcome to the Ajax Story</TITLE>

 </HEAD>

 <BODY>

 <H1>Ajax Story of the Day</H1>

 </BODY>

</HTML>

As you can see this is a fairly vanilla web page, made up of head and body tags along with a
title and a level 1 header.

Step 2: Creating the Application’s Form
The interface for the Ajax Story of the Day application is made up of four button controls
aligned across the top of the web page. To set this up, you need to add a form to the page,
which you can do by adding the following HTML statement to the body section of the HTML
page.

Ajax Programming for the Absolute Beginner104

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<FORM name = "appForm">

 <INPUT name = "Button1" type = "button" value = "Part 1"

 onclick = "TellStory('Part1.txt')">

 <INPUT name = "Button2" type = "button" value = "Part 2"

 onclick = "TellStory('Part2.txt')">

 <INPUT name = "Button3" type = "button" value = "Part 3"

 onclick = "TellStory('Part3.txt')">

 <INPUT name = "Button4" type = "button" value = "Part 4"

 onclick = "TellStory('Part4.txt')">

</FORM>

Each of the four buttons is assigned a unique name and value and is configured to execute
the TellStory() function when clicked, passing it the name of a different text file to be down-
loaded from the application’s web server. Just beneath the four button controls, a gray line
is displayed. To set this up, add the following HTML tag to the end of the body section, just
beneath the form statements that you just added.

<HR>

Step 3: Adding a Paragraph Element for the Display of Text
To interact with the application, the user must click on the four button controls, in the order
that they are presented. Each time a button is clicked, a new portion of the story is displayed
on the browser window. Rather than hard coding four sets of <DIV> </DIV> tags at the bottom
of the body section to establish a predefined location into which story text can be added, this
application instead modifies the DOM tree as necessary each time a new portion of the story
needs to be displayed.

When dynamically modifying the DOM tree, the application will use the DOM
appendChild() method to repeatedly display new parts of the story. In order to accomplish
this, add the following statement to the end of the body section.

<P id = "trgtP"> <P>

The application will use this paragraph tag to establish the location within the DOM tree
where new elements should be appended.

Step 4: Beginning the Development of the Game’s Script
The next step in the development of the Ajax Story of the Day application is to begin as-
sembling its JavaScript. Begin by adding the following statement to the head section of the
HTML page.

Chapter 4 • Understanding the Document Object Model 105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<SCRIPT language = "javascript" TYPE = "text/javascript">

<!-- Start hiding JavaScript statements

// End hiding JavaScript statements -->

</SCRIPT>

The rest of the steps involved in building this application involve the addition of JavaScript
statements and functions belonging to this script.

Step 5: Creating an XMLHttpRequest Object
Since the Ajax Story of the Day application involves the retrieval of data in the form of four
text files from its web server, you need to set up an instance of the XMLHttpRequest object. This
book has yet to explain how to work with this object, so for now just copy the following
statements into the application’s JavaScript, exactly as shown.

var Request = false;

if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

} else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

}

You will learn all about the XMLHttpRequest object in Chapter 5, “Ajax Basics.” For
now, all you need to know is that it facilitates the exchange of information with
the web server.

Step 6: Retrieving Story Text
The Ajax Story of the Day application is made up of several different functions, each of which
performs a unique task. The TellStory() function, shown next, is responsible for telling the
application’s story. The statements that make up this function should be added to the end of
the application’s JavaScript.

function TellStory(url) {

 if(Request) {

 Request.open("GET", url);

 Request.onreadystatechange = function()

 {

 if (Request.readyState == 4 && Request.status == 200) {

NOTE

Ajax Programming for the Absolute Beginner106

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ModifyDOM(Request.responseText)

 UpdateInterface(url)

 }

 }

 Request.send(null);

 }

}

This function uses the XMLHttpRequest object, established in the previous step, to retrieve a
portion of the application’s story. The file that is retrieved is passed to the functions as an
argument, which is then mapped to the url parameter. Since the inner workings of this func-
tion require a good understanding of the use of the XMLHttpRequest object, which is not
covered until the next chapter, do not get too hung up on the details of this function. All that
you need to know for now is that once the specified text file has been retrieved, it is passed
to the ModifyDOM() function, which will then addend the DOM tree and display the text
retrieved from the web server. Also, a call is made to the UpdateInterface() function, which
is responsible for disabling access to the application’s button controls.

Step 7: Updating the DOM Tree
The ModifyDOM() function, shown next, is responsible for modifying the structure of the DOM
tree to accommodate the display of each of the four parts of the application’s story. Add this
function to the application’s JavaScript, just below the TellStory() function.

function ModifyDOM(storyText) {

 var newText = document.createTextNode(storyText);

 var newLine = document.createElement("p");

 document.getElementById('trgtP').appendChild(newLine);

 document.getElementById('trgtP').appendChild(newText);

}

When called, the ModifyDOM() function is passed an argument representing the text of a por-
tion of the application’s story (retrieved from the web server). This text is stored in a variable
aptly named storyText. The function begins by defining a new text node named newText, made
up of the text stored in storyText. Next, a paragraph element node named newLine is then
defined. The last two statements in the function append the newLine and newText elements to
the end of the trgtP element. If you return to Step 3, you will see that this element was
specifically added to the end of the HTML page’s body section in order to establish a point of
reference and set up a parental element, facilitating the addition of new child elements to
the web page.

Chapter 4 • Understanding the Document Object Model 107

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 8: Modifying Button State
The last function to be added to the application’s JavaScript is the UpdateInterface() function.
Its job is to disable access to each of the application’s four button controls. It accomplished
its task using plain old JavaScript.

function UpdateInterface(selection) {

 if (selection == "Part1.txt") appForm.Button1.disabled = "disabled";

 if (selection == "Part2.txt") appForm.Button2.disabled = "disabled";

 if (selection == "Part3.txt") appForm.Button3.disabled = "disabled";

 if (selection == "Part4.txt") appForm.Button4.disabled = "disabled";

}

As you can see, the function passes an argument that indicates which part of the story has
just been displayed. Using this information, one of the application’s four button controls is
then displayed by setting the control’s disabled property to a value of disabled. This prevents
the player from accidentally clicking on the same button more than once during the telling
of the story.

Step 9: Creating the Application’s Text Files
In order to finish up work on the Ajax Story of the Day application, you need to create each
of the application’s four text files. To do so, create four new text files named Part1.txt,
Part2.txt, Part3.txt, and Part4.txt and add the text shown below to the appropriate files.

Part1.txt

Once upon a time there was a little boy named Jack, who lived with his mother. Jack and his
mother were very poor and had very little to eat. Jack and his mother decided that Jack should
take the cow into town and trade it for some food and money.

Part2.txt

Just before reaching town, Jack ran into a strange old man who told Jack that he had a small
sack of beans that he would like to trade for the cow. Jack refused the trade but then the
mysterious old man told Jack that the beans were magic and would yield a crop overnight
that would feed his family for the rest of the season.

Part3.txt

Upon hearing that the beans were magic, Jack agreed to the trade and happily headed back
home. A short while later his mother greeted him at the front door of their house. Upon
hearing of the trade that Jack had made, his mother flew into a rage, tossing the beans out
into the yard and sending Jack to his room.

Ajax Programming for the Absolute Beginner108

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part4.txt

The next morning, Jack woke up early and looked out of his window to see a giant bean stalk
growing up out of his yard up to the sky. Jack ran out of his house and started climbing this
beanstalk. Unfortunately, Jack was afraid of heights and after just a few feet, he gave up and
climbed back down.

Step 10: Executing Your New Game
All right! At this point, you have all of the information needed to create the Ajax Story of the
Day application. Assuming that you have carefully followed along with the instruction that
has been provided and did not make any typos along the way, everything should run as
described at the beginning of this chapter. To test this application, upload the AjaxStory.html
file along with Part1.txt, Part2.txt, Part3.txt, and Part4.txt files to your web servers and then
load AjaxStory.html into your web browser and see what happens.

You will find a copy of this application’s source code files on the book’s com-
panion website, located at http://www.courseptr.com/downloads.

SUMMARY
This chapter provided you with a detailed overview of the Document Object Model and
explained how it can be used to dynamically modify the appearance of web pages without
any page refreshes. You learned how the DOM creates a DOM tree representation of all web
pages and how to manipulate this tree using the document object and various DOM properties
and methods. You learned different ways of referencing objects in the DOM tree and to use
object relationships as a means of navigating the DOM tree. You also learned how to use the
DOM tree to update web page content without using the <DIV> </DIV> and
tags.

Now, before you move on to Chapter 5, “Ajax Basics,” I suggest you set aside a few more
minutes to work on the Ajax Story of the Day application by implementing the following list
of challenges.

HINT

Chapter 4 • Understanding the Document Object Model 109

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Challenges
1. As currently written, there is no programming logic in place

that prevents the user from clicking on each of the button
controls in the proper order. Consider modifying the appli-
cation to address this situation, forcing the user to click on the
correct button each time the story is told.

2. Rewrite the application’s story to tell a story that better suits
your own interests. Remember, once you are done writing it,
you will need to break it down into four parts, and save those
parts in appropriately named text files.

Ajax Programming for the Absolute Beginner110

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part

III
Building Ajax Applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5C H A P T E R

AJAX BASICS

o become an effective Ajax programmer you must, at a minimum, under-
stand how to work with HTML, JavaScript, the DOM, and the XMLHttpRe-
quest object. Your knowledge of HTML is assumed. Chapters 1–4 provided

you with a working understanding of JavaScript and the DOM. This chapter intro-
duces you to the XMLHttpRequest object and explains how to use it to communicate
with web servers and facilitate the exchange of data in your Ajax applications. This
chapter will demonstrate how to use the XMLHttpRequest object to retrieve text files
and to use the data that is retrieved in different ways. This chapter will also intro-
duce you to Ajax frameworks, which are libraries of JavaScript functions that you
can load and integrate into your web applications, allowing you to shorten appli-
cation time and to create applications capable of performing all sorts of complex
operations.

Specifically, you will learn:

• How to instantiate and interact with the XMLHttpRequest object

• How to retrieve data stored in web server text files

• How to create an Ajax application that uses toolbar-driven mouseover effects

• How to integrate Ajax frameworks into your applications

T

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PROJECT PREVIEW: THE AJAX TYPING CHALLENGE
This chapter’s game project is the Ajax Typing Challenge. In this application, the user is chal-
lenged to type three increasingly lengthy and difficult sentences. Figure 5.1 shows how the
application looks when loaded into Internet Explorer.

FIGURE 5.1

To begin the Ajax
Typing Challenge

application, the
user must click on

the Begin Test
button.

As soon as the Begin Test button is clicked, the application connects to the web server and
downloads three challenge sentences, which are then displayed on the browser window. As
shown in Figure 5.2, the challenge sentences are dispersed between the application’s text box
fields.

FIGURE 5.2

The user’s job is to
type each

sentence exactly
as shown on the

screen.

Ajax Programming for the Absolute Beginner114

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There is no time limit on how long the user can take to complete the typing challenge. Once
the user has finished retyping all three sentences, the Grade Test button must be clicked. This
instructs the application to grade the test, as demonstrated in Figure 5.3.

FIGURE 5.3

To pass the Ajax
Typing Challenge,

the user must
correctly type in at

least two
sentences.

If the user fails the test and wants to retake the test, the player can click on the Begin Test
button again. In response, the application clears out any text displayed in the three test fields,
allowing the user to try again.

CONNECTING YOUR APPLICATIONS TO WEB SERVERS
Ajax applications take advantage of the browser’s ability to execute client-side JavaScript
code that can interact with the browser’s DOM and make dynamic modifications to a page’s
DOM tree using data retrieved from a web server. An Ajax application’s communication with
the web server occurs behind the scenes using methods and properties belonging to the
XMLHttpRequest object. Using the XMLHttpRequest object, Ajax applications send and receive
HTTP requests and responses.

Microsoft created the XMLHttpRequest object and initially released it in 1999 as
an ActiveX object component in Internet Explorer 5. Other web browser devel-
opers soon realized the usefulness of this object and added support for it to their
own browsers, implementing it as a window object property. Eventually, Micro-
soft followed suit and re-engineered the XMLHttpRequest object as a window
object property starting in Internet Explorer 7.

Ajax applications use the XMLHttpRequest object to initiate and manage the submission of
data requests to web servers and to monitor and handle the receipt of server data. A solid

HINT

Chapter 5 • Ajax Basics 115

http://lib.ommolketab.ir
http//lib.ommolketab.ir

understanding of how to work with this object’s methods and properties is essential to Ajax
application developers. The primary purpose of this chapter is to provide you with detailed
instruction on how to instantiate and then use XMLHttpRequest objects in order to manage
data retrieval in Ajax applications.

XMLHttpRequest Methods
The XMLHttpRequest object provides access to two methods that facilitate connecting to web
servers and submitting requests. A brief explanation of these methods is provided next.

• open(). Establishes a connection to a web server.

• send(). Sends a request to a web server.

The open() method is used to initiate a connection to the web server. Once connected, you
will use various XMLHttpRequest properties, discussed in the next section, to send data requests
and then to monitor them once they are started (which is done using the send() method).

XMLHttpRequest Properties
In order to specify the type of data that your Ajax applications expect to receive from the web
server and to monitor and respond to that data once it has been received from the web server,
you need to work with different XMLHttpRequest properties. Table 5.1 lists and describes vari-
ous XMLHttpRequest properties that you will need to know how to work with in your Ajax
applications.

T A B L E 5 . 1 X M L H T T P R E Q U E S T O B J E C T A T T R I B U T E S

Attribute Description
readyState A value between 0 and 4 indicating the state of the receipt of data from the

web server, where a value of 4 means the data has been received.
status A status code indicating the overall status of the XMLHttpRequest object’s

data request, where a value of 200 indicated that everything went well (refer
to Table 5.2).

responseText Stores text data returned by the web server.
responseXML Stores XML data returned by the web server.
onreadystatechange Takes a function and calls on it to execute whenever the

readystatechange event occurs.

Ajax Programming for the Absolute Beginner116

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WORKING WITH THE XMLHTTPREQUEST OBJECT
Using XMLHttpRequest objects to establish connections to web servers, specifying data requests,
and then handling the data that is returned is a multi-step process. An understanding of how
these steps work is essential and is covered in great detail in the sections that follow.

Instantiating the XMLHttpRequest Object
The first step in working with the XMLHttpRequest object is to instantiate it. Unfortunately,
the XMLHttpRequest object represents another point of divergence between web browsers. The
following statement demonstrates how to determine if an Ajax application is running on
FireFox, Safari, Opera, or any Internet Explorer browser after version 6.

var Request = false;

if (window.XMLHttpRequest) { //Try FireFox, Safari, Opera, IE 7 or higher

 Request = new XMLHttpRequest();

}

Here, the first statement defines a variable named Request that will be used to set up a
reference to the XMLHttpRequest object. The second statement executes the window object’s
XMLHttpRequest property to determine if it is supported. If it is, the second statement creates
a new XMLHttpRequest object named Request using the new keyword.

Once instantiated, you can work with the XMLHttpRequest object using the same
sets of properties, methods, and events, regardless of the type of browser in use.

To instantiate the XMLHttpRequest object in a browser running Internet Explorer 5 or 6, you
need to use the ActiveXObject() method as demonstrated here:

if (window.ActiveXObject) { //Try ActiveX (Internet Explorer)

 Request = new ActiveXObject("Microsoft.XMLHTTP");

}

Although Internet Explorer 8 was available as a beta release as of the writing of
this book, Internet Explorer 7 was the most current official version of that
browser, having been that way since October 2006. Still, because large numbers
of web surfers are still using Internet Explorer 5 and 6, it is a standard practice to
provide support for Internet Explorer 5 and 6 in all Ajax applications, as demon-
strated here:

var Request = false;

if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

HINT

HINT

Chapter 5 • Ajax Basics 117

http://lib.ommolketab.ir
http//lib.ommolketab.ir

} else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

}

Rather than instantiating the XMLHttpRequest object as just demonstrated, you
may sometimes come across examples where other Ajax developers set up in-
stances of the XMLHttpRequest object using an exceptions-based approach, as
demonstrated here:

var Request = false;

try {

 Request = new XMLHttpRequest(); //Try FireFox, Safari, Opera, etc.

}

Catch(e)

{

 Request = new ActiveXObject("Microsoft.XMLHTTP"); //Try ActiveX (IE)

}

Here, a variable named Request is declared, after which a try code block is set up
in an attempt to instantiate an instance of the XMLHttpRequest object using the
Window object’s XMLHttpRequest() method. This will work as long as the browser
being used is not Internet Explorer 5 or 6. If this is the case, an error occurs and
the Catch() method is executed. This method ignores the error, allowing the
application to continue its execution. If this occurs, the XMLHttpRequest object is
set up using Internet Explorer’s ActiveXObject() method.

Opening a New Connection
The next step after instantiating the XMLHttpRequest object is to establish a connection with
the web server using the open() method. This method has the following syntax.

open("method", "url" [, asyncFlag [, username [, password]]])

Table 5.2 identifies the purpose of each of the open() method’s arguments.

The XMLHttpRequest object always creates asynchronous connections with the
web server, unless you explicitly tell it not to by assigning a value of false to
asyncFlag. Doing so, however, defeats the entire purpose of using Ajax by forcing
Ajax applications to halt execution and wait for data to be retrieved.

TRICK

HINT

Ajax Programming for the Absolute Beginner118

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Executing the open() method
To use the open() method to open a URL on a web server, you must specify either the standard
HTML GET or POST option. Of the two, the GET option, as demonstrated below, is all that is
usually used to retrieve a moderate amount of data from the web server, and the POST option
is usually used when you need to download large amounts of data.

if(Request) {

 Request.open("GET", "url");

 .

 .

 .

}

Both the GET and POST options configure the XMLHttpRequest object to work with a specified
file. However, neither option causes the application to connect to the web server or access the
file. You will learn how to make this happen in a couple more steps. Note that before executing
the open() method, this example checks to make sure that a valid XMLHttpRequest object has
in fact been successfully instantiated (by making sure that the value assigned to the
Request object variable is equal to true).

Take note of the example shown here. It checks if the value assigned to Re-
quest is equal to true.

if (Request) {

}

This example is functionally identical to the following example. The only
difference between these two examples is that the first example takes

TRICK

T A B L E 5 . 2 X M L H T T P R E Q U E S T O B J E C T O P E N () M E T H O D

P A R A M E T E R S

Value Explanation
method The HTTP method to be used to establish a connection with the web server (GET, POST)
url The URL of the file URL to be opened on the web server
asyncFlag An optional value that when set to true (default) sets up an asynchronous connection

(a value of false dictates a synchronous connection)
userName An optional username if required by the web server
password An optional password if required by the web server

Chapter 5 • Ajax Basics 119

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fewer keystrokes to write and the second example is arguably a little easier to
understand. Ajax programmers generally use the former version instead of the
latter version, but ultimately it’s a matter of personal choice.

if (Request = true) {

}

Using Absolute and Relative Paths
When specifying the path and filename for an Ajax application, two options are available:
absolute paths and relative paths. An absolute path is one that specifies the exact location of
the file, as demonstrated here:

Request.open("GET", "http://www.tech-publishing.com/Test/Scores.txt");

Here, a file named Scores.txt, residing on the web server at http://www.tech-publishing.com/
Test/ has been specified. A relative path, on the other hand, specifies the location of a file based
on its location on the web server in relation to the application file. For example, the following
statement looks for a file named Scores.txt, residing in the same location as the application.

Request.open("GET", "Scores.txt");

For the sake of simplicity, relative paths are used in all of the examples in this book.

Waiting for the Web Server’s Response
Once you have instantiated the XMLHttpRequest object and specified the file that you want to
access using its open() method, you need to add the programming logic needed to handle the
web server’s response. The XMLHttpRequest object cycles through a number of different states
as it goes through the process of sending an HTTP request and then waiting for and finally
receiving data back from the web server. Specifically, the XMLHttpRequest object exposes two
properties that let you know the overall status of an HTTP request. These properties are the
readyState and status properties.

By keeping an eye on the value assigned to the readyState property, you can programmatically
determine when the application has finished receiving the data. The readyState property can
report any of the values shown in Table 5.3.

By keeping an eye on the value assigned to the status attribute, you can determine whether
an HTTP request was successful. Specifically, you need to make sure that the value assigned
to the status property is 200. Any other value indicates that something has gone awry.

The XMLHttpRequest object also has a property named onreadystatechange that can be used to
manage your applications’ asynchronous operations. All you have to do to use it is set up a
function, as demonstrated here:

Ajax Programming for the Absolute Beginner120

http://www.tech-publishing.com/Test/
http://www.tech-publishing.com/Test/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 .

 .

 .

 }

}

This type of function is referred to as an anonymous function. This function automatically
executes whenever there is a change in the state of the request, allowing you to add script
statements designed to monitor and keep track of the progress of the application’s data
request.

Handling the Web Server Response
Now that you have added the programming logic needed to handle the data that will be
returned by the web server, you need to specify the type of data that your application expects
to receive. This is done by one of the XMLHttpRequest object properties listed here:

• responseText. The data is returned as plain text.

• responseXML. The data is returned as XML.

The following statement demonstrates how to set up your Ajax application to handle text
data returned by the web server.

RequestObj.innerHTML = Request.responseText;

T A B L E 5 . 3 X M L H T T P R E Q U E S T O B J E C T S T A T U S A T T R I B U T E S V A L U E S

Value Explanation
0 Represents an uninitialized state in which the XMLHttpRequest object has been created

but not initialized.
1 Represents “sent” state in which the XMLHttpRequest object’s open() method has been

executed but the sent() method has yet to execute.
2 Represents a “sent” state in which the XMLHttpRequest object is waiting for data to be

returned.
3 Represents a state in which the XMLHttpRequest object is in the process of receiving data

from the web server.
4 Indicates that the XMLHttpRequest object has finished receiving the data from the web

server.

Chapter 5 • Ajax Basics 121

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Alternatively, you can set up your application to process XML data, as demonstrated here:

RequestObj.innerHTML = Request.responseXML;

Wrapping Things Up
Up to this point, you have seen how to instantiate the XMLHttpRequest object, specify a file, set
up a server connection, verify the connection, and then prepare the application to retrieve
data from the web server. To actually submit the request and retrieve the data, you must
execute the send() method, which has the following syntax.

send("string")

Here, the value that you assign to the string parameter will always be "null" when working
with the get mode, as demonstrated here:

Request.send(null);

Once executed, the send() method initiates the download process, allowing the JavaScript’s
anonymous function you set up to begin managing the download process.

Putting All the Pieces Together to Create a Working Ajax
Application
To help tie together all of the information just presented, let’s revisit the Ajax Joke of the Day
application that was presented back in Chapter 1. The complete HTML file for this application
is shown here:

<HTML>

 <HEAD>

 <TITLE>Ajax Joke of the Day Application</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function retrieveJoke(url, elementID) {

 if(Request) {

 var RequestObj = document.getElementById(elementID);

 Request.open("GET", url);

 Request.onreadystatechange = function() {

Ajax Programming for the Absolute Beginner122

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (Request.readyState == 4 && Request.status == 200) {

 RequestObj.innerHTML = Request.responseText;

 }

 }

 Request.send(null);

 }

 }

 </SCRIPT>

 </HEAD>

 <BODY>

 <H1>Where do bees go when they get married?</H1>

 <FORM>

 <INPUT type = "button" value = "Fetch Answer"

 onclick = "retrieveJoke('joke.txt', 'DivTarget')">

 </FORM>

 <DIV id="DivTarget"> </DIV>

 </BODY>

</HTML>

As you can see, this application begins by defining a variable that will be used to represent
an instance of the XMLHttpRequest object. Next, an if statement code block is set to determine
whether a web browser is running Internet Explorer 7 or above or is a different type of browser
altogether. The code statements that set up the variable and instantiate the XMLHttpRequest
object have been added to the HTML page, outside of any function, so that they automatically
execute when the web page loads.

An initial value of false is assigned to the Request variable so that the application’s JavaScript
can later check its value in order to verify that the XMLHttpRequest object has been created. A
function named retrieveJoke() is then defined. This function executes when the user clicks
on a button located on a form defined in the body section of the HTML page. The button’s
onClick event handler passes the function two arguments. The first argument specifies the
name of a text file to be downloaded from the web server, and the second argument specifies
the id associated with a pair of <DIV> </DIV> tags located in the body section where the con-
tents of the text files will be displayed once processed by the retrieveJoke() function.

Once executed, the retrieveJoke() function checks to make sure that an instance of the
XMLHttpRequest object has been set up and then declares a variable named requestObj and
assigns it a value representing the <DIV> </DIV> tags located in the page’s body section. Next,
the open() method is executed using the GET option, and an anonymous function is set up to
handle the text file downloaded by the server, using the RequestObj object’s innerHTML property

Chapter 5 • Ajax Basics 123

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to display the contents of the text file in the HTML page’s <DIV> </DIV> tags. Lastly, the
send() method is executed, initiating the download process and invoking the execution of
the anonymous function. Figure 5.4 shows an example of this application in action.

FIGURE 5.4

Executing the Ajax
Joke of the Day

application.

MANAGING CONCURRENT XMLHTTPREQUESTS
Up to this point in the book, the Ajax applications that you have seen have all used a single
XMLHttpRequest object. However, as you begin developing more complex Ajax applications,
you may eventually need to develop an Ajax application that must respond to different user
actions, simultaneously fetching multiple sets of data from the web server. This cannot be
done using a single XMLHttpRequest object.

One way to handle this scenario is to define multiple instances of the XMLHttpRequest object.
For example, the following statement defines a pair of XMLHttpRequest objects.

var Request1 = false;

var Request2 = false;

if (window.XMLHttpRequest) {

 Request1 = new XMLHttpRequest();

 Request2 = new XMLHttpRequest();

} else if (window.ActiveXObject) {

 Request1 = new ActiveXObject("Microsoft.XMLHTTP");

 Request2 = new ActiveXObject("Microsoft.XMLHTTP");

}

Using this approach, you will need to create a unique instance of the XMLHttpRequest object
for each request that your application may need to initiate. If you create an application that
needs to support more than two or three requests at a time, this approach can quickly become

Ajax Programming for the Absolute Beginner124

http://lib.ommolketab.ir
http//lib.ommolketab.ir

troublesome to manage. Instead, a better approach is to use an array to manage your appli-
cation’s XMLHttpRequest objects. Remember, JavaScript arrays can be used to store collections
of any type of object supported by JavaScript.

The following example demonstrates the logic required to set up an array of XMLHttpRequest
objects. The array is named aRequests. Each XMLHttpRequest object in the array can then be
referenced as necessary using its index position within the array.

var aRequests = new Array();

if (window.XMLHttpRequest) {

 aRequests.push(new XMLHttpRequest());

} else if (window.ActiveXObject) {

 aRequests.push(new ActiveXObject("Microsoft.XMLHttp"));

}

JavaScript arrays support a function named push(), which, when executed,
increases the size of the specified array by adding a new element to the end of
the array.

USING AJAX TO SET UP MOUSEOVERS
In the previous section, you saw an example of how to create an Ajax application that retrieves
a text file from the web server when the user clicks on a button control. Ajax is not limited
to retrieving data and modifying web page content only in situations where the user explicitly
initiates an action. Ajax applications can just as easily be set up that interact with the web
server behind the scenes to provide the user with dynamic content as the mouse pointer is
moved around the web page. An example demonstrating how you might set up something

<HTML>

 <HEAD>

 <TITLE>XYZ Website</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function updatePage(fileName, target)

TRICK

Chapter 5 • Ajax Basics 125

like this is provided here:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 if(Request) {

 var targetDiv = document.getElementById(target);

 Request.open("GET", fileName);

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 targetDiv.innerHTML = Request.responseText;

 }

 }

 Request.send(null);

 }

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY>

 <IMG src = "products.jpg" onmouseover="updatePage('products.txt',

 'TrgtDiv')">

 <IMG src = "downloads.jpg"

 onmouseover="updatePage('downloads.txt', 'TrgtDiv')">

 <IMG src = "forums.jpg" onmouseover="updatePage('forums.txt',

 'TrgtDiv')">

 <IMG src = "about.jpg" onmouseover="updatePage('about.txt',

 'TrgtDiv')">

 <H1> <DIV id = "TrgtDiv"> </DIV> </H1>

 </BODY>

</HTML>

Here, a small application made up of five graphic menus located at the top of the browser
window has been created. Each of these graphic objects calls upon a JavaScript function
named updatePage() whenever the user moves the mouse over one of the images. When this
happens, the mouseover event occurs and the onMouseOver() event handler is executed, passing
the name of a text file located on the web server where text that provides more information
is available and the id of a pair of <DIV> </DIV> tags where data retrieved from the web server
should be displayed.

When called, the updatePage() function first checks to make sure that an instance of the
XMLHttpRequest object has been instantiated. Next, a variable named trgtDiv is created and

Ajax Programming for the Absolute Beginner126

http://lib.ommolketab.ir
http//lib.ommolketab.ir

used to set up a reference to the <DIV> </DIV> tags. The XMLHttpRequest object’s open() method
is executed in order to set up a connection to the web server. As soon as the connection is
established, an anonymous function is set up to handle the data returned by the web server,
dynamically posting it on the web page.

Figure 5.5 shows how this application looks when initially loaded into the browser.

FIGURE 5.5

An example of a
series of graphical

menus used to
control page

content.

Each time the user moves the mouse pointer over one of the graphic menus located at the
top of the browser window, the application connects to the web server behind the scenes and
retrieves data that describes the menu. In total, the application utilizes five different text
files. The web server returns a copy of the text stored in one of these files each time it is called.
This information is then posted in the browser, instantly with no page refreshes! Figure 5.6
shows how this application looks when the user moves the mouse pointer over the
DOWNLOADS menu.

FIGURE 5.6

An example of the
content that the

application
displays when the

user moves the
mouse pointer

over the
DOWNLOADS menu.

LEVERAGING AJAX FRAMEWORKS
If you have done any surfing around the Internet to learn about Ajax, chances are that you
have come across references to different Ajax frameworks. A framework is a collection of pro-
gram code that is designed to simplify application development. Ajax frameworks consist of
collections of JavaScript functions that you can call upon from within your applications. Some

Chapter 5 • Ajax Basics 127

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax frameworks also include a server-side component that includes program code that facil-
itates server-side database searches and data manipulation and processing.

Ajax frameworks range from very small libraries to large, robust code libraries that provide
everything needed to build complex applications. The primary advantage of using Ajax
frameworks is that they speed up application development by allowing you to incorporate
pre-written JavaScript functions into your web pages and JavaScript code. There are literally
hundreds of Ajax frameworks to choose from. They range from small general-purpose frame-
works that you can download for free on the Internet to large commercial libraries. Some
Ajax libraries are highly specialized, designed to support the development of specific types
of applications such as online shopping carts.

Popular Ajax Frameworks
Examples of two popular Ajax frameworks include the Yahoo! User Interface Library (YUI) and
Dojo. The Yahoo! User Interface Library is written entirely in JavaScript. It is distributed as an
open-source library and can be downloaded for free from http://developer.yahoo.com/yui/, as
shown in Figure 5.7.

The Yahoo! User Interface Library provides Ajax developers with a wealth of features and
capabilities, including support for the development and management of calendars and charts
as well as features like text AutoComplete and application menus. The framework provides
Ajax developers with the ability to add tree views that can be clicked on and expanded. It also
provides a rich text editor that offers advanced text processing features. This framework also
supports the creation of tooltips, the generation of animated effects, and support for drag
and drop operations. In addition, the Yahoo! User Interface Library also provides a browser
history manager that enables Ajax applications to retain backward and forward browser his-
tory buttons.

The Dojo Ajax framework is an open-source library written in JavaScript that is designed to
support the rapid development of Ajax applications and websites. It is developed by the Dojo
Foundation, which is a non-profit institution and can be downloaded for free from http://
dojotoolkit.org, as shown in Figure 5.8. Dojo provides Ajax developers with a wealth of fea-
tures and capabilities, including support for the development of menus, tables, tooltips,
charts, and animated effects. Dojo also provides functions specifically designed to support
the management of forms and input validation. It also facilitates the development of tree
views and calendars and even provides access to a sophisticated rich text editor.

To use most Ajax frameworks, you have to copy the code files that make up the framework
to your web server and then add a reference to it in your Ajax application using a statement
like the one shown here:

Ajax Programming for the Absolute Beginner128

http://developer.yahoo.com/yui/
http://dojotoolkit.org
http://dojotoolkit.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 5.7

You can download
a free copy of the

Yahoo! User
Interface Library

from http://
developer.yahoo.

com/yui/.

FIGURE 5.8

You can download
a free copy of the

Dojo Ajax
framework from

http://
dojotoolkit.org.

Chapter 5 • Ajax Basics 129

http://developer.yahoo.com/yui/
http://dojotoolkit.org
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://dojotoolkit.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

<SCRIPT language = "javascript" type = "text/javascript" scr = "cba.js">

 .

 .

 .

</SCRIPT>

Here, a reference to an Ajax framework named cba.js has been established.

Framework Demo—Using the CBA Framework
As an example of how easy it can be to work with an Ajax framework to simplify application de-
velopment, let’s take a look at a small Ajax framework known as Cross Browser Ajax or CBA.
CBA is free to download and use. Compared to the Yahoo! User Interface Library and Dojo,
CBA is a small framework, and was only 12.8KB in size at the time this book was published.

To download CBA, visit http://www.crossbrowserajax.com and click on the Download button,
as shown in Figure 5.9.

FIGURE 5.9

Downloading the
Cross Browser

Ajax framework
from http://

www.crossbrowser
ajax.com.

CBA downloads as a JavaScript file named CBA.js, which is stored in a Zip file. To make the
framework available to your application, upload CBA.js to the same folder on your web server

Ajax Programming for the Absolute Beginner130

http://www.crossbrowserajax.com
http://www.crossbrowserajax.com
http://www.crossbrowserajax.com
http://www.crossbrowserajax.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

where your Ajax applications are stored. Once you have performed this task, use the frame-
work in your applications to add the following statement to a JavaScript located in the head
section of your Ajax application’s HTML files.

<SCRIPT language = "javascript" type = "text/javascript" src = "cba.js">

Once added, you can then begin calling on any of the JavaScript functions made available
through the framework, as demonstrated in the following example.

<HTML>

 <HEAD>

 <TITLE>Cross Browser Ajax Demo</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript" src="cba.js">

 </SCRIPT>

 </HEAD>

 <BODY>

 Enter a term:

 <INPUT type = "textfield" id = "termfield">

 <INPUT type = "button" value = "Get Definition"

 onclick = "cbaUpdateElement('TrgtDiv',

 'http://crossbrowserajax.com/data/examples/quickhelp.php?word=' +

 termfield.value);">

 <P id="TrgtDiv" style = "color:blue"></P>

 </BODY>

</HTML>

Here, a web page has been created that consists of a text field and a button. The user is
prompted to enter a term in the text field and then to click on the button to look up infor-
mation about that term. A function named cbaUpdateElement() is called when the button is
clicked, and passed two arguments, the id of a pair of <DIV> </DIV> tags where the text
returned by the web server will be displayed, and the URL of a PHP program named
guickhelp.php, which is passed the search term as an argument.

The cbaUpdateElement() function is one of a number of functions made available to the Ajax
application through the CBA framework. When executed, it handles all communication with
the web server and makes sure that the text that is returned by the web server is dynamically
added to the web page. Thanks to the CBA.js framework, all of this is accomplished without
the application developer having to develop any of the JavaScript functions that make the
application work. As this application demonstrated, you can use frameworks to significantly
reduce the size and complexity of your Ajax applications. Figure 5.10 shows how this appli-
cation looks when first loaded into the browser.

Chapter 5 • Ajax Basics 131

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 5.10

An example of an
Ajax application

built by using the
Cross Browser

Ajax framework.

Figure 5.11 shows how the application looks after the user uses it to look up information on
the term xml.

FIGURE 5.11

Using the CBA
framework to

create an
application that
retrieves Ajax-

related
vocabulary terms.

BACK TO THE AJAX TYPING CHALLENGE APPLICATION
Okay! It is time to turn your attention back to the development of this chapter’s project, the
Ajax Typing Challenge. When loaded, this application challenges the user to type three sen-
tences exactly as shown on the screen. All three of the sentences are retrieved behind the
scenes from three text files stored on the application’s web server, allowing web server
administrators to update challenge sentences at any time.

Designing the Application
To help make things easy to follow along, this application will be developed in a series of
steps, as outlined here:

1. Create a new HTML page.
2. Create the application’s text files.
3. Create the application’s JavaScript and defining global variables.
4. Set up the XMLHttpRequest object.
5. Download and display the game’s challenge sentences.
6. Evaluate the player’s score.

Ajax Programming for the Absolute Beginner132

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 1: Writing the Application’s HTML
The first step in the development of the Ajax Typing Challenge is to create the application’s
HTML file. Do so by creating a new HTML file named AjaxTypingTest.html and then adding
the following HTML statements to it.

<HTML>

 <HEAD>

 <TITLE>Ajax Typing Challenge</TITLE>

 </HEAD>

 <BODY>

 <H1 style = "color:blue">Ajax Typing Challenge</H1>

 <FORM>

 <P>Click on "Begin Test" when you are ready to begin and then

 type the sentences that are displayed in the text fields

 displayed below each sentence. When done, click on the "Grade

 Test" button.</P>

 <INPUT type = "button" value = "Begin Test" id = "btnControl1"

 onclick = startQuiz()>

 <INPUT type = "button" value = "Grade Test" id = "btnControl2"

 onclick = gradeQuiz()>

 <P><DIV id = "trgtDiv1"> </DIV></P>

 <INPUT type = "textfield" size = "100" id = "inputField1">

 <P><DIV id = "trgtDiv2"> </DIV></P>

 <INPUT type = "textfield" size = "100" id = "inputField2">

 <P><DIV id = "trgtDiv3"> </DIV></P>

 <INPUT type = "textfield" size = "100" id = "inputField3">

 </FORM>

 <P style = "color:red; font-weight:Bold" id = "trgtP"> </P>

 </BODY>

</HTML>

As you can see, this HTML page consists of the required head and body tags. The body section
includes a level 1 heading, followed by a form and a pair of <P> </P> tags that have been
assigned an id of trgtP, into which the application will display a message informing the user
of his grade once the test is complete.

The form consists of two button controls and three textfield controls. The button controls use
onClick event handlers to call on JavaScript functions named startQuiz() and gradeQuiz().
Each of the three textfield controls is assigned a unique id, allowing them to later be refer-
enced so that the application’s functions can retrieve the user’s input from them.

Chapter 5 • Ajax Basics 133

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 2: Creating the Application’s Server-Side Text Files
The Ajax Typing Challenge presents the user with three challenge sentences, which are
retrieved from text files stored on the web server. Table 5.4 identifies the names of these three
files and shows their contents.

T A B L E 5 . 4 S E R V E R - S I D E T E X T F I L E S

Text File Contents
challenge1.txt Perhaps today is a good day to die.
challenge2.txt Now is the time for all good men to put away their pride.
challenge3.txt It was the best of times. It was the worst of times. It was the winter of our discontent.

Before moving on to step 3, take a few moments to create each of these text files and upload
them to your web server.

Step 3: Beginning Work on the Application’s JavaScript
The next step in the development of the Ajax Typing Challenge application is to begin writing
its JavaScript. Begin by adding the following statement to the head section of the HTML page.

<SCRIPT language = "javascript" type = "text/javascript">

<!-- Start hiding JavaScript statements

 var Request1 = false;

 var Request2 = false;

 var Request3 = false;

 var sentence1 = "";

 var sentence2 = "";

 var sentence3 = "";

 var numberCorrect;

// End hiding JavaScript statements -->

</SCRIPT>

As you can see, in addition to adding the JavaScript’s opening and closing tags, these state-
ments also define a number of global variables. The first three variables will be used throug-
hout the application to help manage the application’s XMLHttpRequest objects. The next three
variables are used to store each of the application’s challenge sentences. The numberCorrect
variable will be used to keep track of the number of sentences that the user correctly types.

Ajax Programming for the Absolute Beginner134

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 4: Instantiating the XMLHttpRequest Object
The Ajax Typing Challenge application involves the retrieval of three text files from the web
server. To facilitate the retrieval of the data stored in these files, you need to set up several
instances of the XMLHttpRequest object. This is accomplished by adding the following state-
ments to the end of the application’s JavaScript.

if (window.XMLHttpRequest) {

 Request1 = new XMLHttpRequest();

 Request2 = new XMLHttpRequest();

 Request3 = new XMLHttpRequest();

} else if (window.ActiveXObject) {

 Request1 = new ActiveXObject("Microsoft.XMLHTTP");

 Request2 = new ActiveXObject("Microsoft.XMLHTTP");

 Request3 = new ActiveXObject("Microsoft.XMLHTTP");

}

As you can see, three XMLHttpRequest objects, named Request1, Request2, and Request3 are
defined.

Step 5: Retrieving and Displaying Challenge Sentences
The program code that is responsible for administering the testing belongs to a function
named startQuiz(). The statements that make up this function are shown below and should
be added to the end of the application’s JavaScript.

function startQuiz() {

 document.getElementById("inputField1").value = "";

 document.getElementById("inputField2").value = "";

 document.getElementById("inputField3").value = "";

 document.getElementById("trgtP").innerHTML = "";

 if (Request1) {

 var RequestObj1 = document.getElementById("trgtDiv1");

 Request1.open("GET", "challenge1.txt");

 Request1.onreadystatechange = function() {

 if (Request1.readyState == 4 && Request1.status == 200) {

 RequestObj1.innerHTML = Request1.responseText;

 sentense1 = Request1.responseText;

 }

 }

 Request1.send(null);

Chapter 5 • Ajax Basics 135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 if (Request2) {

 var RequestObj2 = document.getElementById("trgtDiv2");

 Request2.open("GET", "challenge2.txt");

 Request2.onreadystatechange = function() {

 if (Request2.readyState == 4 && Request2.status == 200) {

 RequestObj2.innerHTML = Request2.responseText;

 sentense2 = Request2.responseText;

 }

 }

 Request2.send(null);

 }

 if (Request3) {

 var RequestObj3 = document.getElementById("trgtDiv3");

 Request3.open("GET", "challenge3.txt");

 Request3.onreadystatechange = function() {

 if (Request3.readyState == 4 && Request3.status == 200) {

 RequestObj3.innerHTML = Request3.responseText;

 sentense3 = Request3.responseText;

 }

 }

 Request3.send(null);

 }

}

The first three statements use the getElementById() method to retrieve an object reference to
each of the application’s three textfield controls. In addition to the object’s value property,
empty strings are displayed in these textfield controls. Next, an empty string is written to the
<P> </P> tags (id = trgtP) located under the application’s form.

Next, three nearly identical sets of code statements are used to retrieve the text stored in each
of the application’s three text files. These text files are retrieved using the open() method’s
GET option. An anonymous function is then used to monitor the status of the request. The
XMLHttpRequest object’s innerHTML property is then used to retrieve the contents of each of the
text files. This text data is stored in variables named sentence1, sentence2, and sentence3,
respectively.

Ajax Programming for the Absolute Beginner136

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 6: Grading the Results of the Ajax Typing Challenge
Once the user has completed keying in all three of the challenge sentences and clicks on the
Grade Quick button, the gradeQuiz() function is executed. The statements that make up this
function are shown next and should be added to the end of the application’s JavaScript.

function gradeQuiz() {

 numberCorrect = 0;

 var result1 = document.getElementById("inputField1").value;

 var result2 = document.getElementById("inputField2").value;

 var result3 = document.getElementById("inputField3").value;

 var score = document.getElementById("trgtP");

 if (sentence1 == result1) {

 numberCorrect++

 }

 if (sentence2 == result2) {

 numberCorrect++

 }

 if (sentence3 == result3) {

 numberCorrect++

 }

 score.innerHTML = "To pass you must type at least 2 " +

 "out of 3 sentences correctly. You got " + numberCorrect +

 " correct.";

}

When executed, this function resets the value assigned to numberCorrect to 0, retrieves the
value of the text that the user typed into the application’s three text fields, and sets up a
variable reference named score to the <P> </P> tags that are located under the applications
form. Next, three if statement code blocks are set up to analyze each of the sentences typed
by the user to see if they match the contents of the text files stored on the web server. If the
first sentence typed by the user (sentence1) matches the text retrieved from the web server
for the first text file (result1), the value of numberCorrect is incremented by 1. Similarly, the
user’s second and third sentences are analyzed. Lastly, using the score object’s innerHTML, a
message is posted in the application’s <P> </P> tags that informs the user of the number of
sentences that were correctly typed.

The Final Result
All right, at this point you have all of the instructions needed to create your own copy of the
Ajax Typing Challenge application. Before testing your new Ajax application, you will need
to upload the AjaxTypingTest.html file as well as the application’s three text files to your web

Chapter 5 • Ajax Basics 137

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server. Once uploaded, start your web browser and load the application. Assuming that you
have not made any typos and that you carefully followed the instructions provided, every-
thing should work as described at the beginning of this chapter. Once you are confident that
the application works like it is supposed to, take a few extra moments to validate its proper
execution in other types of browsers.

You will find a copy of this application’s source code files on the book’s com-
panion website, located at http://www.courseptr.com/downloads.

SUMMARY
This chapter provided an overview of the XMLHttpRequest object and explained how to use it
in your Ajax applications to facilitate the submission of data requests to web servers. This
included learning how to instantiate instances of the XMLHttpRequest objects and to use these
objects to set up connections, request data, and then download and make the data available
to your Ajax application. This chapter demonstrated how to use the XMLHttpRequest objects
to facilitate the creation of Ajax applications that use mouse-controlled rollovers. This chapter
also introduced you to the use of Ajax frameworks as a means of simplifying and speeding
up application development.

Now, before you move on to Chapter 6, “Digging Deeper into Ajax”, consider setting aside a
little extra time to improve the Ajax Typing Challenge application by addressing the following
list of challenges.

Challenges
1. As currently written, the Ajax Typing Challenge only consists

of three challenge sentences. Consider beefing things up a bit
by adding a number of additional challenge sentences to the
application.

2. Make the application easier to use by adding a third button that
when clicked displays more robust instructions about how to
work with the application.

3. As currently written, the application does not identify
mistyped sentences, instead leaving it to the user to figure out
which challenge sentences were mistyped. Modify the
application to address this issue.

HINT

Ajax Programming for the Absolute Beginner138

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

6C H A P T E R

DIGGING DEEPER INTO AJAX

n the last chapter, you learned how to work with the XMLHttpRequest object
to create Ajax applications that were capable of retrieving text files from
web servers. In this chapter, you are going to learn how take things a step

further by using the XMLHttpRequest object to call upon server-side programs. This
will include learning how to pass arguments to server programs and to retrieve
data returned by those programs. You will learn how to create Ajax applications
that can dynamically manipulate the display of graphics. On top of all this, this
chapter will show you how to execute JavaScript returned from the web server and
will demonstrate how to develop the chapter’s application project, the Ajax Google
Suggest application.

Specifically, you will learn how to:

• Incorporate DHTML techniques into your Ajax applications to dynamically
modify the display of graphics

• Create an Ajax application that dynamically changes the display of graphics

• Pass arguments to server-side programs

• Incorporate the execution of JavaScripts downloaded from the web server
into your applications

I

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PROJECT PREVIEW: THE AJAX GOOGLE SUGGEST APPLICATION
This chapter’s application project is the Ajax Google Suggest application. This application,
though not a game, is an extremely fun project that demonstrates how to incorporate the
execution of JavaScript code passed to an Ajax application from the web server to incorporate
Google Suggest terms into an Ajax application. Figure 6.1 shows an example of how the appli-
cation looks when initially loaded by Internet Explorer.

FIGURE 6.1

This application
dynamically

incorporates the
display of data
retrieved from

Google Suggest.

As soon as the user begins to type in a keyword or phrase, the application captures the user’s
keystrokes and passes them behind the scenes to the Google Suggest web server, which returns
a list of popular matching terms and phrases that the application displays, as demonstrated
in Figure 6.2.

FIGURE 6.2

The Ajax Google
Suggest monitors

user keystrokes
and displays a list

of matching
keywords and

phrases.

As demonstrated in Figure 6.3, the list of terms and phrases that are displayed continually
change as the user types in additional characters.

Ajax Programming for the Absolute Beginner140

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 6.3

The terms
displayed by Ajax
Google Suggest

change as the user
types in more
information.

The user can click on any entry in the list to perform a Google search, as demonstrated in
Figure 6.4.

FIGURE 6.4

The application
initiates a Google

search for the
selected keyword

or phrase.

USING AJAX TO MANIPULATE GRAPHICS
Although Ajax is limited to working with text and XML, you can use it to develop applications
that download graphics from the web server. Even though Ajax cannot directly retrieve
graphics, the browser can (thanks to DHTML). With this understanding and a little clever
programming, you can create Ajax applications that dynamically download and display
graphics. As an example of how Ajax developers often work around Ajax’s text-only limitation,
consider the following example.

Chapter 6 • Digging Deeper into Ajax 141

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<HTML>

 <HEAD>

 <TITLE>Demo: Ajax Graphics Demo</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function getDataForImage(fileName) {

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 if(Request) {

 Request.open("GET", fileName);

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 document.getElementById("TrgtDiv").innerHTML = "<IMG src= " +

 Request.responseText + ">";

 delete Request;

 Request = null;

 }

 }

 Request.send(null);

 }

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY>

 <FORM>

 <INPUT type = "button" value = "Display Shell"

 onclick = "getDataForImage('Shelldown.txt')">

 <INPUT type = "button" value = "Peek Under Shell"

 onclick = "getDataForImage('Shellup.txt')">

 </FORM>

 <DIV id="TrgtDiv"> </DIV>

 </BODY>

</HTML>

Ajax Programming for the Absolute Beginner142

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here, an Ajax application has been created that consists of two buttons that call on a function
named getDataForImage(). The first button, labeled Display Shell, passes the function the
name of a text file named Shelldown.txt, which is located on the web server. The second
button, labeled Peek Under Shell, passes the function the name of a text file named
Shellup.txt, which is located on the web server.

The getDataForImage() function maps the filename argument that is passed to a local vari-
able named filename and then instantiates an object named Request as an XMLHttpRequest
object. Next the function uses the XMLHttpRequest object’s open() method to download the
text stored in the specified text file. Table 6.1 shows the text that is stored in the application’s
text files.

T A B L E 6 . 1 S E R V E R - S I D E T E X T F I L E S

Text File Contents
Shellup.txt Shellup.jpg

Shelldown.txt Shelldown.jpg

The text that is downloaded is either a string of "Shelldown.jpg" or "Shellup.jpg", depending
on which button was clicked. Finally, a new tag is created and the value of the text string
downloaded from the server is appended to the tag. The new tag is placed inside a pair
of <DIV> </DIV> tags (e.g., TrgtDiv). The end result of altering the web page DOM tree in this
manner is that the browser immediately downloads the graphic files specified in the new
 tags and displays them. Of course, this occurs with no screen refresh.

Figure 6.5 shows an example of how the application looks when initially loaded into the
browser.

FIGURE 6.5

An example of
how the

application looks
when initially

located by
Internet Explorer.

Chapter 6 • Digging Deeper into Ajax 143

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6.6 shows how the application’s appearance changes when the user clicks on the Dis-
play Shell button.

FIGURE 6.6

The application
displays an image
of a walnut shell

when the user
clicks on the
Display Shell

button.

Likewise, Figure 6.7 shows how the application’s appearance changes when the user clicks on
the Peek Under Shell button.

FIGURE 6.7

The application
dynamically

displays an image
of a walnut with a
pea underneath it

when the user
clicks on the Peek

Under Shell
button.

As you can see, even though Ajax does not allow you to work with and directly control graph-
ics, by leveraging its ability to communicate with web servers behind the scenes, along with
its ability to modify the DOM tree, you can easily develop Ajax applications that include
complicated graphic effects.

SENDING DATA TO WEB SERVERS
Up to this point in the book, all of the Ajax applications that you have seen and worked with
have involved the retrieval of text files stored on the web server. However, as previously stated,
Ajax can do more than merely download text files from the web server. It can also interact
with any web server-based program and upload data as well as download data returned by
web server programs.

Strictly speaking, Ajax is a client-side programming tool and you do not need to know how
to write web server programs to develop Ajax applications. However, most Ajax applications

Ajax Programming for the Absolute Beginner144

http://lib.ommolketab.ir
http//lib.ommolketab.ir

involve some type of interaction with web server programs that accept and process input
provided by Ajax applications and then return data for the Ajax application to process. This
means that unless you already have access to prewritten server-based programs that provide
the data your Ajax applications need to work with, you are going to need to collaborate with
someone that can develop server-side programs for you or you will have to learn how to
develop those programs yourself.

Ajax can work with virtually any server-side program, regardless of the programming lan-
guage used to develop it. One extremely popular server-side programming language is PHP.
PHP is a lot like Ajax and is used on thousands of web servers around the world. Chances are
extremely good that your local website server provider already has PHP installed and ready
to go.

All of the server-side programming examples demonstrated in this book were
created using PHP. You will see a few examples of Ajax applications that interact
with PHP scripts as you work your way to the end of this chapter. You do not have
to have a working knowledge of PHP in order to follow along and understand the
examples. However, Chapter 10 provides a brief PHP primer.

A Quick Example of How to Work with PHP
As has already been stated in this book several times, you do not have to be a PHP programmer
to follow along and understand the applications presented in this book. However, a basic
understanding is certainly helpful. The following Ajax application consists of two parts, a
client-side web page, and a server-side PHP script. It provides an example of a simple applica-
tion that is designed to call upon a PHP script to pass it some text data (as opposed to retrieving
the text data from a file stored on the web server).

The PHP scripts that you will see in this chapter are very simple. To learn more
about PHP and how to use it to develop server-side scripts, read Chapter 9,
“Working with Ajax and PHP.”

<HTML>

 <HEAD>

 <TITLE>Ajax Joke of the Day Application</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

HINT

HINT

Chapter 6 • Digging Deeper into Ajax 145

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function retrieveJoke(url, elementID) {

 if(Request) {

 var RequestObj = document.getElementById(elementID);

 Request.open("GET", url);

 Request.onreadystatechange = function()

 {

 if (Request.readyState == 4 && Request.status == 200) {

 RequestObj.innerHTML = Request.responseText;

 }

 }

 Request.send(null);

 }

 }

 </SCRIPT>

 </HEAD>

 <BODY>

 <H1>Where do bees go when they get married?</H1>

 <FORM>

 <<INPUT type = "button" value = "Fetch Answer"

 oonclick = "retrieveJoke('Joke.php', 'DivTarget')">

 </FORM>

 <DIV id="DivTarget"> </DIV>

 </BODY>

</HTML>

As you can see, the client-side portion of this application is a modified copy of the Ajax
Joke of the Day application, which you learned how to create in Chapter 1. However, instead
of retrieving the text for the joke’s punch line from a text file stored on the server, the
application now calls upon a PHP script named Joke.php, passing the script the id of a pair of
<DIV> </DIV> tags into which the text representing the joke’s punch line should be written.
The only different between this version of the joke.html page and the version that you worked
on in Chapter 1 is that in Chapter 1 you specified the text file you wanted to retrieve from
the web server, as shown here:

<INPUT type = "button" value = "Fetch Answer"

 onclick = "retrieveJoke(''Joke.txt', 'DivTarget')">

Ajax Programming for the Absolute Beginner146

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the new version of the joke.html application, you replace the reference to the text file with
a reference to a PHP script, as shown here:

<INPUT type = "button" value = "Fetch Answer"

 onclick = "retrieveJoke('Joke.php', 'DivTarget')">

Of course, in order to work, you have to create a new script named Joke.php and upload it to
the same folder on your web server where your Ajax application resides. To create the PHP
script, all you have to do is create a new file named Joke.php and add the following statements
to it:

<?php

 echo 'On a honeymoon.';

?>

As you can see, the PHP script consists of only three statements. The first and last statements
are required opening and closing statements that you will find in all PHP scripts. The second
statement consists of an echo command and a text string. In PHP, the echo command is used
to output data provided to it as an argument back to the client-side applications. Note that
as is the case with JavaScript, PHP uses the semicolon character to mark the end of the state-
ment. When called to execute, this PHP script returns a text string of On a honeymoon. back
to your Ajax application.

While the use of a PHP script in place of text is perhaps a little overkill in this
particular example, the primary advantage of calling upon a PHP script instead
of simply downloading the contents of a text file is that a PHP script is capable
of performing all kinds of complex operations, like reading text files and re-
trieving data from a server database. Server-side programs can also process
application data retrieved from files and databases before returning it back to an
Ajax application.

Sending Data to Web Servers for Processing
Okay, now that you have had a sneak peek at how to develop Ajax applications that work with
server-side programs, let’s take things a step further by learning how to call upon a server-
side PHP script and pass it some data for processing.

Two options are available to you. The first option is to use the open() method’s GET option.
This will allow you to pass data to the web server using a technique known as URL encoding
in which the data being sent is appended to the end of the URL string that is used to connect
to the web server. Your second option is to use the open() method’s POST option, which sends
encoded data back to the web server.

HINT

Chapter 6 • Digging Deeper into Ajax 147

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Get Method to Send Data to a PHP Script
Using the XMLHttpRequest object’s open() method’s GET option to call on server-side programs
and pass them data for processing results in URL-encoded data. URL-encoded data is insecure
and easily readable, so it is not a good option for applications that have to deal with highly
confidential data.

To use the open() method’s GET option, you must append a ? character to the end of the URL
string followed by the data that needs to be passed using a data=value format. If multiple
data=pair arguments must be sent, then you must separate them with a & character. If the
data being sent contains blank spaces, you must replace those blank spaces with the + char-
acter. For example, suppose you wanted to pass two pieces of data representing the number
of apples and oranges on hand to a PHP script named test.php located at http://
www.someweberserver.com. To accomplish this using the GET option, you would formulate
the URL for the request as shown here:

http://www.somewebserver.com/test.php?apples=5&oranges=10

If you wanted to call on a PHP script named tellstory.php and pass it the contents of a variable
named story (whose value is "Once upon a time"), then you would formulate the URL for the
request as shown here:

http://www.somewebserver.com/tellstory.php?story=Once+upon+a+time

JavaScript provides a method named escape that you can use to automatically
encode data, as demonstrated here:

x = escape("Once upon a time")

To better understand how to work with the open() method’s GET option, let’s take a look at
an example. In this example, you’ll see a graphical menu made up of five menu items, as
shown in Figure 6.8.

FIGURE 6.8

This application
consists of five
graphic menu

options.

TRICK

Ajax Programming for the Absolute Beginner148

http://www.someweberserver.com
http://www.somewebserver.com/test.php?apples=5&oranges=10
http://www.somewebserver.com/tellstory.php?story=Once+upon+a+time
http://www.someweberserver.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If this application looks familiar to you, it should. You worked on a different
version of this application in Chapter 5, which retrieved additional information
for each menu item from text files stored on the web server. This version of the
application replaces the five text files with a small PHP script. In Chapter 7, you
will modify the application even further, when you learn how to add dynamic
submenu lists to the menus.

The HTML page for this application is shown next. As you can see, five tags located in
the body section define the application’s graphical menus. Whenever the user moves the
mouse pointer over one of the menus, the menu’s onMouseover() event handler is executed
and passed two text strings. The first text string represents the menu item and the second
text string identifies a pair of <DIV> </DIV> tags into which text downloaded behind the scenes
from the web server is displayed.

<HTML>

 <HEAD>

 <TITLE>XYZ Website</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function updatePage(category, target) {

 vvar url = "options.php?category=" + category;

 if(Request) {

 var targetDiv = document.getElementById(target);

 RRequest.open("GET", url, true);

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 targetDiv.innerHTML = Request.responseText;

 }

 }

 Request.send(null);

 }

 }

 // End hiding JavaScript statements -->

HINT

Chapter 6 • Digging Deeper into Ajax 149

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 </SCRIPT>

 </HEAD>

 <BODY>

 <IMG src = "products.jpg" onmouseover="updatePage('products',

 'TrgtDiv')">

 <IMG src = "downloads.jpg" onmouseover="updatePage('downloads',

 'TrgtDiv')">

 <H1> <DIV id = "TrgtDiv"> </DIV> </H1>

 </BODY>

</HTML>

The following example shows an Ajax application that uses the open() method’s GET option
to call upon a PHP script named options.php, passing it a text string representing the name
of a graphical menu whenever the user moves the mouse pointer over the menu.

The graphic image’s onMouseover() event handlers call upon a function named updatePage().
This function uses the open() method’s GET option to execute options.php, passing it a URL
string of option.php?catagory=XXX where XXX represents the name assigned to one of the
graphic menu items.

If you want to test the execution of this example, you will also need to upload a copy of the
options.php script to your web server. The statements that make up this PHP script are shown
here:

<?

header("Content-type: text/xml");

if ($_GET["category"] == "home")

 echo 'Welcome to the XYZ website!';

if ($_GET["category"] == "products")

 echo 'Products Page';

if ($_GET["category"] == "downloads")

 echo 'Downloads Page';

if ($_GET["category"] == "forums")

 echo 'Forums Page';

if ($_GET["category"] == "about")

 echo 'About Page';

?>

Ajax Programming for the Absolute Beginner150

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Without getting too involved in the details of how this PHP script works, just note that a series
of if statement code blocks, using the $_GET array, are used to analyze the argument passed
to the program, and that 1 of 5 echo statements is executed depending on whether the match
occurs. The Ajax application captures the outputted text string returned by the PHP script
and displays it in the HTML page’s <DIV> </DIV> tags, as demonstrated in Figure 6.9.

FIGURE 6.9

This application
consists of five
menu options.

Using the POST Method to Send Data to a PHP Script
A second way of working with the open() method is to use its POST option. When you work
with this option, the data sent by the open() method is internally encoded, making it more
secure than the GET option. The following example demonstrates how to rework the previous
Ajax application to use the POST method in place of the GET method.

<HTML>

 <HEAD>

 <TITLE>XYZ Website</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function updatePage(category, target) {

 if(Request) {

 var targetDiv = document.getElementById(target);

 RRequest.open("POST", "options.php");

 RRequest.setRequestHeader('Content-Type',

 ''application/x-www-form-urlencoded');

Chapter 6 • Digging Deeper into Ajax 151

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 targetDiv.innerHTML = Request.responseText;

 }

 }

 Request.send("category=" + category);

 }

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY>

 <IMG src = "products.jpg" onmouseover="updatePage('products',

 'TrgtDiv')">

 <IMG src = "downloads.jpg" onmouseover="updatePage('downloads',

 'TrgtDiv')">

 <H1> <DIV id = "TrgtDiv"> </DIV> </H1>

 </BODY>

</HTML>

As the statements highlighted in bold indicate, the only difference between this and the
previous version of the application is that no URL encoding is passed when executing the
open() method, and an HTTP header had to specify that a standard HTTP POST request is to
be executed. Except for these two changes, everything else remains the same in the Ajax
application. However, since the application now passes data to the web server using the
POST option in place of the GET option, you must also make a change to the PHP script located
on the web server in order for it to be able to properly process the data being passed to it.
Specifically, you must replace references to the $_GET array with reference to the $_POST array
as shown here.

<?

header("Content-type: text/xml");

if ($$_POST["category"] == "home")

 echo 'Welcome to the XYZ website!';

if ($$_POST["category"] == "products")

 echo 'Products Page';

Ajax Programming for the Absolute Beginner152

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if ($$_POST["category"] == "downloads")

 echo 'Downloads Page';

if ($$_POST["category"] == "forums")

 echo 'Forums Page';

if ($$_POST["category"] == "about")

 echo 'About Page';

?>

To execute this example, upload the new version of the application along with an updated
copy of the PHP file to your web server and then load the HTML page into your web browser.
When executed, you should see the same results shown in Figures 6.8 and 6.9.

EXECUTING SERVER-SUPPLIED JAVASCRIPT
In addition to downloading plain text and XML data from web servers, Ajax applications can
also download and execute JavaScript statements to accomplish this feat; just download the
text representing the JavaScript statements and pass them to a JavaScript function named
eval(). This function re-evaluates the text statements passed to it and executes them as
JavaScript statements.

Using the eval() functions to execute JavaScript statements downloaded from web servers
can be quite convenient. However, it is best, whenever possible, not to rely on this approach
when developing your Ajax application. It is a good programming practice to make server-
side programs independent of their client-side counterparts.

There is no reason that server-side programs should have to know the inner
workings of your Ajax applications. Still, there are times when you may not have
any other choice, like when you want to create an Ajax application that works
with any number of third-party web services such as Google Maps or Google
Suggest.

Look at the following example to see how JavaScript is downloaded and executed from a web
server:

<HTML>

 <HEAD>

 <TITLE>DEMO: Executing JavaScript downloaded from the web server</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var Request = false;

 if (window.XMLHttpRequest) {

TRAP

Chapter 6 • Digging Deeper into Ajax 153

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 ffunction getScript() {

 iif(Request) {

 RRequest.open("GET", "serverjoke.php");

 RRequest.onreadystatechange = function() {

 iif (Request.readyState == 4 && Request.status == 200) {

 eeval(Request.responseText);

 }}

 }}

 RRequest.send(null);

 }}

 }}

 function SayJoke(joke, punchLine) {

 window.alert(joke);

 window.alert(punchLine);

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY>

 <FORM>

 <INPUT type = "button" value = "Run" onClick = "getScript()">

 </FORM>

 </BODY>

</HTML>

Here, an Ajax application has been set up to call upon a function named getScript() when
its button is clicked. When called, the getScript() function calls upon a PHP script called
serverjoke.php, which returns the following JavaScript statements to the Ajax application.

SayJoke('What is black, white and red all over?', 'A newspaper!')

As you can see, this statement consists of a function call to SayJoke(), passing it two text
strings as arguments. Once downloaded, the JavaScript statement is passed to the eval()
method, which executes it. The PHP script that this Ajax application calls upon is shown next.
As you can see, except for the required opening and closing statements, the PHP script consists

Ajax Programming for the Absolute Beginner154

http://lib.ommolketab.ir
http//lib.ommolketab.ir

of just one statement, which uses the echo command to pass text representing a JavaScript
statement to the Ajax application.

<?php

 echo "SayJoke('What is black, white and red all over?', 'A newspaper!')";

?>

In order for this example to work, the programmer that created the PHP script
must know that there is a function named SayJoke() in the Ajax application that
will call upon it to execute. In addition, the PHP programmer also needs to know
the number and type of arguments that the function requires.

Figures 6.10 and 6.11 show the output that is produced when the Ajax application is executed.

FIGURE 6.10

The application
displays its joke in

a popup dialog
window.

FIGURE 6.11

The application
displays the joke’s

punch line in
another popup
dialog window.

BACK TO THE AJAX GOOGLE SUGGEST APPLICATION
It is time to return your attention to the development of this chapter’s project, the Ajax Google
Suggest application. This application takes advantage of Ajax’s ability to evaluate and execute
JavaScript code downloaded from the web server in order to facilitate the development of a
custom implementation of Google’s Live Search. Google Suggest is a popular feature of the
Google search engine (www.googlesuggest.com) that monitors user keystrokes and displays
a list of related keywords and terms, allowing the user to select either a keyword or term or
to key in his own search string.

TRICK

Chapter 6 • Digging Deeper into Ajax 155

www.googlesuggest.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

When loaded into the web browser, this application displays a text field into which the user
types a search keyword or phrase. The application captures keystrokes as the user types and
passes them behind the scenes to Google’s web server, where a list of popular matching search
terms and phrases is then returned. The application displays the text list that is returned and
uses it to display a linked list of terms and phrases that the user can then click on to initiate
a Google search. The list of terms and phrases is updated every time the user types or deletes
a new character in the application’s text field.

The Ajax Google Suggest application will work its magic by capturing and sending user
keystrokes to the Google web server using the XMLHttpRequest object. In response, Google’s
web server returns a JavaScript function similar to this:

window.google.ac.Suggest_apply(frameElement, "\x22 ajax", new Array(2,

"ajax", "113,000,000 results", "ajax toolkit", "680,000 results", "ajax

control toolkit", "444,000 results", "ajax fc", "2,270,000 results", "ajax

library", "827,000 results", "ajaxian", "659,000 results", "ajax soccer

club", "225,000 results", "ajax ontario", "540,000 results", "ajax

download", "1,090,000 results", "ajax grips", "649,000 results"), new

Array(""));

As you can see, the text string that is returned by the web server consists of a JavaScript
function call named window.google.ac.Suggest_apply() along with data for that function to
process. The data that is returned is passed as four arguments, using the syntax outlined here:

window.google.ac.Suggest_apply(ignoreVar, keyword, aResults, aEmpty)

Unfortunately, the name of the function returned by the web server will not
work as a function name in the Ajax application. If you try to add a function named
window.google.ac.Suggest_apply() to your Ajax application, the browser will
generate an error because based on the name of the function, the browser is
instructed to call upon the window object’s google property and no such
property exists. An easy workaround for this situation is to rename
window.google.ac.Suggest_apply() to the name of a function in the Ajax appli-
cation prior to passing the web server’s output string to the JavaScript eval()
function (which you will do in step 5).

Designing the Application
The development of the Ajax Google Suggest application will be created in a series of seven
steps, as outlined here:

1. Create a new HTML page.
2. Format the display of Google Suggest results using CSS.

TRAP

Ajax Programming for the Absolute Beginner156

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Begin work on the application’s JavaScript and instantiating an XMLHttpRequest object.
4. Create a function to capture user keystrokes and pass them to the application’s PHP

script.
5. Process the list of terms returned by Google Suggest.
6. Submit the term or phrase selected by the user.
7. Create the application’s PHP file.

Step 1: Writing the Application’s HTML
The first step in the development of the Ajax Google Suggest application is to create an HTML
page for the application named google.html and to add the following statements to it.

<HTML>

 <HEAD>

 <TITLE>Demo: An Ajax Driven Google Live Search</TITLE>

 </HEAD>

 <BODY style="text-align:center;">

 <H1>Google Live Search - Ajax Style!</H1>

 Search: <INPUT id = "textField" type = "text" size = 50

 name = "textField" onkeyup = "captureKeystrokes(event)">

 <P><CENTER><DIV id = "trgtDiv"> <div></CENTER></P>

 </BODY>

</HTML>

As you can see, the HTML tags that make up the Ajax Google Suggest application are straight-
forward. They consist of the required head and body tags. The head section includes a title
tag and the body section consists of a level 1 heading and a text field control into which the
user will type a search keyword or phrase.

Step 2: Using CSS to Control Search Results
When executed, this application will retrieve a list of popular search keywords or phrases
based on the user’s input. The output listing returned from Google will be displayed inside a
pair of <DIV> </DIV> tags referred to using an id of trgtDiv. To help make the output standout,
a pair of embedded CSS style tags will be added to the application that apply a background
color, width, and border style to the <DIV> </DIV> tags. These statements that make up the
embedded style tags are shown next and should be added to the head section of the HTML
page, just under the <TITLE> </TITLE> tags.

<STYLE>

 #trgtDiv {

 background-color: #C0C0C0;

Chapter 6 • Digging Deeper into Ajax 157

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 width: 50%;

 border-style: solid

 }

</STYLE>

You will learn more about how to work with CSS in Chapter 8, “Working with Cascading Style
Sheets.” Figure 6.12 shows the impact that the addition of the CSS embedded style tags have
on the appearance of the application.

FIGURE 6.12

The Ajax Google
Suggest

application uses
CSS to improve

the presentation
of its output.

Step 3: Creating the Application’s JavaScript and Instantiating the
XMLHttpRequest Object
The next step in the development of the Ajax Google Suggest application is to begin assem-
bling its JavaScript. Begin by adding the following statement to the head section of the HTML
page, immediately following the CSS style tags that you added in the previous step.

<SCRIPT language = "javascript" type = "text/javascript">

<!-- Start hiding JavaScript statements

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

// End hiding JavaScript statements -->

</SCRIPT>

Ajax Programming for the Absolute Beginner158

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, in addition to adding the JavaScript’s opening and closing tags, these state-
ments also define an instance of the XMLHttpRequest object, assigning it an object variable
named Request.

Step 4: Capturing and Passing Along User Keystrokes
Each time the user types or deletes a character in the application text field box, the
textfield control’s onkeyup() event handler executes and calls upon a function named
captureKeystrokes(), passing it an argument representing the text that the user has entered.
The code statements that make up this function are shown next and should be added to the
application’s JavaScript.

function captureKeystrokes(keyStroke) {

 var keyStroke = (keyStroke) ? keyStroke: window.event;

 var searchString =

 (keyStroke.target) ? keyStroke.target : keyStroke.srcElement;

 if (keyStroke.type == "keyup") {

 if (searchString.value) {

 getGoogleList("google.php?qu=" + searchString.value);

 }

 else {

 document.getElementById("trgtDiv").innerHTML = "<div></div>";

 }

 }

}

When called, the function begins by assigning the input to a local variable named
keyStroke. Unfortunately, you cannot pass event data this way when working with Internet
Explorer. Instead, event data must be retrieved using the window object’s event property. To
work around this situation, the second statement in the function makes use of the
JavaScript ? operator to evaluate and assign a value to keystroke. If keystroke has an assigned
value then that value is retained as the variable value. If, on the other hand, keystroke does
not have an assigned value, the value of window.event will be assigned.

The ?: operator is one of three logical Boolean operations supported by
JavaScript. Its purpose is to assign either of two possible values to a variable
based on the result of an evaluated condition, using the following syntax.

var result = condition ? value : alternativeValue;

HINT

Chapter 6 • Digging Deeper into Ajax 159

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The third statement in the function uses the ? operator a second time to establish a reference
to the textfield control in which the user has been typing. For a non-Internet Explorer web
browser, you can get this value using the event object’s target property. However, Internet
Explorer does not support this. Instead, you must use the keyEvent object’s srcElement
property.

Once an object reference of searchString has been established for the textfield control, an
if statement code block is used to either retrieve the text string entered by the user and pass
them to a function named getGoogleList() or, if the text field is empty (e.g., the user deleted
its text), delete any keyword or phrases displayed in the <DIV> </DIV> tags. Note the format
of the argument that is passed when the GetGoogleList() function is called. It consists of two
strings that are concatenated together ("google.php?qu=" and searchString.value).

Step 5: Processing the List of Terms Provided by Google Suggest
When called, the getGoogleList() function processes the test string passed to it as an argu-
ment and sends it to Google’s server for processing. The code statements that make up this
function are shown next and should be added to the application’s JavaScript.

function getGoogleList(inputString) {

 if(Request) {

 Request.open("GET", inputString);

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 var responseString =

 Request.responseText.substr(30, Request.responseText.length)

 var functionalCall = "ProcessGoogleResults" + responseString

 eval(functionalCall)

 }

 }

 Request.send(null);

 }

}

This function begins by assigning the output that is returned to a variable named
responseString. The first 30 characters of the data stored in the response string (e.g.,
window.google.ac.Suggest_apply) are removed from the string using JavaScript’s substr()
function. Next, the name of the ProcessGoogleResults() function is appended to the begin-
ning of the string, which is then processed by the eval() function. The end result of this
function’s work is that the output string returned from Google is modified to point to an

Ajax Programming for the Absolute Beginner160

http://lib.ommolketab.ir
http//lib.ommolketab.ir

internal function named ProcessGoogleResults() and then processed like any other JavaScript
statement in the application.

Step 6: Submitting the Search Term or Phrase Selected by the User
The last function in the application is the ProcessGooleResults() function, which is shown
here. This function is executed whenever the output string returned from Google is evaluated
and executed (as a JavaScript statement).

function ProcessGoogleResults(ignoreVar, keyword, aResults, aEmpty) {

 var googleListing = "<table>";

 if (aResults.length != 0) {

 for (var i = 1; i < aResults.length; i += 2) {

 googleListing += "<tr><td>" +

 "<a href='http://www.google.com/search?q=" +

 aResults[i] + "'>" + aResults[i] +

 '</td><td>' + " - " + aResults[i + 1];

 }

 }

 googleListing += "</table>";

 document.getElementById("trgtDiv").innerHTML = googleListing;

}

As you can see, this function begins by breaking down its input into four parts, each of which
is assigned to a different local variable. Of these four variables, on the string assigned to the
first variable, aResult, is used. Actually, aResult is passed through as an array made up of two
separate types of information, representing the search terms and their popularity.

If you go back and look at the sample output that was presented at the beginning
of this exercise, you will see that the following statements show an example of
what the contents of the array will look like.

new Array(2, "ajax", "113,000,000 results", "ajax toolkit",

"680,000 results", "ajax control toolkit", "444,000 results",

"ajax fc", "2,270,000 results", "ajax library", "827,000 results",

"ajaxian", "659,000 results", "ajax soccer club", "225,000 results",

"ajax ontario", "540,000 results", "ajax download", "1,090,000 results",

"ajax grips", "649,000 results")

The first item listed in the array is a number that should be disregarded. The rest
of the items in the array consist of keywords or phrases followed by an item
showing its popularity.

HINT

Chapter 6 • Digging Deeper into Ajax 161

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The rest of the statements that make up the ProcessGoogleResults() function are used to
define HTML tags required to create a table that displays the contents of the array. The table
is made up of two columns, one showing the search keyword or phrase and the other dis-
playing its popularity. Note that each keyword or phrase is turned into a clickable link. This
allows the user to perform a Google Search on any of the keywords or phrases that make up
the output returned by Google.

Step 7: Creating the Application’s PHP Script
The Ajax Google Suggest application also has a server-side component in the form of a PHP
script named google.php. The code statements that make up this program are outlined here:

The Ajax Google Suggest application depends on the google.php script to pass
the application’s search string to Google Suggest and to collect and return the
results of that submission back to the application for processing. The reason that
application requires the use of the PHP application instead of trying to directly
manage all communications with Google’s server is because of security rules
that prevent browser applications from directly accessing server programs that
run on different Internet domains. To get around this restriction, you must let
your web server handle the exchange of information on your behalf, server to
server.

<?php

 $objRef = fopen("http://www.google.com/complete/search?hl=en&js=true&qu=" .

 $_GET["qu"], "r");

 while (!feof($objRef)){

 $results = fgets($objRef);

 echo $results;

 }

 fclose($objRef);

?>

The first and last statements in the PHP script are the program’s required opening and closing
tags. The second statement in the PHP script is responsible for submitting your application’s
search term to Google Suggest using the fopen() function. The output that is returned from
Google is stored in the $objRef variable. Next, a loop is set up to process the contents of the
data stored in $objRef. Each search term or phrase is retrieved using the PHP fgets() function
and then returned as text to the Ajax application, using the echo command. Once all of the
output has been received from Google, the connection to Google is closed using the fclose()
function and the PHP script halts its execution.

HINT

Ajax Programming for the Absolute Beginner162

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Final Result
Okay, at this point you have everything you need to create your own copy of the Ajax Google
Suggest application. As long as you have followed along carefully and not made any typos,
everything should work exactly as was described at the beginning of this chapter. To test the
application, upload the google.html file along with the google.php file to your web server and
then load google.html into your web browser. Once loaded, type in a few characters and see
what happens. Try deleting a character and verify that the application reacts accordingly.
Once you have found a keyword or phrase that best matches what you want to search on, click
on its entry and make sure that Google performs a search on your behalf.

You will find a copy of this application’s source code files on the book’s com-
panion website, located at http://www.courseptr.com/downloads.

SUMMARY
In this chapter, you learned how to use the XMLHttpRequest object to interact with programs
running on the web server. This included learning how to pass argument data to server-side
programs and to retrieve data returned by those programs, using either the XMLHttpRequest
object’s open() method’s GET or the POST options. This chapter showed you how to create Ajax
applications that can dynamically control the display of graphics. You also learned how to
execute JavaScript code returned from the web server and using this programming technique,
you created your own Ajax-based implementation of Google Suggest.

Now, before you move on to Chapter 7, “Working with XML,” set aside a little extra time to
improve the Ajax Google Suggest application by addressing the following list of challenges.

Challenges
1. As currently written, the Ajax Google Suggest application only

allows the user to select and submit one of the search terms
provided in its output listing. Consider enhancing the
application by modifying it to allow the user to submit a search
term typed into the Search text field as well.

2. To help make the application easier to work with, display
instructions on its usage, perhaps by displaying a Help or
Instructions link or graphic and then dynamically display text
instructions when the user moves the mouse pointer over it.

HINT

Chapter 6 • Digging Deeper into Ajax 163

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part

IV
Data Management and Presentation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7C H A P T E R

WORKING WITH XML

ML is a standard for storing and transporting data in a platform-
independent manner. This chapter introduces you to XML and explains
how to develop XML applications that can work with data stored in XML

files. You will learn how to create XML files and how to access their contents using
Ajax. You will learn the basics of XML element syntax and how to formulate XML
tags that include text content and optional attribute data. You will also learn how
browsers create logical trees for your XML files and how to navigate those trees
using JavaScript properties. On top of all this, this chapter will show you how to
create the Who Am I? application, which will retrieve data stored in different XML
files located on the application’s web server.

Specifically, you will learn:

• How to create XML files that are well-formed

• The basic syntax requirements for formulating XML tags

• How to add attributes to XML tags and how to access attribute data from
within your Ajax applications

• How white space in XML files can create havoc in Ajax applications and how
to work around this problem

• How to use different JavaScript properties to navigate and extract data from
XML files

X

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PROJECT PREVIEW: THE WHO AM I? APPLICATION
This chapter’s application project is the Who Am I? game. This application challenges players
to try to guess the names of different historical figures. The application retrieves data repre-
senting questions, answers, and hints from small XML files stored on the application’s web
server. Each XML file contains information about a different historical figure. The game ran-
domly downloads a different XML file each time the player initiates a new round of play.

Figure 7.1 shows how the game looks when initially loaded into a Firefox web browser.

FIGURE 7.1

The player must
click on the Play
button to start

playing the game.

Initially, all the player sees is the name of the game, instructions on how to play, and a Play
button. When the user clicks on the Play button, the game generates a random number
between 1 and 10, and then based on the value of this number, downloads one of the XML
files from the web server. The contents of the downloaded XML file are then processed and
used to populate the browser window. As Figure 7.2 shows, the player is presented with three
hints, a question, and two different answers from which to choose.

Once the player decides on an answer, it must be typed into the textbox and the Check button
must be clicked. The game then compares the player’s answer to the answer that was stored
in the XML file. Once this analysis is complete, the game notifies the player of the results by
displaying a red text message at the bottom of the browser window, as demonstrated in
Figure 7.3.

The game allows the player to play as long as she wants, changing the Play button to the Play
Again button after the first round of play.

Ajax Programming for the Absolute Beginner168

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 7.2

To submit an
answer, the player
must type it into
the textbox and

click on the Check
button.

FIGURE 7.3

An example of a
question that has

been correctly
answered.

AN INTRODUCTION TO XML
So far, all of the examples that involve the exchange of data between the web server and Ajax
applications have relied on the use of text. However, as its name indicates (the x in Ajax stands
for XML), Ajax applications are also able to work with XML (eXtensible Markup Language) data.

XML is a general-purpose markup language that is similar in many ways to HTML. Both of
these markup languages are derived from SGML (Standard Generalized Markup Language),
which is used to organize the different types of elements that make up documents. While
HTML is used to develop web pages, XML is designed to manage the storage and transfer of
data. XML is a widely accepted standard used by Ajax developers for transporting structured
data between applications. In terms of Ajax applications, this means passing data from the
web server to your Ajax applications where it can be parsed and processed.

Unlike HTML, which consists of a large collection of pre-defined tags (elements), each of which
is designed for a specific purpose, XML allows developers to design their own tags to describe
any type of data. For example, the following XML file describes instructions to bake a cake.

Chapter 7 • Working with XML 169

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<cake>

 <instructions>oven='microwave'>

 <heat>'300 degrees'</heat>

 <time>'30 minutes'</time>

 <over>conventional</oven>

 </instructions>

 <instructions>oven='conventional'>

 <heat>'300 degrees'</heat>

 <time>'30 minutes'</time>

 <over>conventional</oven>

 </instructions>

</cake>

As you can see, two different sets of instructions are provided, one for baking the cake using
a microwave and another for baking it in a conventional oven. Take note of the use of
attributes to identify each cooking option and how the tags are laid out in a hierarchical
structure.

Rules for Formulating XML Tags
To be valid, XML files must be well-formed. A well formed XML file is one that conforms to all
of XML’s syntax rules. These rules include:

• All XML files must have one root element (also referred to as the document element), made
up of an opening (root) tag and a corresponding closing tag.

• Element attributes must be enclosed within single or double quotation marks.

• An attribute can only appear once in an element tag.

• Tag names cannot begin with a numeric value.

• All elements must be properly nested.

• Tag names cannot include blank spaces or quotation marks.

Examples of illegal XML tags include:

• <99years>

• < "library">

• <Good Times>

XML can be used to transfer any amount of data. Like the HTML DOM, XML organizes data
into a logical tree format, the root of which is the document element. The document element
is a set of developer-specified tags, within which other XML elements are embedded. For
example, the following example shows an XML file that consists only of a document element.

Ajax Programming for the Absolute Beginner170

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<library>Historical Book Collection</library>

This document is well-formed. It contains the required document element tags. It has no
attributes and since it has no other elements, there are no nesting issues.

XML is a widely used standard. XML oversight is provided by the World Wide Web
Consortium. To review detailed information about the XML standard specifica-
tion, visit http://www.w3.org/TR/REC-xml.

XML Element Syntax
Most XML elements consist of an opening and a closing tag and may contain zero or more
attributes as well as text content. The basic syntax for an XML element is shown here:

<openingtag attribute="value">content</closingtag>

Here, openingtag and closingtag mark the beginning and ending of the element, which can
contain zero or more attributes using the format shown above. Blanks spaces are used to
separate attributes when more than one is included. Value assignments must be enclosed
within quotation marks. content represents optional text contained in the element.

While HTML is not case-sensitive, XML tags are. Therefore, in XML, <Library>
and <library> are regarded as two different elements. Because of this, you must
take extra care when formulating your XML files to ensure that you do not make
mistakes in the capitalization of tag names.

Including the XML Declaration Instruction
If you want, you may include an optional XML declaration instruction in your XML files. The
purpose of the XML declaration is to identify the document as an XML file. As a matter of good
programming practice, every XML file should include a declaration instruction. The XML dec-
laration statement supports the syntax outlined here:

<?xml

version="versionNumber"

encoding="encodingType"

standalone="standaloneValue" ?>

The versionNumber attribute specifies the version of XML in use. As of the writing of this book,
1.0 and 1.1 were the only valid versions of XML. Common practice is to specify version 1.0.
The optional encodingType attribute is used to specify the character set used by the XML file.
Examples of valid options here include UTF-8, UTF-16, and EUC-JP. UTF-8 will suffice for most
situations. The standaloneValue attribute, if present, must be set to either yes or no. You should

HINT

TRAP

Chapter 7 • Working with XML 171

http://www.w3.org/TR/REC-xml
http://lib.ommolketab.ir
http//lib.ommolketab.ir

specify a value of no if the XML file has a link to an external DTD or if it has any external entity
references and specify a value of yes if the XML file has an internal DTD.

DTD stands for document type definition. DTDs are used to define rules that
govern the creation of XML files. The creation of DTD is outside the scope of this
book.

If present, the declaration element must be the first tag in the XML file. In fact, this element
must be placed on the first line in the file or an error will occur. If specified, the declaration
element must specify a versionNumber attribute. Take note that the XML declaration has no
closing tag.

Commenting Your XML Files
Even though XML is considered to be self-describing, you can make your XML files easier
to understand and work with by making liberal use of XML comments. XML comments are
formatted in the same manner as HTML comments—delimited within <!-- and --> characters.
For example, the following statement provides an example of an XML comment:

<!--This XML file contains a list of custom information-->

You may place XML comments anywhere in an XML file. If you want, you can use XML com-
ments to comment out multiple lines in an XML file, as demonstrated here:

<!--

This XML file

contains a list

of custom information

-->

One limitation of XML comments is that you cannot place two consecutive
dashes (--) in a row anywhere within a comment; otherwise, and error will occur.

Working with Elements with No Content
XML elements do not necessarily have to contain any content, in which case the element is
considered to be an empty element. In XML, an empty element can be represented by an
opening tag followed immediately by a matching closing tag, as demonstrated here:

<library></library>

HINT

TRAP

Ajax Programming for the Absolute Beginner172

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XML also supports a simplified format for writing an element with empty content, which
allows you to omit the closing tag. Following this format, you add the / character to the end
of the opening tag. Using this format, the following example is functionally identical to the
previous example.

<library/>

Although empty elements have no content, they can still contain any number of attributes,
as demonstrated here:

<library location="downtown" phonenumber="765-4321" />

As you can see, an attribute consists of a name followed by a value, which is enclosed inside
quotation marks. XML tags can have any number of attributes, as long as they are separated
from one another by a blank space.

Understanding the Types of Elements in Use
Even in an XML file, a number of different types of nodes can be used. In addition to different
types of nodes, XML lets you assign attributes to nodes and supports a number of other ele-
ments as outlined in Table 7.1.

T A B L E 7 . 1 J A V A S C R I P T P R O P E R T I E S T H A T S U P P O R T X M L D O M
T R E E A C C E S S

Value Property Description
1 NODE_ELEMENT Represents an element
2 NODE_ATTRIBUTE Represents an attribute belonging to an element
3 NODE_TEXT Represents a tag’s text content
4 NODE_CDATA_SECTION Represents the XML’s CDATA section
5 NODE_ENTITY_REFERENCE Provides a reference to an entity within an XML

document
6 NODE_ENTITY Represents an expanded entity
7 NODE_PROCESSING_INSTRUCTION Represents an XML document processing

instruction
8 NODE_COMMENT Represents a comment within an XML document
9 NODE_DOCUMENT Represents an object within an XML document
10 NODE_DOCUMENT_TYPE Represents the document type declaration of the

<!DOCTYPE> tag
11 NODE_DOCUMENT_FRAGMENT Represents a document fragment
12 NODE_NOTATION Represents a notation within the document type

declaration

Chapter 7 • Working with XML 173

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you will see a little later in this chapter, there will be times when you will need to know
information about the type of elements that are specified in XML documents. In these situa-
tions, knowing which values represent which properties, as outlined in Table 7.1, is essential.

VERIFYING THAT YOUR XML FILES ARE WELL-FORMED
All XML files must be well-formed. But how can you be sure that your XML files are well-formed
and error free? Any software application designed to work with XML can be used to verify
whether an XML file is well-formed. Since Internet Explorer and Firefox are both XML-
compatible web browsers, you can use either of them to load and verify that your XML files
are well-formed. For example, Figure 7.4 shows an example of how a typical well-formed XML
file looks when loaded by Firefox.

FIGURE 7.4

Using Firefox to
verify that an XML

file is well-
formed.

Ajax Programming for the Absolute Beginner174

Figure 7.5 shows an example of an XML file that is not well-formed.

FIGURE 7.5

The document
element’s closing

tag has been
mistyped

resulting in an XML
file that is not
well-formed.

Obviously, if your browser flags your XML file as having an error, you must go back and correct
it before you can use it in your Ajax application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

UNDERSTANDING XML TREES
When browsers load XML files, they automatically convert them into logical collections of
related nodes. These nodes have relationships to one another. For example, consider the
following XML file.

<?xml version = "1.0" encoding="utf-8"?>

<library>

 <History>57 Volumes</History>

 <Biography>78 Volumes</Biography>

 <Military>104 Volumes</Military>

 <SciFi>61 Volumes</SciFi>

</library>

Here, the <library> document element node contains four subnodes (<History>, <Biography>,
<Military>, and <SciFi>). These four nodes are children of the <library> names and siblings
to one another. Each of the four child nodes also has a child node (text node) of its own that
contains text data.

Chapter 7 • Working with XML 175

A Depiction of a Small XML File
When processing the XML file that was presented in the previous section, web browsers auto-
matically generate a logical tree representation of the nodes that make up the XML file in
memory. Figure 7.6 shows a depiction of the logical tree that is generated when the previous
XML file is loaded.

FIGURE 7.6

A depiction of the
logical tree that

the browser
creates for the

XML file.

As you can see, the document element <library> resides at the root of the tree. It has four
child nodes (<History>, <Biography>, <Military>, and <SciFi>). Also, each of the child nodes
has a text node.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript Properties That Work with XML Trees
In addition to the XMLHttpRequest object’s responseXML property, JavaScript provides access to
a large collection of properties that you can use to interact with, navigate, and extract data
from XML files. These properties are listed and described in Table 7.2.

T A B L E 7 . 2 J A V A S C R I P T P R O P E R T I E S T H A T S U P P O R T X M L D O M
T R E E A C C E S S

Property Description
attributes Returns a list of attributes belonging to the node
documentElement Returns a node’s document element
parentNode Rerturns a node’s parent node
childNodes Returns an array listing all of a node’s child nodes
firstChild Returns the first child belonging to a node
lastChild Returns the last child belonging to a node
name Returns a node’s name
localName Returns a node’s local name
nodeValue Returns a node’s value
nodeType Returns a node’s type
nodeName Returns a node’s name
nextSibling Returns a node’s next sibling (based on its order in the XML DOM tree)
previousSibling Returns a node’s previous sibling (based on its order in the XML DOM tree)

Many of the properties should look familiar to you because they mirror properties of the same
name used to navigate DOM trees.

NAVIGATING XML FILES
Using the properties listed in Table 7.2, you can navigate and extract data from XML files.
For example, the following series of steps demonstrate how to write a function named
getData() that extracts the text that is highlighted in this XML file:

<?xml version = "1.0" encoding="utf-8"?>

<library>

 <History>57 Volumes</History>

 <Biography>778 Volumes</Biography>

 <Military>104 Volumes</Military>

 <SciFi>61 Volumes</SciFi>

</library>

Ajax Programming for the Absolute Beginner176

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first step in creating the getData() function is to lay out the function’s opening and
closing tags and to define a variable that will be used to download and store an object refer-
ence to the XML file.

function getData() {

 var Request = false

 var docElement, childOne, childTwo, textNode, targetData;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 if(Request) {

 Request.open("GET", "library.xml");

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 var xmlDoc = Request.responseXML;

 CClearOutWhiteSpace(xmlDoc)

 .

 .

 .

 }

 }

 }

 Request.send(null);

}

Here an XML file named library.xml is downloaded and assigned to a variable named xmlDoc.
Take note of the highlighted statement shown above. It calls upon a function named
ClearOutWhiteSpace(). Some web browsers, including Safari and Firefox, interpret the use of
blank spaces in XML files differently from other browsers. To allow the application to process
the XML file using the same programming logic, regardless of the browser being used, this
method is called to remove white space from the XML file.

The next step in navigating the XML is to set up an object reference to the document element,
which you can do using the documentElement property, as shown here:

docElement = xmlDoc.documentElement;

As an object reference to the root element of the entire XML file, docElement can be used to
access all four of the document element’s children. The first child of the document element

Chapter 7 • Working with XML 177

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is the <History> element, which you can reference using the firstChild property, as shown
here:

docElement = xmlDoc.documentElement;

childOne = docElement.firstChild;

The <Biography> tag is a sibling of the <History> tag. Specifically, it is the first sibling of the
<History> tag. You can set up an object reference to it using the nextSibling property, as shown
here:

docElement = xmlDoc.documentElement;

childOne = docElement.firstChild;

childTwo = childOne.nextSibling;

Now that you have an object reference to the <Biography> node, you need to get your hands
on its text node object, which you can do using the firstChild property, as shown here:

docElement = xmlDoc.documentElement;

childOne = docElement.firstChild;

childTwo = childOne.nextSibling;

textNode = childTwo.firstChild;

All that is left to do to get your hands on the data belonging to the second node is to retrieve
its value, which you can do using the nodeValue property, as shown here:

docElement = xmlDoc.documentElement;

childOne = docElement.firstChild;

childTwo = childOne.nextSibling;

textNode = childTwo.firstChild;

targetData = textNode.nodeValue;

Now that the function has the data it was looking for, let’s verify its success by displaying it,
as shown here:

docElement = xmlDoc.documentElement;

childOne = docElement.firstChild;

childTwo = childOne.nextSibling;

textNode = childTwo.firstChild;

targetData = textNode.nodeValue;

window.alert("There are " + targetData + " in the library.");

Figure 7.7 shows the output that is displayed when this Ajax application is executed on an
Apple Computer running the Safari web browser.

Ajax Programming for the Absolute Beginner178

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 7.7

Using JavaScript
properties, you
can extract data

from any XML file.

Eliminating White Space
Unfortunately, there is a major difference in the way different browsers handle the presence
of white space in XML files. While browsers like Internet Explorer work with XML exactly as
described in the preceding sections, browsers like Firefox and Safari do not. Specifically,
browsers like Safari and Firefox do not ignore the white space that exists between tags in XML
files. Instead, these browsers strictly adhere to W3C standards by treating blank space as an
empty text node. These browsers also interpret tabs and linefeeds as blank space. As a result
of their strict adherence to the standard, navigating the XML tree that these browsers generate
for XML pages becomes very challenging.

Rather than creating Ajax applications that process XML trees one way for Internet Explorer
and another way for browsers like Safari and Firefox, most Ajax developers simply add an
extra function to their applications that strips out the extra spaces from XML tags. An example
of such a function is shown here:

function ClearOutWhiteSpace(xmlFile) {

 var i = 0;

 for (i = 0; i < xmlFile.childNodes.length; i++) {

 var tag = xmlFile.childNodes[i];

 if (tag.nodeType == 1) {

 ClearOutWhiteSpace(tag);

 }

 if ((tag.nodeType == 3) && (/^\s+$/.test(tag.nodeValue))) {

 xmlFile.removeChild(xmlFile.childNodes[i--]);

 }

 }

}

Here, a function named ClearOutWhiteSpace() is passed a variable containing the contents of
an XML file. A loop is set up to process every node in the XML file. Note that an array of nodes
is generated using the JavaScript childNodes property. An if statement code block is set up to
check the node’s node type. If it has a value of 1 (refer to Table 7.1), then it may have child
elements, so to process the child elements, a recursive call is made to the ClearOutWhiteSpace()
function. A second if statement code block is then set up to check the node’s node type to

Chapter 7 • Working with XML 179

http://lib.ommolketab.ir
http//lib.ommolketab.ir

see if it is equal to 3 (e.g., it’s a text node). This code block also executes a regular expression
that looks to see if the node is made up of all white space. If this is the case, then the node is
removed by calling on the removeChild() method. The end result is an XML file with no extra
white space.

Now let’s tie together everything that you have learned regarding how to navigate XML files
and how to remove extra white space, by creating a small Ajax application that processes the
following XML file and extracts and displays the highlighted data.

<?xml version = "1.0" encoding="utf-8"?>

<library>

 <History>57 Volumes</History>

 <Biography>778 Volumes</Biography>

 <Military>104 Volumes</Military>

 <SciFi>61 Volumes</SciFi>

</library>

The statements that make up the Ajax application are shown here:

<HTML>

 <HEAD>

 <TITLE>Demo: Extracting data from an XML file</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function getData() {

 var Request = false

 var docElement, childOne, childTwo, textNode, targetData;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 if(Request) {

 Request.open("GET", "library.xml");

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 var xmlDoc = Request.responseXML;

 ClearOutWhiteSpace(xmlDoc)

 docElement = xmlDoc.documentElement;

 childOne = docElement.firstChild;

Ajax Programming for the Absolute Beginner180

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 childTwo = childOne.nextSibling;

 textNode = childTwo.firstChild;

 targetData = textNode.nodeValue;

 window.alert("There are " + targetData + " in the library.");

 }

 }

 }

 Request.send(null);

 }

 function ClearOutWhiteSpace(xmlFile) {

 var i = 0;

 for (i = 0; i < xmlFile.childNodes.length; i++) {

 var tag = xmlFile.childNodes[i];

 if (tag.nodeType == 1) {

 ClearOutWhiteSpace(tag);

 }

 if ((tag.nodeType == 3) && (/^\s+$/.test(tag.nodeValue))) {

 xmlFile.removeChild(xmlFile.childNodes[i--]);

 }

 }

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY onLoad=getData()>

 </BODY>

</HTML>

When executed, this application downloads the library.xml file, clears out any excess
white space, navigates the XML file, and extracts and displays the required data. Check out
Figure 7.7 for an example of the output that this application produces.

Processing XML Element Attributes
Some XML element tags also include attribute data. You can programmatically access tag
attributes and use them when processing XML files. If an object contains one or more
attributes, you can set up an object reference to those attributes using the attributes prop-
erty. For example, take a look at the following XML file:

Chapter 7 • Working with XML 181

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<?xml version = "1.0" encoding="utf-8"?>

<toys>

 <toy color="red">

 <price>$9.99</price>

 <inventory>in stock</inventory>

 </toy>

 <toy color="blue">

 <price>$9.99</price>

 <inventory>out of stock</inventory>

 </toy>

 <<toy color="green">

 <<price>$8.99</price>

 <<inventory>on backorder</inventory>

 <</toy>

</toys>

This XML file’s <toy> tags include an attribute named color. As the highlighted tag in the XMP
file indicates, the third <toy> tag contains information about the color, price, and inventory
status of a toy. The following Ajax application downloads the XML file, clears out any extra
white space, and then extracts the attribute and content data for the third tag, displaying the
results in a popup dialog.

<HTML>

 <HEAD>

 <TITLE>Demo: Extracting data from an XML file</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function getData() {

 var Request = false

 var docElement, childOne, childTwo, textNode, targetData;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 if(Request) {

 Request.open("GET", "toys.xml");

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

Ajax Programming for the Absolute Beginner182

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 var xmlDoc = Request.responseXML;

 ClearOutWhiteSpace(xmlDoc)

 docElement = xmlDoc.documentElement;

 toyThree = docElement.lastChild;

 ttoyAttribute = toyThree.attributes;

 ccolorType = toyAttribute.getNamedItem("color");

 ttoyColor = colorType.nodeValue;

 ttoyPrice = toyThree.firstChild.firstChild

 ttoyStatus = toyThree.lastChild.firstChild

 wwindow.alert("The " + toyColor + " toy is " +

 ttoyPrice.nodeValue + " and is " +

 ttoyStatus.nodeValue + ".");

 }

 }

 }

 Request.send(null);

 }

 function ClearOutWhiteSpace(xmlFile) {

 var i = 0;

 for (i = 0; i < xmlFile.childNodes.length; i++) {

 var tag = xmlFile.childNodes[i];

 if (tag.nodeType == 1) {

 ClearOutWhiteSpace(tag);

 }

 if ((tag.nodeType == 3) && (/^\s+$/.test(tag.nodeValue))) {

 xmlFile.removeChild(xmlFile.childNodes[i--]);

 }

 }

 }

 // End hiding JavaScript statements -->

 </SCRIPT>

 </HEAD>

 <BODY onLoad=getData()>

 </BODY>

</HTML>

The main statements to focus on are the ones that have been highlighted in bold. The first of
these statements uses the JavaScript attributes properties to retrieve a list of attributes
belonging to a specific node. The resulting object creates a mapping of all the attributes

Chapter 7 • Working with XML 183

http://lib.ommolketab.ir
http//lib.ommolketab.ir

belonging to the specified node. Using this object’s getNamedItem() method, you can retrieve
a specific attribute by specifying its name (e.g., color). This creates an attribute node for that
attribute. Once created, you can use the nodeValue property to reference the attribute node’s
value.

Now that the application has extracted the attribute data from the third <toy> tag, all that is
left to do is retrieve the content of the <price> and <status> tags and then to display the
results, as shown in Figure 7.8.

FIGURE 7.8

An example of the
output produced
by the application

when executed
using Firefox.

JSON: JAVASCRIPT OBJECT NOTATION—AN ALTERNATIVE TO XML
JSON is a lightweight data format that allows you to transfer data using only JavaScript. Unlike
XML, you do not have to work with an object model to use JSON. Instead, you are able to access
data using lists. Therefore, many Ajax developers find it easy to learn JSON, whereas learning
XML takes more time and effort.

A disadvantage of using JSON is that most server-side programming languages, such as PHP,
Perl, Ruby, and Java, will not be able to work with it unless you install a JSON library on the
web server.

This book uses XML in its examples because XML represents a standards-based method of
transporting data that is widely accepted and employed by Ajax developers. Although
arguably more difficult to initially learn, XML’s mass acceptance makes it an obvious choice.
In addition, you do not have to worry about installing any additional libraries on your web
server to work with it. XML is used in many different development environments. So learning
how to work with XML in your Ajax applications may pay additional dividends later.

If you are interested in learning more about JSON, visit http://en.wikipedia.org/
wiki/JSON.

BACK TO THE WHO AM I? APPLICATION
It is time to return your attention to the development of this chapter’s project, the Ajax
Who Am I? application. This application is designed to test the player’s knowledge of famous
historical figures. Each time the game is played, a set of three hints is displayed to help the

HINT

Ajax Programming for the Absolute Beginner184

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
http://lib.ommolketab.ir
http//lib.ommolketab.ir

user identify the person being described. Two possible answers are then presented and the
player is asked to type in the correct answer. The data that is used to generate the hints and
answers for each question are stored in small XML files located on the web server. The game
randomly downloads 1 of 10 XML files each time the game is played, providing a variety of
questions.

Designing the Application
The development of the Ajax Who Am I? application will be created in a series of seven steps,
as outlined here:

1. Create the application’s XML files.
2. Create a new HTML page.
3. Get started on the application’s JavaScript.
4. Set up an instance of an XMLHttpRequest object.
5. Develop the getXML() function.
6. Develop the ClearOutWhiteSpace() function.
7. Develop the checkAnswer() function.

Step 1: Creating the Application’s XML Files
The first step in the development of the Who Am I? application is to create each of the 10 XML
files that the application will download. These XML files represent a set of 10 individual ques-
tions, along with accompanying hints and the answers to the questions. The names of each
of these XML files are shown next in bold print, followed by the tags that make up those files.

whoami1.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was the first president of the United States of

 America.</hint>

 <hint>Hint 2: I am famous for chopping down a cherry tree.</hint>

 <hint>Hint 3: My face is on the one dollar bill.</hint>

 <question>Am I George Washington or Abraham Lincoln?</question>

 <answer>George Washington</answer>

</question>

whoami2.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was an Apollo 14 astronaut.</hint>

Chapter 7 • Working with XML 185

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <hint>Hint 2: I was the first man to walk on the moon.</hint>

 <hint>Hint 3: I drank a lot of Tang.</hint>

 <question>Am I Neil Armstrong or George Bush?</question>

 <answer>Neil Armstrong</answer>

</question>

whoami3.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was Prime Minister of Great Britain in WWII.</hint>

 <hint>Hint 2: I was well known for my ability to make extraordinary

 speeches.</hint>

 <hint>Hint 3: I was once the First Lord of the Admiralty.</hint>

 <question>Am I Dwight Eisenhower or Winston Churchill?</question>

 <answer>Winston Churchill</answer>

</question>

whoami4.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was a famous French soldier.</hint>

 <hint>Hint 2: I was born in Corsica.</hint>

 <hint>Hint 3: I had a bad day at Waterloo.</hint>

 <question>Am I Stonewall Jackson or Napoleon Bonaparte?</question>

 <answer>Napoleon Bonaparte</answer>

</question>

whoami5.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was Prime Minister of England from 1979 to 1990.</hint>

 <hint>Hint 2: My nickname was the Iron Lady.</hint>

 <hint>Hint 3: I was the leader of my country's Conservative Party.</hint>

 <question>Am I Tony Blair or Margaret Thatcher?</question>

 <answer>Margaret Thatcher</answer>

</question>

Ajax Programming for the Absolute Beginner186

http://lib.ommolketab.ir
http//lib.ommolketab.ir

whoami6.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was emperor of the Roman Empire.</hint>

 <hint>Hint 2: I commanded the Roman invasion of Britain in 55 BC.</hint>

 <hint>Hint 3: I conquered Gaul.</hint>

 <question>Am I Marcus Brutus or Julius Caesar?</question>

 <answer>Julius Caesar</answer>

</question>

whoami7.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was a Carthaginian military leader.</hint>

 <hint>Hint 2: I once invaded Italy.</hint>

 <hint>Hint 3: I won battles at Trasimene, Cannae and Trebia.</hint>

 <question>Am I Hannibal or Attila the Hun?</question>

 <answer>Hannibal</answer>

</question>

whoami8.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I am a famous biblical character.</hint>

 <hint>Hint 2: I once hiked up Mount Sinai.</hint>

 <hint>Hint 3: I was given the 10 commandments.</hint>

 <question>Am I Moses or Abraham?</question>

 <answer>Moses</answer>

</question>

whoami9.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was the last Pharaoh.</hint>

 <hint>Hint 2: I was the mother of 3 of Mark Antony's children.</hint>

 <hint>Hint 3: I once hid in a carpet so I could meet Julius Caesar.</hint>

Chapter 7 • Working with XML 187

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <question>Am I Portia or Cleopatra?</question>

 <answer>Cleopatra</answer>

</question>

whoami10.xml

<?xml version = "1.0"?>

<question>

 <hint>Hint 1: I was the President of the Second Continental Congress.</hint>

 <hint>Hint 2: I was the Governor of Massachusetts.</hint>

 <hint>Hint 3: I am famous for the size of my signature.</hint>

 <question>Am I John Adams or John Hancock?</question>

 <answer>John Hancock</answer>

</question>

As you can see, each of these 10 XML files consists of a declaration tag followed by the docu-
ment element, within which an additional five tags have been placed. The first three of these
five tags contain content representing separate text strings containing different hints. The
fourth tag contains a text string representing the question to be asked by the application. The
last of the five tags contains a text string that specifies the correct answer to the questions.

Step 2: Writing the Application’s HTML
The next step is to create the application’s HTML. Do so by creating an HTML page named
whoami.html and adding the following statements to it.

<HTML>

 <HEAD>

 <TITLE>Who Am I?</TITLE>

 </HEAD>

 <BODY>

 <H1 style = "color:blue">Who Am I?</H1>

 <FORM>

 <P>Click on "Play" to see a list of hints and then try to

 guess who I am by typing in one of the two answers that are

 displayed. Then click on "Check" to see if you are right.</P>

 <INPUT type="button" value="Play" id="playBtn" onclick=getXML()>

 <P><DIV id = "hint1Div"> </DIV></P>

 <P><DIV id = "hint2Div"> </DIV></P>

 <P><DIV id = "hint3Div"> </DIV></P>

 <P><DIV id="questionDiv" style="color:blue; font-weight:Bold">

 </DIV></P>

Ajax Programming for the Absolute Beginner188

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <INPUT type="textfield" size="25" style="visibility:hidden"

 id="inputField">

 <INPUT type="button" value="Check" style="visibility:hidden"

 id="checkBtn" onclick=checkAnswer()>

 </FORM>

 <P style = "color:red; font-weight:Bold" id = "resultsP"> </P>

 </BODY>

</HTML>

As you can see, the HTML tags that make up the Who Am I? application are straightforward.
They consist of the required head and body tags. The head section contains a title tag and the
body section contains a level 1 header followed by a form. The form tags contain a number
of elements that display descriptive text, two button controls, and a text file. Note that the
id attribute has been specified for the button and textfield controls, allowing them to be
programmatically referenced by the application’s JavaScript.

Also note that a number of pairs of <P></P> and <DIV></DIV> tags have been embedded within
the form. These pairs of tags will be used to programmatically display questions and their
accompanying hints during game play. A final pair of <P></P> tags is included at the end of
the body section and will be used to display messages that notify the player as to whether her
answers are right or wrong.

Many of the tags in the HTML file contain additional style attributes that are used
to specify the length, color, and visibility of various form controls. You will learn
all about the effect that these style attributes have on the appearance and
operation of the application in Chapter 9, “Working with Cascading Style Sheets.”

Step 3: Getting Started on the Application’s JavaScript
The next step in the development of the application is to begin assembling its JavaScript. Start
by adding the following statement to the head section of the HTML page:

<SCRIPT language = "javascript" type = "text/javascript">

<!-- Start hiding JavaScript statements

 var correctAnswer = "";

// End hiding JavaScript statements -->

</SCRIPT>

In addition to specifying the JavaScript’s opening and closing tags, one global variable is
defined. It will be used to store the answer to questions downloaded and extracted from the
application’s XML files.

HINT

Chapter 7 • Working with XML 189

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 4: Instantiating the XMLHttpRequest Object
Now it is time to add statements to the JavaScript that are responsible for instantiating the
XMLHttpRequest object. Do so by adding the following statements to the end of the JavaScript.

var Request = false;

if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

} else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

}

As you can see, these statements define an instance of the XMLHttpRequest object, assigning it
an object variable named Request.

Step 5: Creating the getXML() Function
The getXML () function, shown next, is responsible for downloading a randomly selected XML
file from the application’s web server and then retrieving and displaying the question and
three hints specified as content in the XML file. To create this function, add the following
statements to the end of the application’s JavaScript.

function getXML() {

 if (Request) {

 var RequestObj1 = document.getElementById("hint1Div");

 var RequestObj2 = document.getElementById("hint2Div");

 var RequestObj3 = document.getElementById("hint3Div");

 var RequestObj4 = document.getElementById("questionDiv");

 randomNo = 1 + Math.random() * 9;

 randomNo = Math.round(randomNo);

 Request.open("GET", "whoami" + randomNo + ".xml");

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 var xmlDoc = Request.responseXML;

 ClearOutWhiteSpace(xmlDoc)

 docElement = xmlDoc.documentElement;

 hint1 = docElement.firstChild;

Ajax Programming for the Absolute Beginner190

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 hint2 = hint1.nextSibling;

 hint3 = hint2.nextSibling;

 question = hint3.nextSibling;

 answer = question.nextSibling;

 RequestObj1.innerHTML = hint1.firstChild.nodeValue;

 RequestObj2.innerHTML = hint2.firstChild.nodeValue;

 RequestObj3.innerHTML = hint3.firstChild.nodeValue;

 RequestObj4.innerHTML = question.firstChild.nodeValue;

 correctAnswer = answer.firstChild.nodeValue;

 document.getElementById("inputField").value = "";

 var textField = document.getElementById("inputField")

 var checkButton = document.getElementById("checkBtn")

 var playButton = document.getElementById("playBtn")

 var resultsParagraph = document.getElementById("resultsP");

 textField.style.visibility="visible";

 checkButton.style.visibility="visible";

 playButton.style.visibility="hidden";

 resultsParagraph.innerHTML = "";

 }

 }

 Request.send(null);

 }

}

The first four statements set up object references to the <DIV></DIV> tags that will be used to
display the three hints and the question stored in the XML file. Next, a random number from
1 to 10 is generated and used as input in the formation of a filename representing one of the
application’s XML files, which is then downloaded and stored in an object variable named
xmlDoc. ClearOutWhiteSpace() which is then called to remove blank spaces from the XML file.
Object variables are then set up to store references to different XML tags. Next, the text strings
stored in those tags are retrieved and displayed. Finally, the last nine statements configure
the visibility of the application’s button and textfield controls.

Chapter 7 • Working with XML 191

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 6: Creating the ClearOutWhiteSpace() Function
The ClearOutWhiteSpace() function, shown next, takes as an argument an object representing
an XML file. It then uses a loop to iterate through each line of the XML file, removing any
excess white space. When necessary, the function makes recursive calls to itself to process
any white space embedded within child nodes. To create this function, add the following
statements to the application’s JavaScript, immediately following the getXML() function.

function ClearOutWhiteSpace(xmlFile) {

 var i = 0;

 for (i = 0; i < xmlFile.childNodes.length; i++) {

 var tag = xmlFile.childNodes[i];

 if (tag.nodeType == 1) {

 ClearOutWhiteSpace(tag);

 }

 if ((tag.nodeType == 3) && (/^\s+$/.test(tag.nodeValue))) {

 xmlFile.removeChild(xmlFile.childNodes[i--]);

 }

 }

}

Detailed instructions on how to build the ClearOutWhiteSpace() function were
provided earlier in this chapter.

Step 7: Creating the checkAnswer() Function
The checkAnswer() function is responsible for determining whether the player was able to
correctly answer the game’s current question. The code statements that make up this function
are shown next and should be added to the end of the application’s JavaScript.

function checkAnswer() {

 var answer = document.getElementById("inputField").value;

 var results = document.getElementById("resultsP");

 if (answer == correctAnswer) {

 results.innerHTML = "That's right!";

 } else {

 results.innerHTML = "Sorry, that's not me.";

 }

 var playButton = document.getElementById("playBtn");

HINT

Ajax Programming for the Absolute Beginner192

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 playButton.style.visibility="visible";

 playButton.value="Play Again";

 var checkButton = document.getElementById("checkBtn");

 checkButton.style.visibility="hidden";

}

The statement retrieves the player’s answer from the textfield control. The second statement
retrieves a reference to a pair of <P></P> tags located just under the application’s form into
which the text generated by this function is displayed. Next an if statement code block has
been set up to compare the player’s answer (stored in answer) to the correct answer for the
question (stored in correctAnswer). Based on this analysis either of two messages is displayed
(using the innerHTML property belonging to the object reference [results] of the <P></P> tags).
Finally, the last five statements change the text displayed on the Play button to Play Again
and make it visible while also turning the button labeled Check invisible.

The Final Result
All right, assuming that you followed along with the steps outlined in this chapter and did
not make any typos along the way, everything should work as described at the beginning of
the chapter. To test the application, upload the whoami.html file along with the 10 accompa-
nying XML files to your web server and then load whoami.html into your web browser. Once
loaded click on the Play button and start answering questions. When testing, submit both
correct and incorrect answers and make sure the application processes them correctly.

You will find a copy of this application’s source code on the book’s companion
website, located at http://www.courseptr.com/downloads.

SUMMARY
In this chapter you learned how to develop Ajax applications that work with data made avail-
able through XML files. You learned how to create and format XML files. You learned the basics
of XML element tag syntax, and to work with element attributes. This chapter explained the
problem that some browsers have with white space and provided a solution for removing
white space from XML files. On top of all this, you learned how web browsers translate XML
files into logical trees and how to navigate and access different parts of XML files using various
related JavaScript properties.

HINT

Chapter 7 • Working with XML 193

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now, before you move on to Chapter 8, “Working with Cascading Style Sheets,” set aside a
little extra time to improve the Who Am I? application by addressing the following list of
challenges.

Challenges
1. This version of the Who Am I? application retrieves questions,

answers, and hints from 1 of 10 XML files. It does not take long
to exhaust the available supply of files. Make the game more
interesting by creating additional XML files and updating the
logic that controls the range of files that the game randomly
downloads.

2. Rather than make the player type the answers to questions,
consider redesigning the XML files to provide answers using
two separate tags and then modify the application to
separately extract and associate both answers with radio
buttons. This will make the game easier to play and will
eliminate wrong answers that occur because of typos.

Ajax Programming for the Absolute Beginner194

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8C H A P T E R

WORKING WITH CASCADING

STYLE SHEETS

lthough CSS is not regarded as a formal Ajax component, Ajax program-
mers have come to depend upon it for all sorts of things. For example, using
CSS, you can change foreground and background colors, specify font type,

size, and color, turn things visible and invisible, and even move things around the
screen. In short, CSS provides Ajax developers with much needed functionality,
giving them the ability to exercise detailed control over the display of elements
and to programmatically alter all or part of a web page’s presentation, instantly,
with no need for page refreshes.

Specifically, you will learn:

• The basics of CSS syntax

• How to use CSS to modify the presentation of text and to modify color and
backgrounds

• How to use CSS to control the positioning of elements

• How to work with inline, embedded, and external styles

PROJECT PREVIEW: THE FORTUNE TELLING GAME
This chapter application project is the Fortune Telling game. This Ajax application
uses CSS and JavaScript to create and manage a graphical menu that builds a series

A

http://lib.ommolketab.ir
http//lib.ommolketab.ir

of menu lists based on content downloaded from the application’s web server. Figure 8.1
provides a view of the application when initially loaded into the browser.

FIGURE 8.1

The opening view
of the Fortune
Telling game

consists of three
menus.

As demonstrated in Figure 8.2, the game’s menus provide access to commands that initiate
game play, allow the user to modify the game’s appearance, and provide information about
the game.

FIGURE 8.2

Menus located
across the top of

the browser
screen control key

game
functionality.

As shown in Figure 8.3, once game play has been initiated, the player is prompted to ask a
question and then click on the Get Answer button.

Ajax Programming for the Absolute Beginner196

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 8.3

The player asks
questions by

typing them and
then clicking on
the Get Answer

button.

In response to the player’s question, the game displays a randomly generated answer, as
demonstrated in Figure 8.4.

FIGURE 8.4

The game
randomly

generates answers
to player

questions.

The Get Answer button is hidden from the screen for three seconds to give the player time to
read the game’s response, after which the button is redisplayed and the player is permitted
to ask another question.

AN INTRODUCTION TO CSS
Cascading Style Sheets or CSS is a stylesheet programming language used by web developers to
specify the presentation of web page content. Prior to the introduction of CSS, all HTML pre-
sentation attributes had to be set using HTML markup. CSS gives web developers the ability
to apply a consistent look and feel over web page layout and design. This includes things like

Chapter 8 • Working with Cascading Style Sheets 197

http://lib.ommolketab.ir
http//lib.ommolketab.ir

font type, size, and color as well as background styles, borders, and the content alignment.
Thanks to CSS, web developers no longer have to repeatedly configure the presentation of
header elements. With CSS, color, size, and font used to present these tags can be specified
just one time and then be consistently applied throughout a web page.

CSS was first introduced back in 1997 and over time slowly worked its way into mainstream
web development. Today, CSS represents a widely adopted standard maintained by the World
Wide Web Consortium. Today, the W3C regards CSS as the best way to apply presentation
markup and has deprecated the use of all HTML presentation markup.

CSS executes locally within the web browser. Its primary purpose is to enable the separation
of presentation and content. This separation can help reduce the size of your Ajax applications
and simplify overall application design by removing repetition in the specification of layout
instructions. It allows you to specify the fonts, colors, and layout of web pages. CSS provides
rules that determine how conflicting style rules are applied or cascaded.

Unfortunately, because of differences in support for the CSS specification,
different web browsers render different results when processing CSS layouts.
The only way to effectively deal with this reality is to extensively test your Ajax
applications on different web browsers to ensure that the data in your applica-
tions is presented in the way that you want it.

CSS Syntax
CSS adheres to a simple syntax, using English keywords to specify the names of different styles
and their values. Style sheets are made up of lists of rules. Each rule is comprised of one or
more selectors and a declaration block. A declaration block is comprised of a list of declarations.
Declarations are embedded within braces and consist of a property followed by a colon and
then an assigned value. Semicolons are used to separate multi declarations. Selectors are used
to specify the elements to which styles are applied. Selectors can be set up to apply to specific
elements based on matching attributes or to all attributes that match a specific type.

USING CSS TO SPECIFY STYLE, COLOR, AND PRESENTATION
CSS controls the presentation of content on web pages through the specification of rules.
These rules are created by assigning values to different CSS style properties. Entire books have
been written that discuss the application and use of CSS. This chapter highlights CSS style
rules commonly used by Ajax developers and is intended to provide a basic overview of how
to put CSS to work in your Ajax applications.

TRAP

Ajax Programming for the Absolute Beginner198

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Controlling Font Presentation
CSS gives Ajax developers explicit control of the appearance of fonts, allowing the specifica-
tion of font type, size, and a number of other attributes. Table 8.1 provides a list of commonly
used CSS properties that you can use to work with and control fonts in your Ajax applications.

T A B L E 8 . 1 C O M M O N C S S F O N T P R O P E R T I E S

Property Description
font-family A prioritized list of font types, such as Arial and Verdana, that specify the font to be

used. The list of fonts must be separated by commas. The first available font on the
user’s computer is automatically used.

font-size Specifies the size of the font.
font-stretch Expands or condenses a font’s width. Available options include: normal, wider, and

narrower.
font-style Specifies how the font should be displayed. Available options include: normal,

italic, and oblique.
font-weight Specifies font boldness. Available options include: normal, bold, bolder, and

lighter.

As an example of how to control the presentation of fonts, look at the following example.

<HTML>

 <HEAD>

 <TITLE>Demo: Using CSS to set font attributes</TITLE>

 </HEAD>

 <BODY>

 <H1 sstyle = "font-family:Arial; font-style:italic;">This heading is

 displayed in the Arial font using italics</H1>

 <P sstyle = "font-family:Garamond; font-size:12;">This paragraph is

 displayed in the Garamond font in size 12</P>

 </BODY>

<HTML/>

When displayed, this HTML page will look like Figure 8.5.

Chapter 8 • Working with Cascading Style Sheets 199

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 8.5

You can use CSS to
modify different
font properties.

Managing the Display of Text
In addition to allowing you to specify different font properties, CSS provides access to a
number of additional properties that affect the presentation of text. Table 8.2 is a list of text-
related style properties that give you control over things like line height, letter spacing, and
indentation.

T A B L E 8 . 2 C O M M O N C S S T E X T F O R M A T T I N G P R O P E R T I E S

Property Description
color Specifies the color to be used as the foreground color.
text-align Sets text alignment. Available options include: left, right, center, and

justify.
text-indent Indents the first line of text.
text-decoration Applies a decoration to text. Available options include: none, underline,

overline, blink, and line-through.
line-height Specifies the distance between lines.
letter-spacing Specifies the amount of space between characters.
word-spacing Specifies the amount of space between words.

As an example of how to use CSS to control the presentation of text, look at the following
example.

<HTML>

 <HEAD>

 <TITLE>Demo: Using CSS to set text attributes</TITLE>

 </HEAD>

 <BODY>

 <H1 sstyle = "text-align:center;">This heading is centered</H1>

 <P sstyle = "text-decoration:underline; text-align:right;">This

Ajax Programming for the Absolute Beginner200

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 paragraph is underlined and right justified</P>

 <P sstyle = "text-align:left;">This paragraph is left aligned</P>

 </BODY>

</HTML>

When displayed, this HTML page produces the results shown in Figure 8.6.

FIGURE 8.6

You can use
different CSS

style properties to
control the

presentation of
text.

Controlling Color and Background
CSS gives you detailed control over the colors and backgrounds displayed on your web pages.
Table 8.3 shows a list of commonly used CSS style properties that you can use to specify things
like font and window color and backgrounds.

T A B L E 8 . 3 C O M M O N C S S C O L O R A N D B A C K G R O U N D P R O P E R T I E S

Property Description
background-image Specifies the URL of an image file to be used as the background.
background-color Specifies the color to be used as the background color.
background-repeat Specifies whether the background image should be tiled. Available options

include: no-repeat, repeat-x, and repeat-y.
background-position Specifies the starting position for the background. Available options include:

center, top, bottom, right, and left.

A number of different options are available to you for specifying color values.
For starters, you may specify colors using hexadecimal color codes (example:
#FFFFFF equals white, #000000 equals black, #FF0000 equals red). You may also
specify color using the JavaScript rgb() function to which you just pass three
numbers in the range of 1 to 255, representing different red, green, and blue
values (example: rgb(255, 255, 255) equals white, rgb(0, 0, 0) equals black,

HINT

Chapter 8 • Working with Cascading Style Sheets 201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and rgb(255, 0, 0) equals red). A third option is to simply type the name of the
color you want to use (example: white, black, and red).

As an example of how to work with the properties listed in Table 8.3, look at the following.

<HTML>

 <HEAD>

 <TITLE>Demo: Using CSS to set color and background attributes</TITLE>

 </HEAD>

 <BODY sstyle="color:red; background-color:lightgrey;">

 <H1>The text on this page should be red</H1>

 <P>The page’s background should be light gray</P>

 </BODY>

</HTML>

Figure 8.7 shows how this example appears when loaded into a web browser.

FIGURE 8.7

An example of
how to specify

foreground and
background colors

for a web page.

Exercising Control over Content Location
In addition to giving you control over the appearance and presentation of text, CSS lets you
take control over the placement of content on the browser window. CSS lets you specify where
web page elements are placed using either absolute or relative positioning. Table 8.4 provides
a list of CSS properties that affect element positioning.

Ajax Programming for the Absolute Beginner202

http://lib.ommolketab.ir
http//lib.ommolketab.ir

T A B L E 8 . 4 C S S P R O P E R T I E S T H A T A F F E C T E L E M E N T P O S I T I O N I N G

Property Property Description
top pixel value Offset from the top of the browser’s display area (absolute) or

from its default location as determined by the browser.
bottom pixel value Offset from the bottom of the browser’s display area (absolute)

or from its default location as determined by the browser.
left pixel value Offset from the top-left side of the browser’s display area

(absolute) or from its default location as determined by the
browser.

right pixel value Offset from the top-right side of the browser’s display area
(absolute) or from its default location as determined by the
browser.

position absolute or
relative

Determines whether an element’s position is set based on its
distance from the upper-left corner to the browser’s display
area (absolute) or in relation to other elements (relative).

z-index numeric value A value that determines the order in which elements appear
when they overlap one another.

Using absolute positioning, you specify the location of elements on the browser window using
the coordinates systems shown in Figure 8.8.

FIGURE 8.8

A depiction of the
system of

coordinates used
when working
with absolute

positioning.

To get a feel as to how to work with the properties listed in Table 8.4, look at the following
example.

Chapter 8 • Working with Cascading Style Sheets 203

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<HEAD>

 <TITLE>Demo: Using CSS to control element placement</TITLE>

</HEAD>

 <BODY>

 <IMG src="cats.jpg" sstyle="position:absolute; left:100; top:50;

 zz-index:20;">

 <IMG src="bird.jpg" sstyle="position:absolute; left:300; top:200;

 zz-index:10;">

 </BODY>

</HTML>

Here, two images are displayed on the browser window using absolute positioning. Because
the coordinates used cause the images to overlap, the image with the highest specified
z-index property value is displayed on top. Figure 8.9 shows an example of the effect of
absolute position on the display of the two image files.

FIGURE 8.9

Using absolute
position to control

the display of
image files.

Unlike absolute positioning, which specifies a precise location in the browser window, rela-
tive positioning sets an element’s position relative to other elements on a web page. The
problem with absolute positioning is that different users have their computers set up to use
different resolutions. As a result, the size of the coordinate system changes from user to user,
making it difficult to ensure a consistent look and feel for your web pages. The answer to this
challenge is relative positioning. For example, if you create an application that uses relative
positioning to control the placement of elements, the browser will automatically reposition
the elements based on the resolution being used to display the application. This helps keep
elements from overlapping one another or from being pushed out of view off of the edge of
the browser window.

Ajax Programming for the Absolute Beginner204

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As a demonstration of how relative positioning works, take a look at the following example:

<HTML>

 <HEAD>

 <TITLE>Demo: Using CSS to control element placement</TITLE>

 </HEAD>

 <BODY>

 The

 little

 boy

 pulled

 his

 little

 red

 wagon

 up

 and

 down

 the

 tall

 hill

 .

 </BODY>

</HTML>

Figure 8.10 shows what this page looks like when loaded.

FIGURE 8.10

Using relative
positioning to

modify the display
of text.

ADDING CSS TO YOUR HTML PAGES
So far, all of the examples of CSS that you have seen in this chapter have been applied inline
to individual HTML tags. This is a handy option for controlling the presentation of individual
elements. However, CSS styling instructions can be applied to HTML pages in other ways,

Chapter 8 • Working with Cascading Style Sheets 205

http://lib.ommolketab.ir
http//lib.ommolketab.ir

including embedded style elements and external style sheets. Both of these options provide
the ability to specify presentation styles globally, throughout an entire web page.

Using Inline Styles
Using inline styles, you embed CSS styles inside HTML tags. For example, the following state-
ments add an inline style to a paragraph tag, instructing the browser to display its text in
blue.

<P sstyle="color:blue";>Once upon a time...<P>

If needed, you can include any number of property specifications to an inline style, as long
as each one is followed by a semicolon, as demonstrated here:

<P sstyle="color:red; font-size:12; text-align:center;">Once upon a time</P>

Defining Embedded Style Elements
Working with inline styles is okay for small HTML pages and for pages that require a lot of
detailed customization. However, since most HTML pages tend to apply a consistent look and
feel to elements of the same type, you will often be better served using embedded style
elements.

The format that you must follow when working with embedded style elements is straight-
forward. You start by adding opening and closing style tags to the head section of your HTML
page. Next, you embed style rules inside the <STYLE> and </STYLE> tags. Related rules are
grouped together using declaration blocks, each of which is preceded by a selector that spec-
ifies the elements to which the rules will be applied. Selectors can be set up to specify the
type of tag to which they apply. Alternatively, you can set them up to work with specific tags
by referring to the tag’s id. You may add as many rules as you want within each declaration
block.

To see how all this works, look at the following example:

<HTML>

 <HEAD>

 <TITLE>DEMO: CSS Style Embedded Style Elements</TITLE>

 <STYLE>

 H1 {

 color:blue;

 font-style:italic;

 }

 H2 {

Ajax Programming for the Absolute Beginner206

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 color:green;

 background-color:yellow;

 }

 P {

 text-align:center;

 font-weight:bold;

 color:red;

 text-decoration:underline;

 }

 #P1 {

 font-style:italic;

 }

 </STYLE>

 </HEAD>

 <BODY>

 <H1>This text should be blue and italics</H1>

 <P>This text should be centered, bold, red and underlined</P>

 <H2>This text should be green with a yellow background</H2>

 <P id="P1">This text should be centered, bold, red and underlined

 and italic</P>

 </BODY>

</HTML>

As you can see, four declaration blocks have been added to the head section of the HTML
page. The first block makes changes to the way the pages’s level 1 headings are presented.
The second block configures the presentation of all level 2 headings, and the third block
specifies how all text contained in <P> <P/> tags is to be presented. The fourth block demon-
strates CSS’s ability to cascade overlapping rules by modifying the presentation of one
specific paragraph tag. The fourth block does not prevent the third block from being applied.
Instead, it adds to the changes made by the third block. Had the fourth block included any
changes that conflicted with the third block, the conflicting property changes in the fourth
block (e.g., the more granular block) would override the property specifications outlined in
the third block.

Figure 8.11 shows the output that is displayed when this page is loaded.

Chapter 8 • Working with Cascading Style Sheets 207

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 8.11

An example of
how to control the

presentation of
output using

embedded styles.

Working with External Style Sheets
If your Ajax applications make substantive use of CSS, you may find that by moving your styles
into external style sheets, you can significantly reduce the overall size and complexity of your
application’s web pages. Creating an external style sheet is easy. All you have to do is move
the declaration blocks from your <STYLE> elements into an external file (less the opening
<STYLE> and closing </STYLE> tags).

You can name the external file anything you want, but you must assign a .css file extension
to it. For example, the following CSS file, named style.css, is an example of an external style
sheet. This external style sheet was created by extracting the embedded style rules from the
previous example. As you can see, except for the absence of the <STYLE> and </STYLE> tags,
everything else remains unchanged.

H1 {

 color:blue;

 font-style:italic;

}

H2 {

 color:green;

 background-color:yellow;

}

P {

 text-align:center;

 font-weight:bold;

 color:red;

 text-decoration:underline;

}

#P1 {

 font-style:italic;

}

Ajax Programming for the Absolute Beginner208

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With the CSS style sheet removed, the HTML file is now significantly smaller, as shown here:

<HTML>

 <HEAD>

 <TITLE>DEMO: CSS Style Embedded Style Elements</TITLE>

 <<LINK rel="stylesheet" href="style.css">

 </HEAD>

 <BODY>

 <H1>This text should be blue and italics</H1>

 <P>This text should be centered, bold, red and underlined</P>

 <H2>This text should be green with a yellow background</H2>

 <P id="P1">This text should be centered, bold, red and underlined

 and italic</P>

 </BODY>

</HTML>

Take note of the new <LINK> tag that has been added to the head section of the HTML page.
This new tag is what instructs the web browser to load and apply the external style sheet to
the HTML page. The <LINK> tag has two attributes. The rel attribute is required and is set to
stylesheet, and the href attribute is used to tell the browser the stylesheet’s URL.

The use of embedded versus external style sheets is strictly a matter of personal preference.
If your Ajax applications make limited use of CSS, embedded style sheets may be all you need.
However, large and complex Ajax applications, with significant numbers of CSS rules, may
benefit from external style sheets.

BACK TO THE FORTUNE TELLING GAME
Okay, now it’s time to return your attention back to the development of this chapter’s project,
the Fortune Telling game. Through the development of this application, you will learn how
to create and manage application menus using a combination of JavaScript and CSS. You will
gain further experience working with both inline and external styles. In addition, you will
be introduced to a number of new JavaScript methods.

Designing the Application
The development of the Ajax Fortune Telling game will be created in a series of 13 steps, as
outlined here:

1. Assemble the application’s external style sheet.
2. Put together the application’s external text files.
3. Create a new HTML page.

Chapter 8 • Working with Cascading Style Sheets 209

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Start the application’s JavaScript.
5. Develop the ProcessEvent() function.
6. Develop the getMouseData() function.
7. Develop the populateMenus() function.
8. Develop the RemoveMenus() function.
9. Develop the DisplayMenu() function.

10. Develop the ExecuteCommand() function.
11. Develop the StartPlay() function.
12. Develop the AnswerQuestion() function.
13. Develop the ResetScreen() function.

Step 1: Creating the Application’s External Style Sheet
The Fortune Telling game makes liberal use of CSS to control the presentation of data. Specif-
ically, it uses an external style sheet to apply CSS rules that affect the display of items
displayed in each of the application’s menus. To create the external style sheet for this appli-
cation, create and save a file named style.css and add the following statements to it.

#fileMenu {

 position: absolute;

 font-family: arial;

 background-color:lightgrey;

 visibility: hidden;

}

#optionsMenu {

 position: absolute;

 font-family: arial;

 background-color:lightgrey;

 visibility: hidden;

}

#helpMenu {

 visibility: hidden;

 font-family: arial;

 background-color:lightgrey;

 position: absolute;

}

As you can see, the external style sheet is organized into three parts, one per menu, specifying
that the menus are initially hidden. Font type, background color, and absolute positioning
are also specified.

Ajax Programming for the Absolute Beginner210

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 2: Creating the Application’s Server Files
In addition to its external style sheet, this application also uses three text files stored on the
web server, which you will need to create. Each text file contains a comma-separated list of
items belonging to an application menu (each menu’s name is the same as the name of the
text file). The names of these three text files are shown next in bold, followed by a text string
that shows each file’s contents.

file.txt

New Game, Quit

options.txt

White Background, Grey Background

help.txt

Instructions, About

Step 3: Writing the Application’s HTML
The next step in the development of the Fortune Teller game is to create an HTML page for
the application named fortuneteller.html and add the following statements to it.

<HTML>

 <HEAD>

 <TITLE>The Fortune Telling Game</TITLE>

 <LINK rel="stylesheet" href="style.css">

 </HEAD>

 <BODY onmousemove = "ProcessEvent(event)" onclick = "RemoveMenus()">

 <IMG id="fileIMG" src="file.jpg" style="left:0; top:0; width:150;

 height:29;">

 <DIV id="fileMenu" style="left:10; top:44; width:150; height: 48;

 visibility:hidden;"></DIV>

 <IMG id="optionsIMG" src="options.jpg" style="left:150; top:0;

 width:150; height:29;" >

 <DIV id="optionsMenu" style="left:165; top:44; width:150; height: 48;

 visibility:hidden;"></DIV>

 <IMG id="helpIMG" src="help.jpg" style="left:300; top:0; width:150;

 height:29;" >

 <DIV id="helpMenu" style="left:319; top:44; width:150; height: 48;

 visibility:hidden;"></DIV>

 <FORM>

Chapter 8 • Working with Cascading Style Sheets 211

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <DIV id = "Label"> </DIV>

 <INPUT type="textfield" size="75" style="visibility:hidden"

 id="inputField">

 <INPUT type="button" value="Get Answer" style="visibility:hidden"

 id="checkBtn" onclick=AnswerQuestion()>

 <H3><DIV id = "answer"> </H3>

 </FORM>

 </BODY>

</HTML>

As you can see, these HTML tags include a <LINK> tag that points the application to its external
style sheet. In addition, three tags are included that display the application’s graphical
menus. Each graphic is 150 x 29 pixels in size. The three graphics are displayed side by side
at the top of the browser display area. In addition, three sets of <DIV> </DIV> tags are included,
each of which lines up with one of the graphics menus. The application will use the <DIV>
</DIV> tags to display each menu’s list of menu items, whenever the user moves the mouse
pointer over them.

You will find copies of the three graphic images needed to build this application’s
menus on the book’s companion website, located at http://www.courseptr.com/
downloads/.

Step 4: Starting the Application’s JavaScript
The next step in the development of the application is to begin assembling its JavaScript. Start
by adding the following statement to the head section of the HTML page.

<SCRIPT language = "javascript" type = "text/javascript">

<!-- Start hiding JavaScript statements

 var aMenuList;

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

// End hiding JavaScript statements -->

</SCRIPT>

HINT

Ajax Programming for the Absolute Beginner212

http://www.courseptr.com/downloads/
http://www.courseptr.com/downloads/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

In addition to specifying the JavaScript’s opening and closing tags, one global variable
is defined. It will be used to create a global array that contains the list of menu items
retrieved from the application’s three text files. Also defined here is an instance of the
XMLHttpRequest object, which is assigned a name of Request.

Step 5: Creating the ProcessEvent() Function
The ProcessEvent() function is responsible for processing mouse data, passed to it as an argu-
ment, in order to determine when to show and when to hide each menu’s item listing. Create
this function by adding the following statements to the application’s JavaScript.

function ProcessEvent(event) {

 var e = new getMouseData(event);

 var appMenu;

 if ((e.x > 10) && (e.x < 470) && (e.y > 20) && (e.y < 50)) {

 if (e.x < 160) {populateMenus(1);}

 if ((e.x > 160) && (e.x < 310)) {populateMenus(2);}

 if (e.x > 310) {populateMenus(3);}

 }

 appMenu = document.getElementById("fileMenu");

 if (appMenu.style.visibility == "visible"){

 if (((e.x < 10) || (e.x > 150)) || ((e.y < 20) || (e.y > 100))) {

 RemoveMenus();

 }

 }

 appMenu = document.getElementById("optionsMenu");

 if (appMenu.style.visibility == "visible"){

 if (((e.x < 150) || (e.x > 300)) || ((e.y < 20) || (e.y > 100))) {

 RemoveMenus();

 }

 }

 appMenu = document.getElementById("helpMenu");

 if (appMenu.style.visibility == "visible"){

 if (((e.x < 300) || (e.x > 450)) || ((e.y < 20) || (e.y > 100))) {

 RemoveMenus();

 }

 }

}

Chapter 8 • Working with Cascading Style Sheets 213

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Every time the user moves the mouse, the onmousemove() event handler embedded in the
<BODY> tag is executed, calling this function and passing it a mousemove event. The function
begins by calling on another function named getMouseData(). It then creates a new event
object named e based on the data returned by the getMouseData() function. Next, a series of
if statements execute, calling on a function named populateMenus() when the user moves the
mouse pointer over one of the application’s menus. The rest of the function is organized into
three nearly identical sets of statements that call on the RemoveMenus() function whenever
the user moves the mouse pointer away from the graphic menus and their resulting menu
items.

The getMouseData() function works by comparing the X,Y location of the mouse
pointer to known coordinate locations representing the location of the three
menus and their menu lists (when visible). A more elegant but more involved
solution for determining when to display menu lists and when to hide them
would be to retrieve references to all three tags and all three <DIV>
</DIV> tags and then to programmatically determine the coordinate information
for these elements. This approach would facilitate the display of menu lists that
vary in regards to the number of elements that are displayed. However, to keep
things as simple as possible, this function relies on using known coordinates.

Step 6: Creating the getMouseData() Function
The getMouseData() function, shown next, is responsible for creating a browser- independent
event object that retrieves and assigns the mouse pointer’s X and Y coordinates. Like all of
the functions in this application, you must place this function’s statements inside the appli-
cation’s JavaScript.

function getMouseData(event) {

 if(event) {

 this.x = event.clientX;

 this.y = event.clientY;

 } else {

 this.x = event.pageX;

 this.y = event.pageY;

 }

}

The getMouseData() function is an example of a JavaScript Constructor function,
which is a type of function used to construct a new class. A class is an object-
oriented term that basically refers to a template that can be used as the basis for
instantiating new objects. JavaScript Constructor functions create a new class
based on the name of the argument that they are passed, and then, using the

HINT

HINT

Ajax Programming for the Absolute Beginner214

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this keyword, allow you to define properties for the class. Objects can then be
created using the new keyword. Objects automatically inherit all of the features
of the classes upon which they are based, including their properties.

Step 7: Creating the populateMenus() Function
The populateMenus() function, shown next, is responsible for retrieving the contents of one
of the application’s text files stored on the web server and passing that data to a function
named DisplayMenu().

function populateMenus(menu) {

 var menuList;

 if (menu == 1) {menuList = "file.txt"}

 if (menu == 2) {menuList = "options.txt"}

 if (menu == 3) {menuList = "help.txt"}

 if(Request) {

 Request.open("GET", menuList);

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 DisplayMenu(menu, Request.responseText);

 }

 }

 Request.send(null);

 }

}

Step 8: Creating the RemoveMenus() Function
The RemoveMenus() function, shown next, is responsible for making the currently visible menu
items invisible (whenever the user moves the mouse pointer away from it and its associated
graphic menu).

function RemoveMenus() {

 var fileMenu = document.getElementById("fileMenu");

 if (fileMenu.style.visibility == "visible"){

 fileMenu.style.visibility = "hidden";

 }

 var optionsMenu = document.getElementById("optionsMenu");

 if (optionsMenu.style.visibility == "visible"){

 optionsMenu.style.visibility = "hidden";

 }

Chapter 8 • Working with Cascading Style Sheets 215

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 var helpMenu = document.getElementById("helpMenu");

 if (helpMenu.style.visibility == "visible"){

 helpMenu.style.visibility = "hidden";

 }

}

Step 9: Creating the DisplayMenu() Function
The job of the DisplayMenu() function, shown next, is to display a menu items list for the
specified menu (passed to it as an argument).

function DisplayMenu(choice, menuList) {

 var menu;

 aMenuList = menuList.split(", ");

 var menuTable = "<table width = '99%'>";

 for (var i = 0; i < aMenuList.length; i++) {

 menuTable += "<tr><td " + "onclick='" + "ExecuteCommand(" + i

 + ")" + "'>" + aMenuList[i] + "</td></tr>";

 }

 menuTable += "</table>";

 if (choice == "1"){menu = document.getElementById("fileMenu");}

 if (choice == "2"){menu = document.getElementById("optionsMenu");}

 if (choice == "3"){menu = document.getElementById("helpMenu");}

 menu.innerHTML = menuTable;

 menu.style.visibility = "visible";

}

The first thing this function does is use a built-in JavaScript function called split() to popu-
late the global aMenuList array with the list of menu items downloaded from the menu’s
associated text file. An HTML table is then created that contains one row for each menu item.
Note the embedded onclick() event handler, which is used to execute a function named
ExecuteCommand() whenever the user clicks on a menu item. The function ends by identifying
the menu that has been selected and making that menu’s list of menu items visible (inside
the <DIV> </DIV> tags that were placed immediately after each of the application’s tags).

Ajax Programming for the Absolute Beginner216

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 10: Creating the ExecuteCommand() Function
Whenever the user clicks on a menu item, the ExecuteCommand() function is called. Its job is
to execute whatever command the user has clicked on. The program statements that make
up this function are shown next and should be added to the end of the application’s JavaScript.

function ExecuteCommand(command) {

 if (aMenuList[command] == "New Game") {

 StartPlay()

 }

 if (aMenuList[command] == "Quit") {

 window.close();

 }

 if (aMenuList[command] == "White Background") {

 document.bgColor="#FFFFFF";

 }

 if (aMenuList[command] == "Grey Background") {

 document.bgColor="#CCCCCC";

 }

 if (aMenuList[command] == "Instructions") {

 window.alert("Click on the New Game command located on the " +

 "File menu to begin game play. Next, type your question and " +

 "click on the Get Answer button to see your fortune.");

 }

 if (aMenuList[command] == "About") {

 window.alert("The Fortune Telling Game - Copyright 2008");

 }

}

As you can see, this function is passed an argument that tells it which menu item the user
clicked on. This argument is a numeric value representing the index position of the menu
item in the global aMenuList array. A total of six if statement code blocks are then used
to analyze and process the selected menu item. When the user clicks on the File menu’s
New Game command, a function named StartPlay() is executed. When the File menu’s Quit
command is clicked, the window object’s close() method is executed. The close() method
only works on Internet Explorer and when executed it initiates the closing of the browser
window.

The next two code blocks execute when the user clicks on one of the menu commands located
on the Options menu. When executed, they assign a color of white or gray to the document
object’s bgcolor property (demonstrating that there are other ways to manipulate background

Chapter 8 • Working with Cascading Style Sheets 217

http://lib.ommolketab.ir
http//lib.ommolketab.ir

colors than just using CSS properties). The last two if statement code blocks execute when
the user clicks on one of the Help menu’s commands, executing the window object’s alert()
methods in order to display instructions for playing the game or additional information about
the game.

Step 11: Creating the StartPlay() Function
The StartPlay() function is called whenever the user clicks on the File menu’s New Game menu
item (command). Its job is to manipulate the DOM by displaying a little text and making the
game’s text field and button control visible.

function StartPlay() {

 document.getElementById('Label').innerHTML = "Enter Question:"

 document.getElementById("inputField").style.visibility="visible";

 document.getElementById("checkBtn").style.visibility="visible";

}

Step 12: Creating the AnswerQuestion() Function
After entering a question and clicking on the game’s Get Answer button, the AnswerQuestion()
function is called. This function begins by hiding the Get Answer button and then generates
a random number from 1 to 10. A switch code block then determines which answer should
be displayed.

function AnswerQuestion() {

 var checkButton = document.getElementById("checkBtn");

 checkButton.style.visibility="hidden";

 randomNo = 1 + Math.random() * 9;

 randomNo = Math.round(randomNo);

 switch (randomNo) {

 case 1:

 document.getElementById('answer').innerHTML = "Yes!";

 break;

 case 2:

 document.getElementById('answer').innerHTML = "No.";

 break;

 case 3:

 document.getElementById('answer').innerHTML = "Maybe.";

 break;

 case 4:

 document.getElementById('answer').innerHTML = "Doubtful.";

Ajax Programming for the Absolute Beginner218

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 break;

 case 5:

 document.getElementById('answer').innerHTML =

 "Not in this lifetime.";

 break;

 case 6:

 document.getElementById('answer').innerHTML =

 "The answer is unclear.";

 break;

 case 7:

 document.getElementById('answer').innerHTML =

 "Ask this question again later.";

 break;

 case 8:

 document.getElementById('answer').innerHTML =

 "Today is your lucky day... Yes!";

 break;

 case 9:

 document.getElementById('answer').innerHTML =

 "Sorry but the answer is no.";

 break;

 case 10:

 document.getElementById('answer').innerHTML = "No way!";

 break;

 }

 setTimeout("ResetScreen()", 3000)

}

The last thing the AnswerQuestion() function does is call upon a built-in JavaScript function
called setTimeout(), passing it the name of a function to be executed and a numeric value
representing the number of milliseconds to wait before executing the specified function. So,
in the case of this application, a value of 3000 is passed to setTimeout(), instructing it to wait
for three seconds before calling on the ResetScreen() function.

Step 13: Creating the ResetScreen() Function
The last of the application’s functions is the ResetScreen() function. It is called after a three-
second pause in order to give the player sufficient time to read the game’s answer. Once

Chapter 8 • Working with Cascading Style Sheets 219

http://lib.ommolketab.ir
http//lib.ommolketab.ir

executed, it makes the Get Answer button visible and clears out both the player’s question
and the game’s answer, making the game ready for another question.

function ResetScreen() {

 document.getElementById("checkBtn").style.visibility="visible";

 document.getElementById("inputField").value="";

 document.getElementById('answer').innerHTML = "";

}

The Final Result
Assuming that you have followed along carefully with the instructions that have been pro-
vided, your copy of the Fortune Telling game should be ready for execution. To test the
application when you are done, upload the fortuneteller.html file along with the
style.css file and the game’s three text files (file.txt, options.txt, and help.txt) to your web
server. When you are ready, load fortuneteller.html into your web browser and put it through
its paces.

You will find a copy of this application’s source code, along with the graphic
files needed to build it on the book’s companion website, located at
http://www.courseptr.com/downloads.

SUMMARY
This chapter provided an overview of CSS and demonstrated its use in Ajax applications. You
learned the basics of CSS syntax and how to use CSS to modify the presentation of text and
to modify colors and backgrounds. You also learned how to use CSS to control the positioning
of elements on the browser window. Using this information, you learned how to develop
custom menus for your applications. This chapter also demonstrated how to work with both
inline and embedded styles and explained the benefits and use of external style sheets.

Now, before you move on to Chapter 9, “Working with Ajax and PHP,” set aside a little extra
time to improve the Fortune Telling game by addressing the following list of challenges.

HINT

Ajax Programming for the Absolute Beginner220

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Challenges
1. Using your new knowledge and understanding of CSS, spend a

few minutes sprucing up the appearance of the Fortune Telling
game.

2. As currently written, the Fortune Telling game does not force
the player to enter any text before generating an answer.
Modify the game to prevent the player from submitting blank
questions.

3. Modify the game to give it a broader range of answers from
which to draw on when answering player questions.

Chapter 8 • Working with Cascading Style Sheets 221

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9C H A P T E R

WORKING WITH

AJAX AND PHP

n this chapter, you will learn the basics of PHP programming. PHP is a
server-based scripting language designed to support the development of
server-based programs. PHP scripts are capable of reading and writing files

stored on web servers and working with database management systems. Learning
how to create PHP scripts will provide the ability to develop server-based programs
designed to support the needs and requirements of your Ajax applications.

Specifically, you will learn how to:

• Develop PHP scripts and integrate PHP with HTML

• Store and retrieve data using variables and arrays

• Perform conditional and iterative programming logic

• Develop and work with functions

• Use PHP to read and write files stored on your web server

PROJECT PREVIEW: SCRAMBLE—THE WORD GUESSING GAME
This chapter’s application project is Scramble—The Word Guessing Game. This
game involves the development of both client- and server-side components. On
the client side, your Ajax application will provide the player with a graphical
user interface and will manage the overall execution of the game, using data

I

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from a PHP script executed on the application’s web server. Figure 9.1 shows how
the application looks when initially loaded using a Firefox web browser.

FIGURE 9.1

The game initially
displays its name,

instructions for
playing, and a

button.

To begin game play, the player must click on the Get Word button. This prompts the Ajax
application to connect to the web server and execute a PHP script named scramble.php, which
returns a randomly selected word for the player to try to unscramble. As Figure 9.2 shows,
the PHP script automatically scrambles the word before being downloaded and displayed.

FIGURE 9.2

A scrambled word,
downloaded from
the web server, is

displayed.

The player’s job is to try to unscramble the word, using the text field located at the bottom
of the screen to retype it, as demonstrated in Figure 9.3.

FIGURE 9.3

The player can
take as long as

necessary to
unscramble the

word.

Ajax Programming for the Absolute Beginner224

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If the player is unable to unscramble the word, the player can click on the Show Word button
to instruct the game to display the word, as demonstrated in Figure 9.4.

FIGURE 9.4

The player can
click on the Show
Word button to

find out what the
scrambled word is.

After either unscrambling the word or giving up, the player can initiate a new round of play
by once again clicking on the Get Word button, in which case the Ajax application reconnects
to its PHP script on the web server and downloads a new word.

INTRODUCTION TO PHP
PHP is an extremely popular server scripting language that is commonly used to support web
page development. PHP, which standards for PHP: Hypertext Preprocessor, runs on most web
servers. PHP was first released in 1995. It is developed by the PHP Group and made available
for free use.

To execute your PHP scripts, your web server must have PHP installed. Because it is simple
and free for commercial use, PHP has been widely deployed on web servers around the world.
Chances are very good that your web service provider already has it installed and ready for
use. PHP runs on all major web servers and most operating systems. PHP includes a library of
built-in functions that allow it to work with most major database management systems.

Although Ajax applications can work with any server-based programming language (Ruby,
Perl/CGI, ASP, Python, etc.), PHP is a very popular option. Thanks to its many similarities to
JavaScript, it is relatively easy to learn, yet powerful enough to build any type of server-based
web application.

You do not have to know how to write web server-based programs to be an Ajax programmer.
However, a basic understanding of how web server programs are created and executed is
certainly helpful. As such, PHP was selected as the programming language used to develop
the server-side programs presented in this book. The purpose of this chapter is to provide a
basic PHP primer so that you will be able to better understand how the PHP scripts presented
in this book work. This will provide a good appreciation of the work involved in the develop-
ment of server-based portions of many web applications.

Chapter 9 • Working with Ajax and PHP 225

http://lib.ommolketab.ir
http//lib.ommolketab.ir

THE BASICS OF WORKING WITH PHP
In order to execute, PHP code must be embedded inside a pair of opening and closing
delimiter tags. Typically, most PHP programmers use either <?php and ?> as delimiter tags or
<? and ?>. All PHP statements must be embedded within delimiter tags. When used with
HTML, PHP’s delimiter tags identify PHP statements so that the PHP parser can recognize and
process them.

Embedding PHP into Your HTML Pages
One of the neat things about PHP is that you can mix it together with HTML. This is helpful
when you only need to add a limited amount of PHP program code to get the job done. To
intermix PHP and HTML all you have to do is create a PHP file (a text file with a .php file
extension) and add the standard HTML tags to it. Once this has been done, you can add what-
ever amount of PHP code is required as demonstrated here:

<HTML>

 <HEAD>

 <TITLE>Demo: Embedding PHP into an HTML page</TITLE>

 </HEAD>

 <BODY>

 <H1>The following line was generated using PHP</H1>

 <<?php

 eecho "Using PHP to support Ajax applications is easy.";

 ??>

 </BODY>

<HTML/>

As you can see, this PHP file contains all of the HTML elements required for a typical HTML
page as well as a small PHP script that uses the echo function (explained in a couple pages) to
display a text string (as part of the HTML page). To test the execution of this example, you will
need to upload it to your web server and then load the PHP script into your web browser, as
demonstrated in Figure 9.5.

Note, that like JavaScript, it is considered to be good form to end all PHP state-
ments with a semicolon.

HINT

Ajax Programming for the Absolute Beginner226

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE 9.5

An example of a
PHP script

containing HTML
that when loaded

displays both
HTML and PHP

content.

Writing Standalone PHP Scripts
In addition to embedding PHP scripts into your HTML pages, you can create PHP script files
and upload them to your web server for execution. PHP files have a .php file extension and
can be of any size. You can set them up to generate and return HTML or you can use them to
return data when requested, directly to your Ajax applications. For example, the following
PHP script, named GetText.php has been set up to return a text string when called by an Ajax
application.

<?php

 echo 'Here I am!';

?>

As you can see, this PHP script is pretty basic, using the echo function to return a text string.
The following Ajax application provides an example of how to call upon and process the text
string returned by the GetText.php script.

<HTML>

 <HEAD>

 <TITLE>Demo: Retrieving text from a PHP script</TITLE>

 <SCRIPT language = "javascript" type = "text/javascript">

 var Request = false;

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function getText(url, elementID) {

 if(Request) {

 var RequestObj = document.getElementById(elementID);

 Request.open("GET", url);

 Request.onreadystatechange = function()

Chapter 9 • Working with Ajax and PHP 227

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 if (Request.readyState == 4 && Request.status == 200) {

 RequestObj.innerHTML = Request.responseText;

 }

 }

 Request.send(null);

 }

 }

 </SCRIPT>

 </HEAD>

 <BODY>

 <H1>Demo: Retrieving text from a PHP script</H1>

 <FORM>

 <INPUT type = "button" value = "Get Text"

 onclick = "getText('GetText.php', 'DivTarget')">

 </FORM>

 <DIV id="DivTarget"> </DIV>

 </BODY>

</HTML>

Figure 9.6 shows the output that is generated when the Ajax application is executed.

FIGURE 9.6

An example of
web page content
retrieved from a

PHP script.

Note that all of the Ajax and PHP examples that you will see in this chapter
assume that the Ajax applications and PHP scripts reside in the same location on
the web server.

PHP CODING
One of the things that make PHP easy for Ajax developers to learn is its many similarities to
JavaScript. As you will learn in the sections that follow, PHP’s support for variables, arrays,

HINT

Ajax Programming for the Absolute Beginner228

http://lib.ommolketab.ir
http//lib.ommolketab.ir

conditional logic, and loops is very similar to its JavaScript counterparts. Support for func-
tions, both built-in and functions that you create yourself, also work very similarly.

Returning Data Back to Your Ajax Application
As you have already seen, you can return data back to your Ajax applications from your PHP
scripts using the echo function, as demonstrated here:

<HTML>

 <HEAD>

 <TITLE>Demo: Embedding PHP into an HTML page</TITLE>

 </HEAD>

 <BODY>

 <H1>The following line was generated using PHP</H1>

 <<?php

 eecho "Using the echo function to display data.";

 ??>

 </BODY>

<HTML/>

Alternatively, PHP also lets you return data using its print function, as shown here:

<HTML>

 <HEAD>

 <TITLE>Demo: Embedding PHP into an HTML page</TITLE>

 </HEAD>

 <BODY>

 <H1>The following line was generated using PHP</H1>

 <<?php

 pprint "Using the print function to display data.";

 ??>

 </BODY>

<HTML/>

Use of either of these two functions is up to you. Using the print function may make things
seem more intuitive, but the echo function runs a little faster and is used more often.

In addition to text, PHP also lets you return XML. To do so, you need to include a header
statement at the beginning of your PHP script, after which you can begin returning your XML
content, as demonstrated here:

Chapter 9 • Working with Ajax and PHP 229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<?php

 header ('Content-Type: text/xml');

 echo '<?xml version = "1.0" encoding="utf-8"?>';

 echo '<cats>';

 echo '<name>Garfield</name>';

 echo '<name>Bill</name>';

 echo '</cats>';

?>

When called, this PHP script returns the XML data shown in Figure 9.7.

FIGURE 9.7

An example of
XML data created
and returned by a

PHP script.

Commenting Your PHP Code
As with Ajax applications or any other programming applications, it is important to comment
your code in order to leave behind an explanation of how things work. PHP gives you three
different ways of adding comments to your PHP scripts. As with JavaScript, you can use
the // characters to add a comment, as demonstrated here:

//The following statement returns a text string

echo "Hello World!";

If you prefer, you may replace the // characters with the # character, as demonstrated here:

#The following statement returns a text string

echo "Hello World!";

If you want to create multi-line comments, you can use the /* and */ characters, as demon-
strated here:

/* Everything that you see here is

just a part of a multi-line

comment. */

Ajax Programming for the Absolute Beginner230

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Storing Data in Variables
Like JavaScript, PHP lets you store individual pieces of data in variables. PHP variables must
begin with the $ character. Like JavaScript, PHP variables are weakly typed, meaning that you
do not specify their data type. Instead, PHP automatically determines a variable’s type based
on the data assigned to it and the context in which it is used. The following example demon-
strates how to assign a value of 100 to a variable named $total.

$total = 100;

PHP variable names can only consist of letters, numbers, and the underscore (_) character.

Managing Collections of Data Using Arrays
Using arrays, you can store collections of data when your PHP scripts execute. PHP arrays do
not have to be pre-defined. Instead, all you have to do is start adding data to an array and PHP
will recognize what you are doing and create the array for you. For example, the following
statement creates an array named $aNames and adds an initial element to it.

$aNames[0] = "Washington";

Once created, you can continue to populate the array with additional data, as demonstrated
here:

$aNames[0] = "Washington";

$aNames[1] = "Lincoln";

$aNames[2] = "Adams";

Alternatively, you can create and populate new arrays using the array() function, as demon-
strated here:

$aNames = array("0" =>"Washington", "1" => "Lincoln", "2" => "Adams");

As you can see, the array function works by passing it pairs of data in the form of "index" =>
"value", with each item entry separated by commas. Once populated, you can access array
contents by specifying the name of the array and the index value of the data to be retrieved,
as demonstrated here:

echo "The second item stored in the array is: " . $aNames[1];

In PHP, the . character serves as the concatenation operator.HINT

Chapter 9 • Working with Ajax and PHP 231

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Data Assignments
PHP provides a number of different operators that you can use when assigning data. These
operators include:

• =

• =+

• -+

• *=

• /=

The following statements demonstrate how each of these operators works.

$x = 5; //x equals 5

$x = $x += 1; //x equals 6

$x = $x -= 1; //x equals 5

$x = $x *= 2; //x equals 10

$x = $x /= 2; //x equals 5

Performing Mathematic Calculations
PHP supports many of the same arithmetic operators provided by Javascript. These operators
include:

• +

• -

• *

• /

• ++

• --

The following statements demonstrate how each of these operators works.

$x = 5 + 1; //x equals 6

$x = $x - 1; //x equals 5

$x = $x * 5; //x equals 25

$x = $x / 5; //x equals 5

$x++; //x equals 6

$x--; //x equals 5

Ajax Programming for the Absolute Beginner232

http://lib.ommolketab.ir
http//lib.ommolketab.ir

One difference between JavaScript and PHP occurs with the application of the
concatenator operator. JavaScript uses the + operator to add numeric values and
to concatenate strings. PHP also uses the + operators to add numeric values but
uses the . operator to concatenate strings. The following PHP statement demon-
strates how to concatenate three strings together to create a larger one.

$firstName = "Jerry";

$lastName = "Ford";

$name = $firstName . " " . $lastName;

Comparing Values
PHP provides a number of operators that allow you to compare different values. These oper-
ators include:

• ===. Equal to

• !!=. Not equal to

• <<. Less than

• >>. Greater than

• <<=. Less than or equal to

• >>=. Greater than or equal to

Performing Conditional Logic
Like JavaScript, PHP supports the development of conditional logic using variations of the
if statement and the switch statement. As the next several sections will demonstrate, there
is not a lot of difference between PHP and JavaScript when it comes to these statements.

The if Statement
The if statement is used to determine whether a specified condition is true or false. The
following statements demonstrate how to use the if statement to set up a conditional code
block in a PHP script.

<?php

$x = 10;

if ($x == 10) {

 echo "We have a match!";

}

?>

TRAP

Chapter 9 • Working with Ajax and PHP 233

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Since $x is equal to 10, an echo statement is executed, returning a text string to the calling
application.

The else Statement
Using the else statement, you can modify a conditional code block to perform an alternate
set of statements in the event its tested condition evaluates as false. The following example
demonstrates how this works in PHP.

<?php

$x = 5;

if ($x == 10) {

 echo "We have a match!";

} else {

 Echo "Houston, we have a problem.";

}

?>

The else-if Statement
There may be a time in which you want to test for more than one possible outcome to a
conditional test. One way of accomplishing this is with the else if statement, as demon-
strated here:

<?php

$x = 5;

if ($x == 10) {

 echo "We have a match!";

} else if ($x == 5){

 echo "We have a match!";

}

?>

In this example, a test has been set up to look for either of two possible values and a text
string is displayed if a match occurs.

The switch Statement
As is the case with JavaScript, PHP lets you compare one value against a number of values
using the switch statement. The following example demonstrates how to use this statement
in PHP.

<?php

$x = 5;

Ajax Programming for the Absolute Beginner234

http://lib.ommolketab.ir
http//lib.ommolketab.ir

switch($x) {

 case 1:

 echo "The variable equal to 1";

 break;

 case 2:

 echo "The variable equal to 2";

 break;

 case 3:

 echo "The variable equal to 3";

 break;

 case 4:

 echo "The variable equal to 4";

 break;

 case 5:

 echo "The variable equal to 5";

 break;

 default:

 echo "The variable equal to 1, 2, 3, 4. or 5";

 }

?>

The Ternary Operator
Like JavaScript, PHP also supports the use of a ternary operator as an alternative means of
performing conditional logic. The following example demonstrates the use of this operator.

<?php

$x;

$y = 100;

$x = ($y == 50) ? 50: 100;

 echo $x;

?>

Working with Loops
PHP supports a number of different types of loops, providing you with plenty of processing
power for performing repetitive logic and managing collections of data like arrays. PHP also
provides statements that let you break out of loops early or skip loop iterations.

Chapter 9 • Working with Ajax and PHP 235

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The for Loop
PHP’s for loop allows you to repeat the execution of one or more statements a specified num-
ber of times. As is the case in JavaScript, PHP’s for loop has three parts: a variable declaration,
a tested condition, and an increment/decrement statement. The following PHP script demon-
strates how to use the for loop to return a string of characters back to a calling application.

<?php

for ($i = 1; $i <= 5; $i++) {

 echo $i . "
";

}

?>

When executed, this example returns the following output.

1

2

3

4

5

The foreach Loop
You can use PHP’s foreach loop to automatically process the contents of arrays and other
collections of data. The great thing about using this type of loop is that it does not require
you to know in advance how many elements will need to be processed. Instead, the loop
automatically ensures that all items are processed, as demonstrated here:

<?php

$aPets = array("cat", "dog", "fish");

foreach ($aPets as $i) {

 echo $i . "
";

}

?>

This PHP script generates an array named $aPets and populates it with three entries. A
foreach loop is then executed, which iterates through each item in the array and returns it
to the application that called upon the PHP script. When executed, this example returns the
following output.

cat

dog

fish

Ajax Programming for the Absolute Beginner236

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The while Loop
As is the case with JavaScript, PHP’s while loops repeat a collection of statements as long as a
tested condition remains true. The following example shows a PHP script that uses a while
loop to output five numbers.

<?php

$i = 0;

while ($i < 5) {

 $i++;

 echo $i . "
";

}

?>

When executed, this example returns the following output.

1

2

3

4

5

The do…while Loop
If you want to set up a loop that will always run at least one time, regardless of the value of
its tested condition, you can use the do…while loop. Unlike the while loop, which tests its
condition prior to executing, the do…while loop does not test its condition until the end of the
loop. The following example demonstrates how this loop works.

<?php

$i = 5;

do {

 echo $i . "
";

 $i--;

} while ($i < 3);

?>

Here, the loop executes one time, returning a value of 5 and then decrementing the value
assigned to $i by 1. The loop then checks to see if the value of $i is less than 3. Since it is not,
the loop stops executing.

Chapter 9 • Working with Ajax and PHP 237

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Breaking Out of Loops
PHP lets you prematurely terminate the execution of loops using the break keyword. Once
the loop is halted, script execution resumes with the next statement that follows the loop. A
demonstration of how to use the break keyword is provided here:

<?php

for ($i = 1; $i < 5; $i++) {

 if ($i == 3) {

 break;

 }

 echo $i . "
";

}

?>

When executed, this example returns the following output.

1

2

Continuing Loop Execution
Depending on what your PHP script may be doing, it may be useful to skip an iteration of a
loop when certain situations occur. You can do this using the continue keyword, as demon-
strated here:

<?php

for ($i = 1; $i < 6; $i++) {

 if ($i == 3) {

 continue;

 }

 echo $i . "
";

}

?>

When executed, this script returns the following output.

1

2

4

5

Ajax Programming for the Absolute Beginner238

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WORKING WITH FUNCTIONS
PHP provides strong support for working with functions. This includes allowing you to create
and execute your own custom functions, receiving arguments and returning data when nec-
essary. In addition, PHP also provides programmers with access to a large collection of built-
in functions, which can be used to speed up development by providing access to pre-written
code.

Creating and Executing Custom Functions
PHP functions are laid out using the same format as JavaScript functions. For example, the
following PHP script includes a function named DisplayString() that when called displays a
text string.

<HTML>

 <HEAD>

 <TITLE>Demo: Using an embedded PHP script to display text</TITLE>

 </HEAD>

 <?php

 function DisplayString() {

 echo "What’s up doc?";

 }

 displayString();

 ?>

 <BODY>

 </BODY>

</HTML>

As the following example demonstrates, PHP functions can also be set up to process any
number of arguments and to return data.

<HTML>

 <HEAD>

 <TITLE>Demo: Processing PHP arguments and returning data</TITLE>

 </HEAD>

 <?php

 function AddNumbers($a, $b) {

 $c = $a + $b;

 return $c;

 }

Chapter 9 • Working with Ajax and PHP 239

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 echo "Player Score = " . AddNumbers(500, 100);

 ?>

 <BODY>

 </BODY>

</HTML>

When executed, this example returns the following output.

Player Score = 600

Taking Advantage of Built-in PHP Functions
PHP really helps make the web programmer’s job a lot easier by providing easy access to tons
of pre-defined functions. This not only lets you work faster by saving you from having to re-
invent a solution to perform an already solved task but also gives you access to program code
that has been extensively tested and proven reliable. PHP provides functions that work with
arrays, date and time, XML, strings, math, databases, the file system, etc. You have already
learned how to work with two PHP string functions, echo and print. Examples of other func-
tions that you will learn to work with in this chapter include:

• str_shuffle. Randomly shuffles the contents of a string.

• rand. Generates a random number within a specified range.

PROCESSING APPLICATION INPUT
As you learned in Chapter 6, “Digging Deeper into Ajax,” Ajax can pass data to PHP scripts
using either of the standard HTTP GET and POST requests. Your PHP scripts can then access this
data using a pair of built-in global variables. These variables are automatically populated
when PHP scripts are called with an external argument. These variables are used to store
arrays named $_GET or $_POST. As you would expect, the type of array that a PHP must use to
access incoming arguments depends on how its script is called (e.g., either with the HTTP
GET or POST request).

Retrieving Arguments Passed Using the GET Option
When the open() method’s GET option is used to pass data to a PHP script, the script can gain
access to those arguments via the $_GET global array. The following example shows a PHP
script that is designed to access and process an argument passed to it from a client-side appli-
cation that uses the open() method’s GET option.

<?php

if ($_GET["color"] == "red")

Ajax Programming for the Absolute Beginner240

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 echo 'This color goes well in well-lit rooms.';

if ($_GET["color"] == "blue")

 echo 'This is a great color for boys.';

if ($_GET["color"] == "green")

 echo 'Perfect for small rooms in need of some cheer.';

?>

In addition to creating an Ajax application that calls upon this PHP script, you can also call
it directly from a web browser by entering its URL, as demonstrated here:

http://www.yourserver.com/color.php?color=blue

As you can see, this URL string calls upon the PHP script and passes it an argument of blue,
as demonstrated in Figure 9.8.

FIGURE 9.8

An example of the
output generated

when the PHP
script is passed a

value of blue as an
argument.

Retrieving Arguments Passed Using the Post Option
If the Ajax application calls upon the PHP script using the open() method’s POST option instead
of its GET option, then the script would need to be modified as shown here to retrieve the data
using the $_POST array.

<?php

if ($$_POST["color"] == "red")

 echo 'This color goes well in well-lit rooms.';

if ($$_POST["color"] == "blue")

 echo 'This is a great color for boys.';

if ($$_POST["color"] == "green")

 echo 'Perfect for small rooms in need of some cheer.';

?>

STORING AND ACCESSING DATA
In addition to returning data embedded within PHP scripts to Ajax applications, PHP scripts
can also access data stored in files and databases and make that data available. This enables

Chapter 9 • Working with Ajax and PHP 241

http://www.yourserver.com/color.php?color=blue
http://lib.ommolketab.ir
http//lib.ommolketab.ir

you to create more complex applications that are capable of retaining data across different
executions of the application. For example, you might create an Ajax game that allows players
to track their success via a score. At the end of each game you could have your Ajax application
communicate behind the scenes to its web server to see if the player’s score is one of the 10
all time highest scores, and if it is, you could then have the Ajax application capture the
player’s name and save it in either a file or database on the server where such information
would be maintained.

Creating and Accessing Files
In order to read from or to write to a file using PHP, you must first open the file. To do so, you
need to use the fopen function, which has the following syntax.

fopen(filename, mode)

filename specifies the URL of the file on the web server and mode specifies the manner in which
the file should be opened. Table 9.1 lists all of the different types of modes that PHP’s fopen
method supports.

T A B L E 9 . 1 M O D E S S U P P O R T E D B Y T H E F O P E N F U N C T I O N

Mode Description
r Opens a file for read only.
r+ Opens a file for read and write.
w Opens a file for write only. If the file already exists it is truncated. If it does not exist, it gets

created.
w+ Opens a file for read and write. If the file already exists it is truncated. If it does not exist, it

gets created.
a Opens a file in append mode for writing. If it does not exist, it gets created.
a+ Opens a file in append mode for reading and writing. If it does not exist, it gets created.
x Creates and opens a file for writing. If the specified file exists, a value of false is returned.
x+ Creates and opens a file for reading and writing. If the specified file exists, a value of

false is returned.

The fopen function retrieves a file handle, which you can then use to programmatically refer
to and interact with the file in your PHP script.

Ajax Programming for the Absolute Beginner242

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Writing to Files
After you have used the fopen function to establish access to a file on your web server, you
can write to it using the PHP fwrite function, passing the function a file handle and the data
to be written. The following PHP script demonstrates how this works.

<HTML>

 <HEAD>

 <TITLE>DEMO: Writing data to a text file</TITLE>

 </HEAD>

 <BODY>

 <<?php

 $$file = fopen("story.txt", "w");

 $$data = "Once upon a time a little girl went to visit her friend. ";

 $$data = $data . "Along the way \she met a wolf dressed in ";

 $$data = $data . "sheep's clothing.";

 iif (fwrite($file, $data) != true) {

 eecho "Error occurred writing to file.";

 }}

 ffclose($file);

 ??>

 </BODY>

</HTML>

Here, a file named story.txt, located in the same location as the PHP script, is referenced.
Next, a variable named $data is used to build a text string that is to be written to the file. Once
the string has been assembled, it is written by calling on the fwrite method, which it wrapped
up inside a conditional code block that monitors the success of the write operation, returning
an error message if anything goes wrong. Note that in this example, the file is opened using
write (w) mode.

Take note of the placement of the \n characters in the text string that the script
writes to the text file. This pair of characters is used to instruct PHP to begin
writing to a new line and is an essential string manipulation tool.

Once all writing has been complete, the access to the file must be terminated (closed) in order
to ensure that the file is properly saved. This is accomplished by executing the fclose function,
passing it the file handle for the file.

TRICK

Chapter 9 • Working with Ajax and PHP 243

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You must have the proper access permissions to write to files on your web server.
Otherwise, your PHP scripts will fail. If this happens to you, consult with your
server administrator for assistance.

Reading from Files
Now that you have learned how to write a file to the web server, let’s take a look at the steps
involved in reading data from that file. To do this, you need to use PHP’s fopen function,
passing it the URL of the file to open and specifying the mode to use as demonstrated here:

<HTML>

 <HEAD>

 <TITLE>DEMO: Reading data to a text file</TITLE>

 </HEAD>

 <BODY>

 <<?php

 $$file = fopen("story.txt", "r");

 wwhile (!feof($file)){

 $$data = fgets($file);

 eecho $data . "
";

 }}

 ffclose($file);

 ??>

 </BODY>

</HTML>

Once the script has opened a file for reading ("r" mode), it uses a while loop to iterate through
the contents of the file, line by line, executing as long as the end of the file has not been
reached (!feof($file)). Each time the loop runs, it uses the fgets method to retrieve a line
from the file, which is stored in a variable named $data. The echo function is then used to
display the contents of $data. Figure 9.9 shows the output that is generated when this example
is executed.

FIGURE 9.9

This example
retrieves and

displays the data
previously written

to story.txt.

TRAP

Ajax Programming for the Absolute Beginner244

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A Few Words About Working with Databases
As previously mentioned, in addition to working with files, PHP can also interact with
database management systems. PHP provides support for most major databases, including
Oracle, MySQL, MS SQL, and so on. PHP provides programmers with access to an extensive set
of functions that supports database access. However, database programming is an extensive
topic all by itself and it is outside the scope of this book to address it.

BACK TO SCRAMBLE—THE WORD GUESSING GAME
Now it is time to turn your attention back to the development of this chapter’s project,
Scramble—The Word Guessing Game. This application challenges the player to unscramble
words which contents have been scrambled. The selection of the word to be used and the
scrambling of that word are performed behind the screens on the application’s web server.
Once downloaded and displayed, the Ajax application provides the game’s user interface and
manages all interaction with the player.

Designing the Application
The development of Scramble—The Word Guessing Game will be created in a series of five
steps, as outlined here:

1. Create a new HTML page.
2. Begin to develop the application’s JavaScript file.
3. Develop the GetWord() function.
4. Create the StartGame() function.
5. Create the scramble.php script.

Step 1: Writing the Application’s HTML
The first step in the development of Scramble—The Word Guessing Game is to create an HTML
page for the application named scramble.html and add the following statements to it.

<HTML>

 <HEAD>

 <TITLE>The Word Scramble Application</TITLE>

 </HEAD>

 <BODY>

 <P>

 Click on Get Word to retrieve a scrambled word and then try to

 figure out what it is. If you are unable to figure out the word,

Chapter 9 • Working with Ajax and PHP 245

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 click on Show Word to see what it is.

 </p>

 <FORM>

 <INPUT type = "button" value = "Get Word"

 onclick = "StartGame()">

 <INPUT type = "button" value = "Show Word" style="visibility:hidden"

 id="showBtn" onclick="window.alert('The word is ' + aWordArray[0])">

 </FORM>

 <DIV id="ScrambledHeading" style="visibility:hidden">The scrambled

 word is:</DIV>

 <H1><DIV id="ScrambledDiv" style="color:midnightblue"></DIV></H1>

 <DIV id="UnscrambledHeading" style="visibility:hidden"><P>Unscramble

 and retype the word here:</P></DIV>

 <FORM>

 <INPUT type="textfield" size="45" style="color:midnightblue;

 background-color:honeydew; font-size:24; font-weight:bold;

 visibility:hidden" id="inputField">

 </FORM>

 </BODY>

</HTML>

As you can see, the HTML tags that make up Scramble are straightforward. They consist of the
required head and body tags, some text, and a pair of forms containing the application’s
textfield and button controls.

Step 2: Beginning the Application’s JavaScript
The second step in the creation of the application is to begin the development of its JavaScript,
which is located in the head section. Begin the development of the script by adding the fol-
lowing statements to your HTML file’s head section.

<SCRIPT language = "javascript" type = "text/javascript">

<!-- Start hiding JavaScript statements

 var Request = false;

 var aWordArray = new Array(2);

// End hiding JavaScript statements -->

</SCRIPT>

Ajax Programming for the Absolute Beginner246

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In addition to laying out the script’s opening and closing tags, these statements also define
two variables. The first variable will be used in setting up an instance of the XMLHttpRequest
object and the second variable sets up an array that will be used to store data downloaded
from the scramble.php script.

Step 3: Creating the GetWord() Function
The rest of the application is organized into two functions. The first of these functions is the
GetWord() function, which is shown here. Like all of the functions in this application, you
must place this function’s statements inside the application’s JavaScript.

function GetWord(url, elementID) {

 if (window.XMLHttpRequest) {

 Request = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 Request = new ActiveXObject("Microsoft.XMLHTTP");

 }

 if(Request) {

 var RequestObj = document.getElementById(elementID);

 Request.open("GET", url, true);

 Request.onreadystatechange = function() {

 if (Request.readyState == 4 && Request.status == 200) {

 aWordArray = Request.responseText.split(" ");

 RequestObj.innerHTML = aWordArray[1];

 }

 }

 Request.send(null);

 }

}

This function is passed two arguments, specifying the URL of the scramble.php script and the
id of a pair of <DIV> </DIV> tags in which data returned by the script will be displayed. Next,
an instance of the XMLHttpRequest object is established and then a connection is made to the
application’s web server and the PHP script is opened. When called, the PHP script will return
one of ten randomly selected text strings.

Each text string is composed of a word followed by a blank space and then a scrambled copy
of that same word. Upon successfully downloading the text string, the function uses the
JavaScript split() function, breaking up the string into a two- item array. The first item in

Chapter 9 • Working with Ajax and PHP 247

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the array contains the unscrambled copy of the word and the second item contains the
scrambled version of the word. The scrambled version of the word is then displayed so that
the player can see it.

Step 4: Creating the StartGame() Function
The StartGame() function, shown here, is called whenever the player clicks on the game’s Get
Word button. When called, this function enables the display of all of the HTML elements that
were defined but hidden in the HTML tags defined in the web page’s body section. This allows
the player to see and begin interacting with the application’s interface.

function StartGame() {

 document.getElementById("showBtn").style.visibility="visible";

 document.getElementById("inputField").style.visibility="visible";

 document.getElementById("inputField").value="";

 document.getElementById('ScrambledDiv').innerHTML = "";

 document.getElementById("ScrambledHeading").style.visibility="visible";

 document.getElementById("UnscrambledHeading").style.visibility="visible";

 GetWord("scramble.php?x=" + Math.round(1 + Math.random() * 9),

 "ScrambledDiv");

 //GetWord("scramble.php", "ScrambledDiv");

}

In addition to setting up the game’s interface, the function also executes the GetWord() func-
tion, which connects to the scramble.php script behind the scenes in order to download a word
for the player to guess.

Note that the GetWord() function is called and passed a randomly generated
number between 1 and 10, corresponding to the 10 possible sets of words gen-
erated by the scramble.php script. If omitted and replaced with the statement
that has been commented out, then the application will not work correctly
on Internet Explorer but will work just fine on Firefox. Specifically, Internet
Explorer will not be able to retrieve and display successive sets of words
after downloading an initial word. Firefox, on the other hand, works just fine. To
get around this problem, the call made to the scramble.php script has been
changed to include the passing of an argument corresponding to the range of
values that the PHP script may return, after which Internet Explorer is able to
download successive sets of words. This unusual quirk is yet another example
of the many challenges that Ajax developers face in trying to create cross-
browser applications.

HINT

Ajax Programming for the Absolute Beginner248

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Step 5: Creating the scramble.php Script
The scramble.php script is responsible for returning one of ten randomly selected sets of words
to the Ajax application. The statements that make up this script are shown here:

<?php

 $randomNo = rand(1, 10);

 switch($randomNo) {

 Case 1:

 $word = "BUILDING";

 break;

 Case 2:

 $word = "GLOBE";

 break;

 Case 3:

 $word = "COUCH";

 break;

 Case 4:

 $word = "WATER";

 break;

 Case 5:

 $word = "WATCH";

 break;

 Case 6:

 $word = "STAPLER";

 break;

 Case 7:

 $word = "HOUSE";

 break;

 Case 8:

 $word = "TELEVISION";

 break;

 Case 9:

 $word = "APPLE";

 break;

 Case 10:

 $word = "TOAST";

 break;

 }

Chapter 9 • Working with Ajax and PHP 249

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 echo $word . " " . str_shuffle($word);

?>

This script begins by generating a random number from 1 to 10 using the rand function.
A switch code block is then set up in order to analyze the value that was assigned to
$randomNo. A total of ten case statements have been added to the switch code block, each of
which assigns a different word to a variable named $word. Once the value of $word has been
set, a string is built that consists of three parts: the value of $word, a blank space, and a scram-
bled copy of the word generated using the str_shuffle function. This string is then returned
to the Ajax application, where it is split into an array and then presented to the player.

The Final Result
Alright, you should have all the instruction you need to complete the development of
Scramble—The Word Guessing Game. Assuming that you follow each of the four previously
outlined steps without making any typos, you should find that your new Ajax application
operates precisely as was outlined at the beginning of this chapter. To test the application
when you are done, upload the scramble.html file along with the scramble.php and the
scramble.jpg files to your web servers and then load scramble.html into your web browser.

You will find a copy of this application’s source code files on the book’s com-
panion website, located at http://www.courseptr.com/downloads.

SUMMARY
This chapter taught you how to develop server programs using PHP. You learned how to inte-
grate PHP and HTML. You learned how to add comments to PHP files, store and access data
using both variables and arrays, perform conditional and repetitive logic and to work with
built-in and custom functions. In addition to learning the basic of PHP programming, this
chapter explained how to read from and write to files stored on the web server, giving your
PHP scripts the ability to permanently store and access data that can then be shared with your
Ajax applications.

Before you move on to Chapter 10, why don’t you set aside a little more time to improve
Scramble—The Word Guessing Game by addressing the following list of challenges.

HINT

Ajax Programming for the Absolute Beginner250

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Challenges
1. Currently, the scramble.php script only has ten words from

which to choose. To make the game more interesting and less
redundant, expand this collection by adding new words and
modify the application accordingly.

2. As currently written, the game requires the player to make a
determination as to whether or not the current word has been
correctly unscrambled. Consider modifying the game to
automatically monitor the player’s keystrokes and respond
once the word has been correctly retyped.

3. To make things more exciting, consider modifying the game to
limit the amount of time the player has to unscramble the
current word to 30 or 60 seconds and then declare the game
lost if the player is unable to beat the clock.

Chapter 9 • Working with Ajax and PHP 251

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10C H A P T E R

IMPORTANT AJAX

DESIGN ISSUES

s with any application development framework, Ajax applications are sub-
ject to a number of issues that Ajax developers must be aware of. In some
cases, solutions already exist for dealing with these problems. In other

cases, the jury is still out on the best way of handling things. This chapter provides
a non-exhaustive list of Ajax development issues and, where possible, will suggest
solutions or alternative ways of getting things done.

Specifically, this chapter will discuss:

• Issues and programming challenges specific to Ajax application development

• The importance of not overusing Ajax

• The importance of following good development practices

PROGRAMMING HURDLES THAT ALL AJAX DEVELOPERS FACE
Ajax is a proven technology, but in many ways it has yet to fully mature. It breaks
some rules and raises a number of challenges, some of which have yet to be fully
overcome. Many of the technologies that it relies on, including the DOM, CSS, and
JavaScript all suffer from some form of inherent problems. In addition, there are
plenty of users surfing the Internet with web browsers that are not able to support
the execution of Ajax applications.

A

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It is important that you are aware of these concerns and that you keep them in mind as you
develop your own Ajax applications. That’s what this chapter is all about.

Recognize That Not All Browsers Support JavaScript
While close to 90 percent of all browsers currently in use support the execution of JavaScript,
there are still a great many users surfing the Internet whose browsers do not support it. In
addition, there are countless numbers of users who, for one reason or another, have disabled
their browser’s JavaScript support. Rather than simply writing off all of these users, you may
want to provide them with an alternative source of content.

You should strongly consider taking steps to ensure that users with browsers that do not
support JavaScript are not forgotten. Consider adding the display of some static content, such
as a logo and contact information on your web pages at all times. To take things a step further,
consider developing a non-Ajax version of your application. If this is not feasible, then perhaps
you should display a message apologizing for any inconvenience and explaining to your users
the browser requirements of the application.

Another alternative is to use the <NOSCRIPT> and </NOSCRIPT> tags. Every web browser recog-
nizes these HTML tags. They allow you to specify a message that will automatically be
displayed by browsers that do not support JavaScript. JavaScript-enabled browsers, on the
other hand, know to ignore any text embedded within <NOSCRIPT> and </NOSCRIPT> tags.

The text displaying inside the <NOSCRIPT> and </NOSCRIPT> tags will only be
displayed in the event the user’s browser is unable to execute your application’s
JavaScript(s).

The following HTML page shows how you might use the <NOSCRIPT> and </NOSCRIPT> tags to
provide information to any browser, regardless of whether it supports JavaScript.

<HTML>

 <HEAD>

 <TITLE>Demo: Working with the NOSCRIPT tag</TITLE>

 </HEAD>

 <BODY>

 <SCRIPT language = "javascript" type = "text/javascript">

 <!--Start hiding JavaScript statements

 document.write("WWelcome to the XYX website!");

 // End hiding JavaScript statements -->

 </SCRIPT>

 <NOSCRIPT>

HINT

Ajax Programming for the Absolute Beginner254

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 TThe XYX website uses Ajax to provide an enriched end user experience.

 YYour browser is not equipped to execute Ajax. You can view this site

 uusing the latest release of all the major web browsers, including

 IInternet Explorer, FireFox, and Opera.

 </NOSCRIPT>

 </BODY>

</HTML>

Here, a welcome message will be displayed in any JavaScript-enabled web browser that
loads the web page. If the web page is loaded by a browser that does not support JavaScript,
an alternative message is displayed, informing the user of the application’s browser
requirements.

Do Not Let Ajax Alienate Your Users
Thanks to new technologies like Ajax, the distinction between desktop and web page appli-
cations is rapidly disappearing. As a result, it is very tempting to create web-based versions
of desktop applications. Photo management applications like Flickr and online office suites
like Google Docs are great examples of these types of applications. Web-enabled applications
eliminate distribution issues and greatly simplify maintenance and upgrades. However, there
are many people who are either unable or unwilling to give up their desktop applications.

Even in today’s era of ultra-high-speed internet connections, there are still millions of people
using slower dial-up connections. For these people, the luster and allure of Ajax applications
often gives way to disillusion and disappointment when they find that the Ajax application
with which they want to work is too large and complex to run efficiently over their slow
internet connections. For these individuals, the traditional desktop application model still
works best. For example, users with slow internet connections often prefer to use desktop
email clients like Microsoft Outlook instead of Ajax-driven online email services like Gmail.
Google accommodates these users by allowing them to remotely connect to its web servers
using POP.

Online gaming is another area that concerns a lot of people, especially if the game permits
participants to communicate directly with one another through texting. Given that the threat
of online predators is very real, many parents are wary of permitting their children to play
games online, preferring standalone desktop versions of computer games. So, as you begin
to consider Ajax as a viable alternative to desktop development, remember that a large seg-
ment of internet users will not be able to run your applications. If you do not find a way of
accommodating their needs, your competition will.

Chapter 10 • Important Ajax Design Issues 255

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax Applications Disable the Browser’s Back and Forward Buttons
Web browsers are designed to monitor user actions and keep a record of all the web pages
that the user loads in a browser history object. This works perfectly for websites and applica-
tions that are based on the traditional web model of using linked pages to provide successive
levels of content. Internet users have come to anticipate and expect the consistent application
of this behavior as they move from website to website across the internet.

However, Ajax applications do not comply with this approach. Ajax applications allow content
to be dynamically updated without requiring page refreshes. As a result, Ajax breaks the
browser’s Back and Forward buttons.

Consider a situation in which a user loads a web page that uses Ajax and interacts with it for
several minutes during which time a number of updates are made to the page’s content. If
the user then clicks the browser’s Back button, expecting to see the application’s previous
state, disappointment occurs when the browser instead loads the web page visited just prior
to the loading of the Ajax-powered page. Seeing that things did not occur as expected, the
user might then click on the browser’s Forward button, expecting to see the application
restored to its last state only to find that the web page is loaded in its initial state and data
regarding previous states has been lost. The end result is often a confused and frustrated user.

Currently, no one has come up with a perfect solution for overcoming this issue. One way of
dealing with it is to create applications that provide their own version of the Back button.
This would require that the application capture and store information about current and
previous states, so that the application’s state can be modified by reloading a previous state.
This approach, however, requires significant effort on the part of the Ajax developer. Another
possible solution would be to provide the application with a small number of permanent
links to specific states of the application.

The impact of this limitation on your Ajax application will vary based on the type of appli-
cations you develop. If you make your Ajax applications resemble desktop applications, then
your users won’t intuitively expect back and forward functionality. On the other hand, if your
web application needs to retain a traditional web application look and feel, then perhaps you
should consider implementing linked, multi-page applications and limiting the use of Ajax
to specific page-by-page tasks.

Currently, a number of possible solutions to this issued have been created, but
all involve a non-trivial level of effort to employ. Presentation of these solutions
is outside the scope of this book. To learn more about them, open your browser
and perform a search on “Fixing Ajax’s Back Button.”

HINT

Ajax Programming for the Absolute Beginner256

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Don’t Make Unexpected Changes
The ability to interact with the DOM and dynamically modify the format and content of web
pages gives Ajax developers the ability to manipulate web pages in any number of different
ways. However, it is important that you use this ability with discretion and that you take great
care not to make drastically unexpected changes when making updates.

As a simple example, consider an Ajax application that is designed to display news articles.
If during the operation of the application, new information is made available on the web
server, the application can download and display it. However, if the new text is just suddenly
inserted into the middle of the page, all kinds of problems can occur. For starters, the user
may be reading the article and may lose her place if everything suddenly shifts position to
make room for the new information. If the information is displayed at the beginning or in
the middle of the article, the user may not notice it if that portion of the article has already
been read. In this scenario, it would be better to either post the new information at the end
of the article or to notify the user that new information is available and display a prompt
requesting permission to display it. To help make the newly inserted text easy to identify, it
might also be a good idea to modify its background or foreground colors.

Ajax Applications Are Not Easily Bookmarked
Because Ajax application development allows the content on a single web page to be refreshed
whenever necessary and does not provide a built-in mechanism for keeping track of the dif-
ferent states of an application as updates occur, users are not able to bookmark different
states of the application. As a result, a user may interact with an application for several min-
utes before finally seeing the information that she was looking for displayed. If the user then
creates a browser bookmark for the web page, expecting the current state of the page to be
saved, she will be disappointed upon later returning to find that the application has returned
back to its initial state. As with the problems surrounding the browser’s Back and Forward
buttons, various solutions exist for dealing with this issue. Coverage of these proposed solu-
tions, easily attained through a quick browser search, is outside the scope of this book.

Ajax Applications Pose Problems for Search Engines
Search engines collect information about websites using a mechanism referred to as a
spider and store the information that is collected in a database sometimes referred to as an
index. When web surfers use search engines, they type in keywords or phrases that the search
engine then uses to search its index for possible matches. A search engine’s spider cannot tell
the difference between content and navigational text. As a result, spiders must index every-
thing they find. Ajax applications that retain large amounts of content on web servers,
dynamically downloading it when needed, lower the search engine relevancy ranking (for
your website’s popularity ranking for the keyword or phrase).

Chapter 10 • Important Ajax Design Issues 257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you register your main web page with a search engine, its spider will look for that page
when visiting your website. You may want to ensure that you retain a certain amount of
relevant text, representing keywords and phrases that you want the spider to index. In addi-
tion, if you dynamically download content that includes links to other pages that make up
your Ajax applications, the spider will not be able to find them.

To mitigate these concerns, you should consider leaving some links in place on the original
HTML page. Alternatively, consider including a link to a hypertext link sitemap. You might
also want to provide a static version of your most relevant content somewhere on your website
so that the spider can find and index it.

Dynamic Updates Are Not Always Easily Noticed
The dynamic nature of Ajax applications means that new data can be retrieved from web
servers behind the scenes at any time. All of this dynamic update may be disconcerting to
some users, especially if the users are not able to determine when it is occurring. To overcome
this type of issue, you may want to consider providing some type of visual indicator that
notifies users when data is being retrieved or the web page has just been updated.

One effective way to let the user know that something has changed in the current state of an
application is to take advantage of the ability to control text and background color. For exam-
ple, if new text is posted onto a page, you might make it stand out by altering its color. You
can accomplish this using CSS as demonstrated by the following statement:

document.getElementById("DivTrgt").style.color = "blue";

Here, the text posted inside a pair of <DIV> </DIV> tags is displayed in blue. This identifies the
text as something new and helps ensure that the user does not miss it. If an update includes
a sizable amount of text, a better way of drawing attention to it may be to alter its background
color, as demonstrated here:

document.getElementById("DivTrgt").style.background-color = "yellow";

Data Exchange Behind the Scenes May Make Users Uncomfortable
If your Ajax applications involve the collection of information from the user and you have
set things up so that every time the user provides you with a piece of information that infor-
mation is immediately uploaded to a web server for processing, some users will begin to get
uncomfortable, preferring instead to exercise a measure of control over their experience with
the application. You should keep this in mind as you develop your applications.

If your web page includes a lengthy form, consider waiting until the user has completely filled
it out and is satisfied with all of the information that has been entered before submitting it

Ajax Programming for the Absolute Beginner258

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for processing to your web server. You can easily set this up by requiring that the user click
on a button to initiate the processing of the form. Many users find this approach much more
preferable than having the application try to process every item on the form as soon as the
user fills it in. This approach denies users the chance to double-check their work and change
their minds about what they entered before allowing it to be submitted. Most users want to
feel at least partially in charge of any interaction they become involved with on the internet.

Ajax Applications Do Not Run on a Single Platform
As you work on the development of your Ajax applications, it is important that you always
keep in mind that Ajax applications do not run on a single platform. Instead, they may run
on different web browsers like Internet Explorer, Safari, FireFox, Opera, plus a host of lesser-
known browsers. In order to ensure that your applications operate like you expect them to,
you need to test them using as many different web browsers as possible. Otherwise, you run
the risk that your application won’t work like you expect for a given browser and you will
end up alienating an entire group of users.

Not everybody keeps up with the latest technologies. There are millions of people on the
internet working with browsers that are 1 or 2 versions old. As such, they may not fully sup-
port all of the different technologies that make up Ajax. Therefore, you should also consider
testing your applications with previous versions of all the browsers that you want to support.
If they do not work correctly, you may want to modify your application. Alternatively, you
may instead consider displaying a message that politely informs the user what browser and
browser version is needed to access and operate the application.

Don’t Build Slow Ajax Applications
Ajax is capable of developing some really cool and powerful applications. Ajax applications
tend to be larger and much more complex than their non-Ajax counterparts. As you develop
your own Ajax applications, keep the overall user experience in mind and don’t get carried
away with trying to do all of the things that Ajax is capable of doing. Just because you can
build something does not mean that you should. Instead, keep your focus on what your
application actually needs to do to be useful and effective and avoid weighing your applica-
tions down with fancy but non-useful special effects and gimmicks.

You also need to resist the temptation of abusing Ajax’s ability to retrieve data. Just because
you can retrieve data behind the scenes does not mean that your Ajax applications should
download every possible piece of data available to them. A well-designed application only
requests the data that it needs to run. Perhaps you can leverage web server scripting to filter
out and prevent the download of unnecessary data. Applications that download too much
data can impact other network users by needlessly consuming network bandwidth. If you try

Chapter 10 • Important Ajax Design Issues 259

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to make your Ajax applications process more data than can be reasonably processed, your
applications will get bogged down and your user’s experience will suffer. As a result, your
users may develop the impression that Ajax applications are not so cool after all.

If there is no way around imposing some delays in your Ajax applications as data
is downloaded from the web browsers, you should consider providing users with
a visual indicator that lets them know that data is being retrieved. Otherwise, the
behind the scenes nature of Ajax applications can lead to significant frustration
when applications seemingly slow down for no reason.

An easy way to provide a visual indicator is to use an animated GIF file, like an
hourglass file, to indicate that a download is in progress. Users are much more
likely to be patient as long as they know that the application is still working. Using
the statement shown below, you could display the animated GIF at the beginning
of the download process.

document.getElementById("ImgTrgt").style.visibility = "visible";

Once the download is complete, you could suppress the display of the GIF using
a statement like the one shown here:

if (Request.readyState == 4 && Request.status == 200) {

 document.getElementById("ImgTrgt").style.visibility = "hidden";

}

Other ways of letting users know that an application is currently busy include
temporarily changing the appearance of the mouse pointer or displaying an
information message in a popup dialog window or on the browser’s status bar.

Ajax Applications May Create New Security Concerns
Ajax-enabled applications are typically larger and more complex than their non-Ajax coun-
terparts. This is partially the result of the addition of new client-side JavaScript code. Client-
side Javascript is easily viewable and therefore inherently insecure. It is therefore important
that extra care be taken when developing client-side scripts to ensure that sensitive informa-
tion like user IDs and passwords are not accidentally disclosed.

Instead, the overall design of the application should move the processing of sensitive infor-
mation to the web server, where it can be kept safe from public view. In addition, a careful
code review should be performed to ensure that no sensitive data accidentally makes it way
into the application’s JavaScript code.

TRICK

Ajax Programming for the Absolute Beginner260

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DON’T OVERUSE AJAX
It is easy to get caught up in the latest tools and technologies. However, it is important that
you do not get caught in the habit of using Ajax simply for the sake of using Ajax. Some
applications, especially those that still use a page-based presentation, may not benefit from
the use of Ajax. Instead, these types of sites typically perform better using the traditional web
development model of web pages connected through static links. If you are working on a new
application that requires the browser’s Back button, then Ajax may not be the right tool for
this application, since Ajax breaks the Back button.

Small web applications may not derive sufficient benefit from Ajax to justify the time, addi-
tional effort, and complexity required to develop Ajax versions of the application.

FOLLOW GOOD DEVELOPMENT PRACTICES
Regardless of all of Ajax’s capabilities, there is no substitute for following good programming
practices when developing your web applications. A poorly designed Ajax application is
bound to disappoint your users. Characteristics of poorly designed applications include:

• A non-intuitive user interface

• Poor application design leading to slow or inconsistent performance

• The inclusion of unnecessary or overly complex features

• Poor document and user help

One of the easiest traps that Ajax developers can fall into is creating application interfaces
that do not follow any type of standard conventions. Because of its flexibility, it is easy to
create Ajax applications that are non-intuitive, requiring that users click on interface ele-
ments that are not easily identified in order to initiate certain tasks or to interact with the
application. Doing so makes applications more difficult to learn and leads to user frustration
and can result in user rejection of perfectly good applications.

Poor application design includes things like the movement of excessive amounts of process-
ing load on either the server of the client or the user or excessive or overly large graphics and
other multimedia files. Loading down your applications with non-essential features can also
degrade an application’s performance.

At a minimum, you should provide adequate documentation and help for all your Ajax
applications. In addition, you should make liberal use of comments when writing your appli-
cation’s HTML, CSS, XML, and JavaScript statements to make sure that you leave behind an
adequate explanation of why you developed the application the way you did.

Chapter 10 • Important Ajax Design Issues 261

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If your application is designed to loop and behave like a traditional desktop
application, then that is exactly how you should make it operate. There is no place
for links in these types of applications. Users will not expect to see them so avoid
using them to navigate around desktop-like applications. On the other hand, if
your application has a traditional web application look and feel, your users will
expect to see and click on links. Do not disappoint them.

You can learn more about best practices for Ajax applications by visiting AjaxPatterns website
located at http://www.ajaxpatterns.org, as shown in Figure 10.1.

FIGURE 10.1

The AjaxPatterns
website provides
comprehensive

information
regarding Ajax

application
development

practices.

SUMMARY
In this final chapter, you learned about a number of environment issues and programming
challenges faced by all Ajax application developers. Where possible, solutions and suggestions
that help address these issues were suggested. Despite the inherent challenges facing Ajax
development, Ajax has proven itself to be a significant and powerful tool that—when used
correctly—is helping to transform the face of the Internet.

HINT

Ajax Programming for the Absolute Beginner262

http://www.ajaxpatterns.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

AA P P E N D I X

WHAT’S ON THE

COMPANION WEBSITE?

aving completed all ten of this book’s chapters, you now have a solid foun-
dation upon which you can continue to build and learn. Rather than
looking at this book as the end of your Ajax education, you should view

it as the beginning. There is much more left to learn and experience than could
ever be covered in any one book.

As you continue to advance your Ajax education and begin tackling larger and
more complex projects, you will find that it really helps if you amass a collection
of reliable source code that you can continue to reference and use as examples of
how specific types of tasks are performed. If you have been recreating the computer
games presented in this book, then you already have access to such a collection,
to which you should continue to add as you learn more about Ajax programming.

By referring to and studying this book’s examples you will not only continue to
learn more about how to program, you will be better positioned to leverage the
work you have already done. By copying, pasting, and modifying portions of the
code statements that make up these examples into new applications, you can
adapt them to perform different tasks. Not only will this speed your development
time but it will also save you the trouble of having to reinvent the wheel, freeing
you up to focus on new challenges.

H

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DOWNLOADING THE BOOK’S SOURCE CODE
The best way to use this book to learn Ajax is to set aside the time required to re-create each
sample application using the instructions provided in each chapter. In the event that you
have had to skip the development of one or more of these applications, you can download
and test the execution of each chapter’s sample applications by visiting this book’s companion
website, located at http://www.courseptr.com/downloads.

Table A.1 provides an overview of all the application projects that you will find on the
companion website.

T A B L E A . 1 S O U R C E C O D E A V A I L A B L E O N T H E C O M P A N I O N W E B S I T E

Chapter Application Name
Chapter 1 Joke of the Day
Chapter 2 Number Guessing game
Chapter 3 Rock, Paper, Scissors
Chapter 4 Ajax Story of the Day
Chapter 5 Ajax Typing Challenge
Chapter 6 Ajax Google Suggest
Chapter 7 Who Am I?
Chapter 8 The Fortune Telling Game
Chapter 9 Scramble – The Word Guess Game

Ajax Programming for the Absolute Beginner264

http://www.courseptr.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

BA P P E N D I X

WHAT NEXT?

o become an effective Ajax developer you need to dedicate time and effort
to your craft. This means sitting down and creating all sorts of new Ajax
projects, experimenting and learning how and why things work. By read-

ing this book and following along with all of the Ajax examples that have been
demonstrated, you have made an excellent start at learning how to integrate the
use of Ajax in website development. Now that you have completed this book, don’t
think of it as the end of your Ajax education but rather as the beginning of it.

To continue improving your programming skills and to further your Ajax educa-
tion, you need to continue to learn more about all of the technologies covered in
this book, including:

• HTML

• DOM

• XMLHttpRequest

• CSS

• XML

• JavaScript

• Ajax

T

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To help you to keep your momentum going, this appendix provides a starter list of online
resources that you can explore to learn more about all of the technologies listed above.

HTML RESOURCES
If you feel that your knowledge of HTML is lacking or is a little rusty, then the following set
of websites should help you get up to speed. These websites provide an overview of HTML and
its history, give you access to details about the HTML specification for HTML 4.01, and provide
a link to a tutorial you can complete to get a quick HTML refresher.

Wikipedia’s HTML Page
If you want a quick high-level overview of HTML, then one of the best places to visit is http://
en.wikipedia.org/wiki/HTML, as shown in Figure B.1. Here you will find information about
the history of HTML, learn about its major elements, and get access to a wide range of links,
including links to a number of excellent online tutorials.

FIGURE B.1

Wikipedia’s HTML
page provides a
comprehensive

overview of HTML.

W3C’s HTML 4.01 Specification Page
Another important resource that every serious web page developer should be aware of is
the HTML 4.01 Specification page provided at http://www.w3.org/TR/html401, as shown in
Figure B.2. Here you will learn about the specification for HTML 4.01. Among the information
provided at this site is an excellent overview of forms, scripts, and style sheets.

Ajax Programming for the Absolute Beginner266

http://en.wikipedia.org/wiki/HTML
http://www.w3.org/TR/html401
http://en.wikipedia.org/wiki/HTML
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE B.2

W3C’s HTML 4.01
Specification Page
provides access to

detailed HTML
information.

HTML.net’s Free HTML Tutorial
If you feel you just need a quick HTML refresher, then spend a little time taking the tutorial
provided at http://www.html.net/tutorials/html/introduction.asp, as shown in Figure B.3.

FIGURE B.3

HTML.net’s Free
HTML tutorial

provides a quick
and easy HTML

refresher course.

Appendix B • What Next? 267

http://www.html.net/tutorials/html/introduction.asp
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here you will receive basic HTML instruction as well as a quick overview of cascading style
sheets. This should be all the information that you need to follow along and understand the
HTML examples presented in this book.

THE HTML DOCUMENT OBJECT MODEL
The Document Object Model (DOM) is a platform-independent object model used to represent
different elements in an HTML page as a logical tree structure. Using the DOM, web developers
can access and manipulate different items that make up web pages. A solid understanding
of the DOM is therefore essential to any Ajax web developer.

Wikipedia’s Document Object Model Page
One of the best places on the web to get a quick overview of the Document Object Model is at
http://en.wikipedia.org/wiki/Document_Object_Model, as shown in Figure B.4.

FIGURE B.4

Wikipedia’s
Document Object

Model Page
provides a well-

rounded overview
of the DOM.

This website provides DOM background information and discusses the different browsers that
support it. This site also offers access to links of dozens of other websites where you can find
additional DOM information.

Ajax Programming for the Absolute Beginner268

http://en.wikipedia.org/wiki/Document_Object_Model
http://lib.ommolketab.ir
http//lib.ommolketab.ir

W3C’s Document Object Model (DOM) Page
To dig really deep into the Document Object Model, you need to visit the W3C Document
Object Model web page located at http://www.w3.org/DOM/, as shown in Figure B.5.

FIGURE B.5

W3C’s Document
Object Model

(DOM) Page
provides access to

detailed DOM
specifications.

Here you can view DOM technical reports and keep your eye on Document Object Model
mail lists.

HTML DOM Tutorial
If all you feel you need is a quick tutorial review of the Document Object Model, then consider
visiting http://www.w3schools.com/HTMLDOM/default.asp, as shown in Figure B.6.

This site also provides access to dozens of Document Object Model examples and a Document
Object Model reference that provides detailed descriptions of every DOM object.

Appendix B • What Next? 269

http://www.w3.org/DOM/
http://www.w3schools.com/HTMLDOM/default.asp
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE B.6

This HTML DOM
Tutorial can be
used to quickly
brush up on the

Document Object
Model.

XMLHTTPREQUEST RESOURCES
XMLHttpRequest is an object that provides Ajax developers with the ability to send and receive
data to and from a web server using HTTP without requiring the submission of a form. This
object facilitates asynchronous communication with web servers, allowing for web page
updates without requiring web page refreshes.

Wikipedia’s XMLHttpRequest Page
One of the best online resources for learning more about the XMLHttpRequest object is
Wikipedia's XMLHttpRequest page located at http://en.wikipedia.org/wiki/Xmlhttprequest, as
shown in Figure B.7.

Here you will find more information about the XMLHttpRequest object and its history, along
with detailed explanation of its property and method syntax as well as code examples and
links to numerous other related websites.

Ajax Programming for the Absolute Beginner270

http://en.wikipedia.org/wiki/Xmlhttprequest
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE B.7

Wikipedia’s
XMLHttpRequest

Page provides a
comprehensive
overview of the

XMLHttpRequest
object.

W3C’s XMLHttpRequest Object Page
You can also find a lot of information on the XMLHttpRequest object by visiting http://
www.w3.org/TR/XMLHttpRequest/, as shown in Figure B.8.

FIGURE B.8

W3C’s
XMLHttpRequest

Object Page
provides access to

detailed
XMLHttpRequest

specifications.

Appendix B • What Next? 271

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here you will find detailed specifications covering every aspect of the XMLHttpRequest object.
You will also find an abundance of code examples and plenty of links to other related websites.

XMLHttpRequest Tutorial
If all you need is a quick tutorial, then visit http://jibbering.com/2002/4/httprequest.html, as
shown in Figure B.9.

FIGURE B.9

XMLHttpRequest
Tutorial provides a
good overview of

how to work
with the

XMLHttpRequest
object.

Here you will find a good explanation of how to use the XMLHttpRequest object and will see
tons of code examples that demonstrate its use. You will also find an example of how to use
the XMLHttpRequest object in conjunction with JSON to transfer data.

RESOURCES FOR CASCADING STYLE SHEETS
Cascading Style Sheets or CSS is a standard used to define the layout of an HTML page, spec-
ifying how and where page elements should be laid out. Using CSS you can create style
templates that specify the layout of different web page items. Using CSS, you can specify the
font, spacing, border and other visual and organizational characteristics of text displayed on
web pages.

Ajax Programming for the Absolute Beginner272

http://jibbering.com/2002/4/httprequest.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wikipedia’s Cascading Style Sheets Page
An understanding of the use of cascading style sheets to control the presentation of data
in Ajax applications is important to any web programmer, especially Ajax developers. One
of the best sites to visit to get an overall understanding of cascading style sheets is the cas-
cading style sheets page at Wikipedia, located at http://en.wikipedia.org/wiki/Cascading_
style_sheets, as shown in Figure B.10.

FIGURE B.10

Wikipedia’s
Cascading Style

Sheets page
provides an

excellent
overview of CSS.

Wikipedia Cascading Style Sheets page provides historical information about CSS and dis-
cusses its uses and limitations. You will also find dozens of links to other websites dedicated
to discussing CSS.

W3C’s Cascading Style Sheets Page
If you want to dig further into the technical specifications behind cascading style sheets, you
can visit the W3C Cascading Style Sheet page located at http://www.w3.org/Style/CSS/, as
shown in Figure B.11.

In addition to detailed information about CSS specifications, this website also provides infor-
mation about different browsers that support cascading style sheets as well as links to various
CSS authoring tools.

Appendix B • What Next? 273

http://en.wikipedia.org/wiki/Cascading_style_sheets
http://www.w3.org/Style/CSS/
http://en.wikipedia.org/wiki/Cascading_style_sheets
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE B.11

W3C’s Cascading
Style Sheets page
provides access to

detailed CSS
specifications.

CSS Tutorial Page
If you have not worked with cascading style sheets in the past, then you may find that
you will benefit from a cascading style sheets tutorial. One such tutorial can be found at
http://www.w3schools.com/Css/default.asp, as shown in Figure B.12.

FIGURE B.12

You can use the
Cascading Style
Sheets Online

Tutorial to quickly
ramp up on your
understanding

of CSS.

Ajax Programming for the Absolute Beginner274

http://www.w3schools.com/Css/default.asp
http://lib.ommolketab.ir
http//lib.ommolketab.ir

You will learn how to use CSS to specify font, border, margin, and padding to the display of
text. You will also learn how to format lists and tables. In addition to the tutorial, you will
find over 70 examples of how to work with CSS and can test your comprehension of what you
have learned through a free quiz.

JAVASCRIPT RESOURCES
JavaScript is broadly supported scripting language used in the development of web pages to
add features that make web pages more dynamic and interactive. Originally developed by
Netscape, JavaScript has since been embraced by the international community and standard-
ized by the European Computer Manufacturers Association (ECMA) as ECMAScript.

Wikipedia’s JavaScript Page
JavaScript was originally developed by Netscape and first appeared in 1995. It provides the
programming language used to create Ajax applications. As such, a solid understanding of
JavaScript is fundamental to your success as an Ajax developer. If you feel that your under-
standing of JavaScript needs a little enhancement, begin by visiting http://en.wikipedia.org/
wiki/Javascript, as shown in Figure B.13.

FIGURE B.13

Wikipedia’s
JavaScript Page

provides an
excellent

overview of
JavaScript

programming.

Appendix B • What Next? 275

http://en.wikipedia.org/wiki/Javascript
http://en.wikipedia.org/wiki/Javascript
http://lib.ommolketab.ir
http//lib.ommolketab.ir

In addition to providing a little background information and a high-level overview of the
language, you will find links to dozens of different websites that you can visit to learn even
more.

JavaScript.com
Another excellent source of JavaScript information is JavaScript.com located at http://
www.javascript.com/, as shown in Figure B.14. This site gives you access to all kinds of sample
scripts from which you can learn. In addition, this site offers reference articles that provide
in-depth discussions and instructions on how to perform specific tasks.

FIGURE B.14

JavaScript.com
provides access to

tons of sample
scripts and

articles.

JavaScript Tutorial
If your knowledge and understanding of JavaScript is not quite as strong as you’d like it to
be, you may find the tutorial located at http://www.w3schools.com/JS/default.asp, as shown
in Figure B.15, to be helpful.

This website provides a top-to-bottom overview of JavaScript programming syntax and will
present you with all kinds of examples from which you can learn. You will also find a free
quiz that you can take to measure your understanding of what you will learn.

Ajax Programming for the Absolute Beginner276

http://www.javascript.com/
http://www.w3schools.com/JS/default.asp
http://www.javascript.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE B.15

This JavaScript
tutorial walks you

step by step
through the basics

of JavaScript
programming.

XML RESOURCES
The eXtensible Markup Language or XML is a document processing standard used to describe
the structure of data. XML provides web developers with the ability to define custom tags
and define a structure for describing data that is passed between applications in a platform-
independent manner.

Wikipedia’s XML Page
Although this book has provided an overview of XML, there is still much left to learn about
this complex and powerful technology. To learn more, visit http://en.wikipedia.org/wiki/Xml,
as shown in Figure B.16.

Wikipedia’s XML page provides a well laid out explanation of XML, not limited to its use in
Ajax web development. You will learn more about the history behind XML and about its many
advantages and disadvantages. In addition to the abundance of links to other XML related
websites, you will also find a link to a free online XML Wikibook (http://en.wikibooks.org/wiki/
XML), where you can learn everything you ever wanted to know about XML.

Appendix B • What Next? 277

http://en.wikipedia.org/wiki/Xml
http://en.wikibooks.org/wiki/XML
http://en.wikibooks.org/wiki/XML
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE B.16

Wikipedia’s XML
page provides a
comprehensive

overview of XML.

W3C’s Extensible Markup Language (XML) Page
Another website you can visit to learn more about XML is http://www.w3.org/XML/, as shown
in Figure B.17. This website provides a good overview of XML and information and links for
different groups currently working on the development and standardization of XML.

FIGURE B.17

Visit the W3C’s
Extensible Markup

Language (XML)
page to keep

abreast of the
ongoing

development
of XML.

Ajax Programming for the Absolute Beginner278

http://www.w3.org/XML/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This site also posts information on different XML events and provides links that you can visit
to learn more about XML books, training classes, tutorials, and many other types of resources.

XML Tutorial
If you feel you need additional instruction on the use of XML, then consider visiting the XML
tutorial provided at http://www.w3schools.com/xml/default.asp, as shown in Figure B.18. Here
you will find a complete review of XML syntax and all of its major elements.

FIGURE B.18

This XML tutorial
provides another

opportunity to
review the

fundamentals
of XML

development.

In addition to basic XML instruction, this site also provides specific instruction on how to use
XML with JavaScript, including how to use it to work with the DOM.

LOCATING AJAX RESOURCES ONLINE
Asynchronous JavaScript and XML or Ajax is a collection of technologies that together can be
used to build interactive web applications that look and perform very similarly to desktop
applications. Using Ajax, web developers are able to update the content of web pages without
requiring page reloads, resulting in a faster and most satisfying user experience.

Appendix B • What Next? 279

http://www.w3schools.com/xml/default.asp
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wikipedia’s Ajax Page
All of the websites previously listed in this appendix dealt with specific technologies that you
will need to understand as an Ajax developer. In addition to keeping up to date on all of these
individual technologies, you will want to also keep your focus on Ajax-specific topics and
developments. One particularly good website to keep your eyes on is http://en.wikipedia.org/
wiki/Ajax, as shown in Figure B.19.

FIGURE B.19

Wikipedia’s Ajax
page provides

access to
community-

driven content
covering all

aspects of Ajax
development.

Wikipedia’s Ajax page is maintained by a global community of contributors for the purpose
of defining and explaining the application of Ajax. This site provides a comprehensive
explanation of Ajax’s advantages, disadvantages, and uses and provides access to all kinds of
helpful links.

Jesse James Garrett’s Ground-Breaking Article
Another Ajax web page that every Ajax developer should visit is http://
www.adaptivepath.com/ideas/essays/archives/000385.php, as shown in Figure B.20. Here you
will find a copy of the article written by Jesse James Garrett where he originally coined the
term Ajax and helped introduce it to the world.

Ajax Programming for the Absolute Beginner280

http://en.wikipedia.org/wiki/Ajax
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://en.wikipedia.org/wiki/Ajax
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FIGURE B.20

This is the article
that helped jump

start Ajax.

In this article Jesse not only articulates the first comprehensive definition of Ajax, he also
explains the fundamental shift that it introduced to web page development. Also included at
the end of the article is a question and answer section where Jessie addresses a number of
commonly asked Ajax questions.

Keeping an Eye on Ajax Blogs
In addition to all of the online resources previously discussed in this appendix, there are a
couple of good blogs, listed below, that you might want to consider visiting on a regular basis
to keep abreast of what other Ajax web developers are talking about.

• http://ajaxblog.com/

• http://ajaxian.com/

• http://www.ajax-blog.com

When you visit these blogs you will find information on Ajax, Ajax frameworks, tutorials,
resources, JavaScript, PHP and much more.

Appendix B • What Next? 281

http://ajaxblog.com/
http://ajaxian.com/
http://www.ajax-blog.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INDEX

a
abort event/event handler, 72

absolute paths, specifying, 120

absolute positioning of elements, 203–204

ActiveX object, XMLHttpRequest as, 115

addition (+) operator in JavaScript, 43

Ajax

alienation of users, avoiding, 255

back and forward buttons, disabling, 256

behind-the-scenes data exchange, 258–260

bookmarking applications, 257

development practices, 261–262

dynamic updates, notice of, 258

introduction of, 5–6

overusing, 261

platforms for, 259

search engine issues, 257–258

security concerns with, 260

slow applications, avoiding, 259–260

technologies used for, 6

traditional web development compared,

6–8

unexpected changes, avoiding, 257

Ajax Google Suggest application, 155–156

CSS controlling search results, using,

157–158

designing, 156–163

HTML for, 157

instantiating XMLHttpRequest object for,

158–159

JavaScript, creating, 158–159

keystrokes, capturing and passing, 159–160

list of terms, processing, 160–161

PHP, creating, 162

previewing, 140–141

submitting search terms/phrases, 161–162

uploading and testing, 163

Ajax Story of the Day application

button state, modifying, 108

designing, 104–109

executing, 109

form, writing, 104–105

HTML, writing, 104

JavaScript, developing, 105–106

previewing, 92–93

story text, retrieving, 106–107

text display, adding paragraph element for,

105

text files, creating, 108–109

updating DOM tree, 107

XMLHttpRequest object, creating, 106

Ajax Typing Challenge

designing application, 132–138

displaying Challenge sentences, 135–136

grading results of, 137

HTML, writing, 133

instantiating XMLHttpRequest object for,

134

JavaScript, working on, 134

preview, 114–115

http://lib.ommolketab.ir
http//lib.ommolketab.ir

retrieving Challenge sentences, 135–136

server-side text files, creating, 134

uploading and testing, 137–138

AjaxPatterns website, 262

ajaxSketch, 14–15

ajaxWindows, 14–16

ajaxWrite, 14–15

alert() method, 36

in Number Guessing game, 62

alignment of text, 200

Amazon Zuggest, 12

Amazon.com, 9–10

Animated GIFs, indicating download with, 260

A9.com, 9–10

AnswerQuestion() function for Fortune Telling

game, 218–219

AppendChild() method, 103

aResult variable, 161–162

Arial font, 199

array() function for PHP data, 231

arrays

defined, 80

dense arrays, 80

index position, referencing, 82

individual elements, accessing, 81–82

loops for processing, 82–83

multiple XMLHttpRequest object instances,

defining, 124

PHP data, managing, 231

push() function, 125

sorting contents of, 83–84

Ask.com, 10–11

ASP, 7, 225

asyncFlag parameter, open() method, 119

Asynchronous JavaScript and XML. See Ajax

asynchronous processing, 8

attributes property, 176

b
Back button, Ajax disabling, 256, 261

background colors, CSS managing, 201–202

behind-the-scenes data exchange, 258–259

notifying user of, 260

blur event/event handler, 72

BODY section

embedding JavaScripts in, 37–38

event handlers, embedding, 73

functions in, 67

bold fonts, specifying, 199

bookmarking Ajax applications, 257

Boolean values

JavaScript supporting, 41

question mark (?) operator, 159–160

 tag, 45

break statement, 51

loop execution, altering, 56–58

in PHP, 238

button state for Ajax Story of the Day

application, 108

c
CalendarHub, 17–18

calendars, online, 17–18

case-sensitivity

of HTML, 171

in JavaScript, 39

of XML tags, 171

case statements, 50–51

Catch() method, 118
CBA framework demo, 130–132

cbaUpdateElement() function, 131

change event/event handler, 72

checkAnswer() function for Who Am I? game,

192–193

childNodes property, 95, 176

Ajax Programming for the Absolute Beginner284

http://lib.ommolketab.ir
http//lib.ommolketab.ir

classes in JavaScript Constructorfunctions,

214–215

ClearOutWhiteSpace() function for Who Am I?

game, 192

click event/event handler, 72

coding for PHP, 228–238

colors

dynamic updates, notice of, 258

text color, managing, 200

web page colors, CSS managing, 201–202

comments

Ajax development and, 261

document scripts with, 40–41

multi-line PHP code comments, 230

on PHP code, 230

XML comments, 172

comparison operators in JavaScript, 46

compatibility and JavaScript, 32–33

concatenate operator, 233

concurrent requests, managing, 124–125

conditional logic in JavaScript, 47–52

content location, CSS controlling, 202–205

continue statement

altering loop execution with, 56–57

skipping loop iterations with, 57–58

controlling logic

for Number Guessing game, 60–62

for Rock, Paper, Scissors game, 86–88

createAttribute() method, 95

createElement() method, 95, 103

createTextNode() method, 95

Cross Browser Ajax (CBA) framework demo,

130–132

CSS (Cascading Style Sheets). See also colors;

external style sheets; Fortune Telling

game

with Ajax Google Suggest application,

157–158

Ajax using, 6

backgrounds, controlling, 201–202

content location, controlling, 202–205

declaration blocks, 198

embedded style elements, defining,

206–208

font presentation, controlling, 199–200

HTML pages, adding CSS to, 205–209

inline styles, 206

introduction to, 197–198

syntax for, 198

text display, controlling, 200–201

d
databases, PHP working with, 245

dblclick event/event handler, 72

declaration blocks, CSS, 198
declaration instruction in XML files, 171

decoration of text, 200

dense arrays, 80

desktop

Ajax, feel of, 8

virtual desktop applications, 14–16

DHTML, 5–6, 141

dictionaries, online, 12–13

DisplayMenu() function for Fortune Telling
game, 216

DisplayMessage() function, 75

<DIV> tag, 77

colors for dynamic updates, 258

with Joke of the Day application, 25

and mouse events, 74

updating text with, 78–80

</DIV> tag, 77

colors for dynamic updates, 258
updating text with, 78–80

division (/) operator, 43

divitis, 80

Index 285

http://lib.ommolketab.ir
http//lib.ommolketab.ir

document object in placement in DOM tree,

94–96

Document Object Model (DOM). See DOM

(Document Object Model)

documentation for Ajax applications,

261–262

documentElement property, 176–178

document.write() statement, 78–79

Dojo Ajax framework, 128–130

DOM (Document Object Model), 91–110. See

also Ajax Story of the Day application

Ajax using, 6

DHTML and, 5–6

dynamically updating web page with,

101–103

IDs for HTML tags, 97

introduction to, 93–94

JavaScript properties supporting tree

access, 173

methods, 95

mixed navigation approach, 100–101

properties, 94–95

working with, 98–100

representation of DOM tree, 99

structure of, 94–96

W3C DOM standard, 94

do...while loop, 55–56

in PHP, 237

downloading. See also behind-the-scenes data

exchange

Ajax requirements and, 259–260

Cross Browser Ajax (CBA) framework, 130

Dojo Ajax framework, 129

Yahoo! User Interface Library, 129

dragdrop event/event handler, 72

DTDs, XML file links to, 172

dynamic updates, effect of, 258

dynamically replacing text, 78–80

e
echo function

PHP using, 147, 226–228

returning PHP data with, 229

ECMAScript, 32

elements. See also XML

CSS controlling positioning of, 202–205
else-if statement in PHP, 234
else keyword in JavaScript, 48–49
else statement in PHP, 234
embedded style elements, defining, 206–208
empty XML elements, working with, 172–173
equal to (==) operator

in JavaScript, 46

in PHP, 233

error event/event handler, 72

escape method, 148

European Computer Manufacturing

Association (ECMA), 32
eval() functions for JavaScript statements, 153

event handlers, 71–72

events

defined, 71

developing event-driven scripts, 71–72

form elements, processing, 76

in JavaScript, 31

list of JavaScript events, 72

mouse events, processing, 74–75
window events, reacting to, 73–74

ExecuteCommand() function for Fortune

Telling game, 216–218

external files, placing JavaScripts in, 38

external style sheets, 208–209

for Fortune Telling game, 210

f
files. See also text files

JavaScripts in external files, placing, 38

Ajax Programming for the Absolute Beginner286

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Firefox, 32, 259

instantiating XMLHttpRequest object on,

117

white space in XML files, eliminating, 179

words, downloading successive sets of, 248

firstChild property, 95, 176

Flickr, 16–17

Flock, 32

focus event/event handler, 72

font presentation, CSS controlling, 199–200

fopen function for PHP, 242

for loop, 53

arrays, processing, 82–83

PHP using, 236

foreach loop in PHP, 236

<FORM> tag, 75–76

</FORM> tag, 75–76

forms

Ajax Story of the Day application, writing

form for, 104–105

processing, 75–76

for Rock, Paper, Scissors game, 85

Fortune Telling game

AnswerQuestion() function for, 218–219

designing application, 209–220

DisplayMenu() function, creating, 216

ExecuteCommand() function, creating,

216–218

external style sheets for, 210

getMouseData() function for, 214–215

HTML for, 211–212

JavaScript for, 212–213

populateMenus() function, creating, 215

previewing, 195–197

ProcessEvent() function for, 213–214

RemoveMenus() function, creating,

215–216

ResetScreen() function for, 219–220

server files, creating, 211

StartPlay() function for, 217–218

uploading and testing, 220

Forward button, Ajax disabling, 256

frameworks

Cross Browser Ajax (CBA) framework demo,

130–132

defined, 127–128

Dojo Ajax framework, 128–130

Yahoo! User Interface Library, 128–130

functions. See also specific functions

calling functions, 68–71

defined, 67

execution, controlling, 68–71

expressions, calling functions in, 69–70

with JavaScript, 36

with Joke of the Day application, 25

names, 67

organizing code statements into, 67–68

PHP, working in, 239–240

return statement with, 67–68

syntax for defining, 67

fwrite function, 243–244

g
gaming, online, 255

Garrett, Jesse James, 5

GET method, 119

PHP, working with, 148–151,

240–241
getElementByID() method, 79, 95

getElementByTagName() method, 95

getMouseData() function for Fortune Telling

game, 214–215

getWord() function for Scramble - The Word

Guessing Game, 247–248

getXML() function for Who Am I? game,

190–191

Index 287

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Google

desktop email clients and, 255

new applications, 5

Google Gmail, 11, 255

Google Maps, 11

Google Suggest, 11–12. See also Ajax Google

Suggest application

graphics, working with, 141–144

greater than (>) operator

in JavaScript, 46

in PHP, 233

greater than or equal to (>=) operator

in JavaScript, 46

in PHP, 233

h
hasChildNodes() method, 95

HEAD section, embedding JavaScripts in,

35–36

HTML. See also BODY section; DOM (Document

Object Model); JavaScript; PHP

for Ajax Google Suggest application, 157

for Ajax Story of the Day application, 104

for Ajax Typing Challenge, 133

Ajax using, 6
case-sensitivity of, 171

CSS to HTML pages, adding, 205–209

DHTML and, 5–6

embedding JavaScript in tags, 38

for Fortune Telling game, 211–212

IDs for tags, 97

inline styles with CSS, 206

for Joke of the Day application, 19–20

for Number Guessing game, 59
for Rock, Paper, Scissors game, 84–85

for Scramble - The Word Guessing Game,

245–246

Who Am I? game, writing for, 188–189

i
IDs for HTML tags, 97

if statements, 47–48

else keyword with, 48–49

multi-line if statements, 48

nesting, 49–50

in PHP, 233–234

 tags for graphics, 149

incoming requests, processing, 7

indentation of text, 200

index mechanism, 257

inline styles, 206

instant messaging applications, 16–17

instantiating XMLHttpRequest object,

117–118

Internet Explorer, 32, 259

HTML page, loading, 35

instantiating XMLHttpRequest object on,

117–118

keystrokes, capturing and passing, 159–160

version of, 117

white space in XML files, eliminating, 179

words, downloading successive sets

of, 248

italic font, use of, 199–200

j
Java and JSON (JavaScript Object Notation),

184

Java Servlets, 7

JavaScript, 31. See also arrays; events;

frameworks; functions; if statements;

loops; Number Guessing game; Rock,

Paper, Scissors game; XML

for Ajax Google Suggest application,
158–159

for Ajax Story of the Day application,

105–106

Ajax Programming for the Absolute Beginner288

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for Ajax Typing Challenge, 134

Ajax using, 6

arithmetic calculations, 43–44

assignment operators in, 44–46

asynchronous processing and, 8

BODY section, embedding JavaScripts in,

37–38

case-sensitivity in, 39

client-side code, security and, 260

comments, document scripts with, 40–41

comparing different values in, 46–47

compatibility issues with browsers, 32–33

concatenator operator, use of, 233

conditional logic in, 47–52

DHTML and, 5–6

do...while loop, 55–56

else keyword in, 48–49

events in, 31

executing, 34–35

external files, placing JavaScripts in, 38

forms, processing, 75–76

for Fortune Telling game, 212–213

functions, 42–43

global variables, 42

HEAD section, embedding JavaScripts in,

35–36

history of, 31–32

HTML tags, embedding JavaScripts in, 38–39

local variables, 42–43

modifying variable values, 44–46

names for variables, assigning, 42

non-supporting browsers, working with,

39–43

question mark (?) operator, 159–160

for Scramble - The Word Guessing Game,

246–247

scope of variables, 42

server-supplied JavaScript, executing,

153–155

simple JavaScript, creating, 34

for statement, 53

statement syntax, 39

switch statement, 50–52

values, working with, 41

variables, 36

assigning values to, 44–46

creating, 41

global variables, 42

local variables, 42–43

modifying values, 44–46

names, assigning, 42

scope of, 42

web browser support for, 254–255

while statement, 53–55

for Who Am I? game, 189

working with, 33–39

JavaScript Constructor functions, 214–215

Joke of the Day application

Ajax application, converting HTML to,

22–25

designing, 18–20

execution of, 25

final result of, 25

HTML file for, 122–124

PHP, working with, 145–147

preview of, 4

text file, creating, 20

uploading and testing, 20–22

Jscript, 32

JSON (JavaScript Object Notation), 8, 184

k
keydown event/event handler, 72

keypress event/event handler, 72

Index 289

http://lib.ommolketab.ir
http//lib.ommolketab.ir

keyup event/event handler, 72

Konqueror, 32

l
language attribute in JavaScript, 33

lastChild property, 95, 176

less than (<) operator

in JavaScript, 46

in PHP, 233

less than or equal to (<=) operator

in JavaScript, 46

in PHP, 233

letter spacing formatting, 200

libraries. See frameworks

line height formatting, 200

<LINK> tag, 209

links in Ajax applications, 262

LiveScript, 32

load event/event handler, 72

localName property, 176

loops, 52–58. See also specific loops

altering execution of, 56–57

arrays, processing, 82–83

PHP supporting, 235–238

skipping iterations
in JavaScript, 57–58

in PHP, 238

m
Math object

random() method, 61

round() method, 61–62

mathematic operators

in JavaScript, 43–44

in PHP, 232–233

merchants, web applications of, 7–8

method parameter, open() method, 119

methods. See also JavaScript; specific methods

DOM methods, 95

of XMLHttpRequest object, 116

Microsoft

Jscript, 32

Notepad, 19

Outlook, 255

Word, ajaxWrite and, 16

ModifyDOM() function for Ajax Story of the

Day application, 107

mouse events

Fortune Telling game, ProcessEvent()

function for, 213–214

list of, 72

processing, 74–75

setting up, 125–127

mousedown event/event handler, 72

mousemove event/event handler, 72

mouseout event/event handler, 72

mouseover event/event handler, 72

mouseup event/event handler, 72

MS SQL, PHP support for, 245

multi-line if statements in JavaScript, 48

multiplication (*) operator, 43

MySQL, PHP support for, 245

n
name property, 176

names/renaming

function names, 67

functions in Ajax application, 156

variable names, 42

navigating XML files, 176–179

nesting if statements, 49–50

NetFlix, 14

Netscape Communication Corporation, 31–32
new keyword and classes, 215

nextSibling property, 95, 176

nodeName property, 95, 176

Ajax Programming for the Absolute Beginner290

http://lib.ommolketab.ir
http//lib.ommolketab.ir

nodeType property, 95
nodeValue property, 95, 176
<NSCRIPT> tag, 254–255
</NSCRIPT> tag, 254–255
not equal to (!==) operator

in JavaScript, 46

in PHP, 233
null values, JavaScript supporting, 41
Number Guessing game

controlling logic, adding, 60–62
designing application, 58–62
HTML, writing, 59
JavaScript, adding, 59–60
preview of, 29–30
uploading and testing, 62

numbers, JavaScript supporting, 41

o
ObjectGraph, 12–13
objects. See DOM (Document Object Model);

JavaScript
onClick event, 71
onkeyup() event handler with Ajax Google

Suggest application, 159
onMouseover() event handler, 126

with graphical menus, 149–150
onreadystatechange attribute, 116
OOP (object-oriented programming), 31
open() method, 116. See also GET method; POST

method
executing, 119–120
new connection, opening, 118–120
parameters of, 119

Opera, 32, 259

instantiating XMLHttpRequest object on,

117

Oracle, PHP support for, 245

Organizr, 16

overusing Ajax, 261

p
parental controls, 255

parentNode property, 95, 176

password parameter, open() method, 119

Perl/CGI, 225

and JSON (JavaScript Object Notation), 184

photo management applications, 16

PHP, 7. See also Scramble - The Word Guessing

Game

accessing data, 241–245

for Ajax Google Suggest application, 162

arrays, managing data with, 231

assigning data, operators for, 232

break keyword in, 238

built-in functions, working with, 240

coding for, 228–238

commenting code, 230

comparing values in, 233

concatenator operator, use of, 233

custom functions, creating and executing,

239–240

databases, working with, 245

do...while loop in, 237

echo command, 147

else statement in, 234

else-if statement in, 234

embedding PHP into HTML pages, 226–227

example of working with, 145–147

files, creating and accessing, 242

fopen function for opening files, 242

foreach loop in, 236

functions, working with, 239–240

GET method with, 148–151, 240–241

if statement in, 233–234

input, processing, 240–241

introduction to, 225

and JSON (JavaScript Object Notation), 184

for loop in, 236

Index 291

http://lib.ommolketab.ir
http//lib.ommolketab.ir

loops, working with, 235–238

mathematic calculations, performing,

232–233

POST method with, 151–153, 241

reading from files, 245

returning data back to Ajax applications,

229–230

skipping loop iteration in, 238

stand-alone scripts, writing, 227–228

storing data, 241–245

switch statement in, 234–235

terminating execution of loops, 238

ternary operator in, 235

variables, storing data in, 231

while loop in, 237

writing to files, 243–244

PHP Group, 225

plain text files, 7–8

populateMenus() function for Fortune Telling

game, 215

positioning of elements, CSS properties

controlling, 203

post-decrement (X--) operator in JavaScript, 43

post-increment (X++) operator in JavaScript, 43

POST method, 119

PHP, working with, 151–153, 241

pre-decrement (--X) operator in JavaScript, 43

pre-increment (++X) operator in JavaScript, 43

previousSibling property, 95, 176

print function, returning PHP data with, 229

ProcessEvent() function for Fortune Telling

game, 213–214

ProcessMove() function for Rock, Paper,

Scissors game, 86–88

prompt() method, 52

in Number Guessing game, 62

properties. See also DOM (Document Object

Model); JavaScript

font properties, CSS, 199

of XMLHttpRequest object, 116

push() function, 125

Python, 225

q
question mark (?) operator, 159–160

r
random numbers

in Number Guessing game, 61

for Rock, Paper, Scissors game, 86–87

reading from PHP files, 245

readyState property, 116, 120–121

relative paths, specifying, 120

relative positioning of elements, 204–205

removeChild() method, 95

RemoveMenus() function for Fortune Telling

game, 215–216

Request variable, 118

reset event/event handler, 72

ResetScreen() function for Fortune Telling

game, 219–220

resize event/event handler, 72

resources use by Ajax, 8

responseString variable in Ajax Google

Suggest application, 160–161

responseText attribute, 116

responseXML attribute, 116

return statement with functions, 67–68

reversing variable sign (-X) in JavaScript, 43

Rock, Paper, Scissors game

controlling logic, developing, 86–88

designing application, 84–88

executing, 88

form, creating, 85

HTML for, 84–85

preview of, 66–67

Ajax Programming for the Absolute Beginner292

http://lib.ommolketab.ir
http//lib.ommolketab.ir

template for output, creating, 85
round() method in Number Guessing game,

61–62
Ruby, 7, 225

and JSON (JavaScript Object Notation), 184

s
Safari, 32, 259

instantiating XMLHttpRequest object on,
117

white space in XML files, eliminating, 179
Scramble - The Word Guessing Game

designing, 245–250
GetWord() function for, 247–248
HTML for, 245–246
JavaScript for, 246–247
previewing, 223–225
scramble.php script, creating, 249–250
StartGame() function for, 248
uploading and testing, 250

scramble.php script, creating, 249–250
<SCRIPT> tag, 24

browsers displaying, 40
with JavaScript, 33

</SCRIPT> tag, 24
browsers displaying, 40
with JavaScript, 33

scripts. See JavaScript; PHP
search engines, 9–10

Ajax applications and, 257–258
suggestion-based search engines, 10–13

security concerns with Ajax, 260
send() method, 116, 122
server-side programming languages, 7
server-side text files, 143

for Ajax Typing Challenge, 34
setTimeout() function, 219
SGML (Standard Generalized Markup

Language), 169

Site Info feature, 10

size of font, specifying, 199

skipping loop iterations. See loops

slow applications, avoiding, 259–260

sorting array contents, 83–84

 tag, 77–78

text, problems with, 80

 tag, 77–78

text, problems with, 80

spider mechanism, 257

split() function for Scramble - The Word

Guessing Game, 247–248

stand-alone PHP scripts, writing, 227–228

StartGame() function for Scramble - The Word

Guessing Game, 248

StartPlay() function for Fortune Telling game,

217–218

status attribute, 116

strings, JavaScript supporting, 41

<STYLE> tag, 206

external style sheets, working with,

208–209

</STYLE> tag, 206

external style sheets, working with,

208–209

styles. See CSS (Cascading Style Sheets)

submit event/event handler, 72

subtraction (-) operator, 43

suggestion-based search engines, 10–13

switch statement

in JavaScript, 50–52

in PHP, 234–235

t
tags. See CSS (Cascading Style Sheets); HTML;

XML

templates for Rock, Paper, Scissors game

output, 85

Index 293

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ternary operator in PHP, 235

text

CSS managing display of, 200–201

dynamic updates, notice of, 258

dynamically replacing, 78–80

font presentation, CSS controlling,

199–200

text files. See also server-side text files

for Ajax Story of the Day application,

108–109

for Ajax Typing Challenge, 134

for Fortune Telling game, 211

<TITLE> tag, 98

traditional web development, 6–8

tree structure. See DOM (Document Object

Model); XML

type attribute in JavaScript, 33

u
unload event/event handler, 72

UpdateInterface() function for Ajax Story of

the Day application, 108

updatePage() function for mouseovers,

126–127

updating DOM tree, dynamically updating
web page with, 101–103

URL-encoded data with GET method, 148

url parameter, open() method, 119

userName parameter, open() method, 119

v
variables. See also JavaScript

PHP data, storing, 231

Verdana font, 199

versionNumber attribute, XML, 171–172

virtual desktop applications, 14–16

w
web browsers. See also JavaScript; specific

browsers

back and forward buttons, disabling, 256

CSS support, 198

DOM standard for, 94

JavaScript, support for, 254–255

web hosts, finding, 19

web servers

connecting applications to, 115–116

handling response by, 121–122

JavaScript, executing server-supplied,

153–155

PHP and, 225

processing, sending data for, 147–153

retrieved data from, 7

sending data to, 144–153

waiting for response by, 120–121

well-formed XML files. See XML

while loop, 53–55

in Number Guessing game, 60–61

in PHP, 237

white space

Who Am I? game, clearing out for, 192

in XML files, 179–181

Who Am I? game, 184–193

answers, checking, 192–193

designing, 185–193

getXML() function, creating, 190–191

HTML, writing, 188–189

JavaScript for, 189

previewing, 168–169

uploading and testing, 193

white space, clearing out, 192

XML files, creating, 185–188

XMLHttpRequest object, instantiating, 190

Ajax Programming for the Absolute Beginner294

http://lib.ommolketab.ir
http//lib.ommolketab.ir

window events, reacting to, 73–74

window object. See alert() method; prompt()

method; XMLHttpRequest object

word spacing formatting, 200

working Ajax application, creating, 122–124

write() method with DOM (Document Object

Model), 96

writing PHP files, 243–244

W3C

blank space, standard for, 179

CSS (Cascading Style Sheets) standard, 198

DOM standard, 94

XML standard, 171

x
XML, 167–194

Ajax using, 6

attributes, processing, 181–184

case-sensitivity of, 171

comments, using, 172

declaration instruction, including, 171–172
documentElement property, 177–178

DTDs, links to, 172

element syntax, 171

empty elements, working with, 172–173

getData() function, creating, 176–177

introduction to, 169–170

JavaScript properties

access, properties supporting, 173

working with XML trees, 176
JSON (JavaScript Object Notation)

compared, 184

large amounts of data and, 8

navigating files, 176–179

no content, elements with, 172–173

nodes in XML trees, 175

returning PHP data to, 229–230

rules for formulating tags, 170–171

small XML file, depiction of, 175

types of elements in, 173–174

versionNumber attribute, 171–172

well-formed files, 170

verification of, 174

white space in files, eliminating,

179–181

Who Am I? game files, creating, 185–188

XMLHttpRequest object, 5–6. See also web

servers

for Ajax Google Suggest application,

158–159

for Ajax Story of the Day application, 106

for Ajax Typing Challenge, 134

Ajax Typing Challenge, instantiating for,

134

attributes, 116

compatibility issues, 33

concurrent requests, managing, 124–125

creation of, 115

and Joke of the Day application, 122–124

methods, 116

multiple instances, defining, 124

properties, 116

for Scramble - The Word Guessing Game,

247

status attribute values, 121

for Who Am I? game, 190

Who Am I? game, instantiating for, 190

y
Yahoo! User Interface Library, 128–130

Index 295

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	TABLE OF CONTENTS
	INTRODUCTION
	Part I: INTRODUCING AJAX
	Chapter 1 AN AJAX OVERVIEW
	Project Preview: The Joke of the Day Application
	Introducing Ajax
	Examples of Real-World Ajax Applications and Websites
	Back to the Joke of the Day Application
	Summary

	Part II: LEARNING JAVASCRIPT AND THE DOM
	Chapter 2 AN INTRODUCTION TO JAVASCRIPT
	Project Preview: The Number Guessing Game
	JavaScript—Ajax's Programming Language
	Working with JavaScript
	Four Ways of Working with JavaScript
	Working with Different Types of Values
	Applying Conditional Logic
	Working Efficiently with Loops
	Back to the Number Guessing Game
	Summary

	Chapter 3 A DEEPER DIVE INTO JAVASCRIPT
	Project Preview: The Rock, Paper, Scissors Game
	Improving JavaScript Organization with Functions
	Developing Applications That Respond to Events
	Div and Span Tags
	Managing Collections of Data
	Back to the Rock, Paper, Scissors Application
	Summary

	Chapter 4 UNDERSTANDING THE DOCUMENT OBJECT MODEL
	Project Preview: The Ajax Story of the Day Application
	An Introduction to the Document Object Model
	The DOM Tree
	Walking the DOM Tree
	Dynamically Updating Web Page Content
	Back to the Ajax Story of the Day Application
	Summary

	Part III: BUILDING AJAX APPLICATIONS
	Chapter 5 AJAX BASICS
	Project Preview: The Ajax Typing Challenge
	Connecting Your Applications to Web Servers
	Working with the XMLHttpRequest Object
	Managing Concurrent XMLHttpRequests
	Using Ajax to Set Up Mouseovers
	Leveraging Ajax Frameworks
	Back to the Ajax Typing Challenge Application
	Summary

	Chapter 6 DIGGING DEEPER INTO AJAX
	Project Preview: The Ajax Google Suggest Application
	Using Ajax to Manipulate Graphics
	Sending Data to Web Servers
	Executing Server-Supplied JavaScript
	Back to the Ajax Google Suggest Application
	Summary

	Part IV: DATA MANAGEMENT AND PRESENTATION
	Chapter 7 WORKING WITH XML
	Project Preview: The Who Am I? Application
	An Introduction to XML
	Verifying That Your XML Files Are Well-Formed
	Understanding XML Trees
	Navigating XML Files
	JSON: JavaScript Object Notation—An Alternative to XML
	Back to the Who Am I? Application
	Summary

	Chapter 8 WORKING WITH CASCADING STYLE SHEETS
	Project Preview: The Fortune Telling Game
	An Introduction to CSS
	Using CSS to Specify Style, Color, and Presentation
	Adding CSS to Your HTML Pages
	Back to the Fortune Telling Game
	Summary

	Chapter 9 WORKING WITH AJAX AND PHP
	Project Preview: Scramble—The Word Guessing Game
	Introduction to PHP
	The Basics of Working with PHP
	PHP Coding
	Working with Functions
	Processing Application Input
	Storing and Accessing Data
	Back to Scramble—The Word Guessing Game
	Summary

	Chapter 10 IMPORTANT AJAX DESIGN ISSUES
	Programming Hurdles That All Ajax Developers Face
	Don't Overuse Ajax
	Follow Good Development Practices
	Summary

	Appendix A: WHAT'S ON THE COMPANION WEBSITE?
	Downloading the Book's Source Code

	Appendix B: WHAT NEXT?
	HTML Resources
	The HTML Document Object Model
	XMLHttpRequest Resources
	Resources for Cascading Style Sheets
	JavaScript Resources
	XML Resources
	Locating Ajax Resources Online

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

